JPH0417132B2 - - Google Patents

Info

Publication number
JPH0417132B2
JPH0417132B2 JP59127469A JP12746984A JPH0417132B2 JP H0417132 B2 JPH0417132 B2 JP H0417132B2 JP 59127469 A JP59127469 A JP 59127469A JP 12746984 A JP12746984 A JP 12746984A JP H0417132 B2 JPH0417132 B2 JP H0417132B2
Authority
JP
Japan
Prior art keywords
molecular weight
stretching
ultra
melt
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127469A
Other languages
Japanese (ja)
Other versions
JPS618323A (en
Inventor
Masanori Motooka
Hiroyuki Takeda
Kazuyuki Takimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59127469A priority Critical patent/JPS618323A/en
Priority to CA000481470A priority patent/CA1216119A/en
Priority to DE8585303421T priority patent/DE3586864T2/en
Priority to EP85303421A priority patent/EP0168923B1/en
Publication of JPS618323A publication Critical patent/JPS618323A/en
Priority to US07/423,592 priority patent/US5055248A/en
Publication of JPH0417132B2 publication Critical patent/JPH0417132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/731Filamentary material, i.e. comprised of a single element, e.g. filaments, strands, threads, fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、超高分子量ポリエチレンの溶融押出
延伸方法に関する。更に詳しくは超高分子量ポリ
エチレンと特定の低軟化点炭化水素重合体と脂肪
族炭化水素化合物あるいはその誘導体との可塑剤
成分とからなる組成物を溶融押出延伸することに
より、引張強度、弾性率が共に大きい超高分子量
ポリエチレン延伸物を製造する方法に関する。 〔従来の技術〕 超高分子量ポリエチレンは汎用のポリエチレン
に比べ耐衝撃性、耐摩耗性、耐薬品性、引張強度
等に優れており、エンジニアリングプラスチツク
としてのその用途が拡がりつつある。しかしなが
ら汎用のポリエチレンに比較して溶融粘度が極め
て高く流動性が悪いため、押出成形や射出成形に
よつて成形することは非常に難しく、その殆どは
圧縮成形によつて成形されており、一部ロツド等
が極めて低速で押出成形されているのが現状であ
つた。 一方、高密度ポリエチレンのモノフイラメント
を高倍率で延伸する方法として、ポリエチレンの
融点より高い高沸点の添加剤をポリエチレンの重
量に対し20〜150%の範囲内で共存せしめ、得ら
れた高濃度分散体から第1次繊維状物を形成さ
せ、次いでこの紡出糸中にその5〜25%相当量の
添加剤を残存せしめたまま元の長さの3〜15倍に
熱延伸する方法(特公昭37−9765号公報)あるい
は分子量が400000以上の線状ポリエチレンの溶液
を紡糸して、少なくとも20GPaになるような温度
で延伸する方法(特開昭56−15408号公報)が提
案されている。しかしながらこれらの方法は、具
体的にはo−ジクロルベンゼン、キシレンあるい
はデカリン等の溶媒に分散あるいは溶解させて特
定の方法で紡糸する方法であり、スクリユー式押
出機により連続的に押出紡糸する方法にこのよう
な液状の溶媒を分子量が高い超高分子量ポリエチ
レンの延伸性改良剤として用いようとしても、溶
媒と粉末との粘度差が大き過ぎて溶媒と粉末との
混合が全く出来ず、また溶媒が粉末とスクリユー
との間の滑剤として働き、粉末とスクリユーとが
共回りを起こして殆ど押出しが出来ない。また、
たとえば押出せたとしても均一に混合されていな
いので延伸が全く不可能であり、スクリユー式押
出機を用いて連続的に溶融押出紡糸することは出
来ないのが現状であつた。またそれらの溶媒は低
沸点で引火性が大きいので、電熱で加熱するスク
リユー式押出機には危険で使用に際しては格別注
意を払う必要もある。 他方、超高分子量ポリエチレンの成形性を改善
するために分子量が5000〜20000の低分子量ポリ
エチレンを超高分子量ポリエチレン100重量部に
対して10〜60重量部を添加した組成物(特開昭57
−177036号公報)が提案されているが、これらの
組成物では添加された低分子量ポリエチレンの分
子量が大きすぎて溶融押出紡糸されたモノフイラ
メントを20倍以上の高倍率には延伸出来ず、高弾
性率、高引張強度のモノフイラメントを得ること
はできない。 〔発明が解決しようとする問題点〕 かかる観点から本発明者らは、スクリユー式押
出機による高弾性率、高引張強度を有する超高分
子量ポリエチレンの延伸物の連続押出成形方法の
開発を目的とし種々検討した結果、超高分子量ポ
リエチレンに特定の脂肪族炭化水素化合物あるい
はその誘導体を配合した組成を用いることにより
本発明の目的を達することができ、先に特願昭57
−227447号および特願昭58−59976号を出願した。
その後更に検討した結果、脂肪族炭化水素化合物
あるいはその誘導体との共存下に低軟化点炭化水
素重合体を用いても、超高分子量ポリエチレンを
スクリユー式押出機で安定に連続押出成形できる
ことが分かり、本発明を完成するに至つた。 〔問題点を解決するための手段〕 すなわち本発明は、 (a) 少なくとも極限粘度〔η〕が5dl/g以上の
超高分子量ポリエチレン(A)15ないし80重量部
と、 (b) 少なくとも軟化点が130℃以下で且つ分子量
が2000以下の低軟化点炭化水素重合体(B)5ない
し80重量%及び少なくとも融点が10℃以上で且
つ沸点が130℃以上の脂肪族炭化水素化合物あ
るいはその誘導体(C)95ないし20重量%とからな
る可塑剤成分85ないし20重量部、 とからなる組成物を溶融混練後ダイより未延伸物
を押出し、次いで少なくとも3倍を越える延伸比
で延伸することを特徴とする引張強度、弾性率が
共に大きい超高分子量ポリエチレン延伸物の製造
法を提供するものである。 〔作用〕 本発明の方法に用いる超高分子量ポリエチレン
(A)とは、デカリン溶媒135℃における極限粘度
〔η〕が5dl/g以上、好ましくは7ないし30
dl/gの範囲のものである。〔η〕が5dl/g未
満のものは、延伸しても引張強度に優れた延伸物
が得られない。又〔η〕の上限はとくに限定はさ
れないが、30dl/gを越えるものは後述の低軟化
点炭化水素重合体(B)および脂肪族炭化水素化合物
あるいはその誘導体(C)を添加しても溶融粘度が高
く後述の温度範囲でのスクリユー式押出機による
溶融紡糸性に劣る。 本発明の方法に用いる低軟化点炭化水素重合体
(B)とは、軟化点が130℃以下、好ましくは50℃な
いし120℃で且つ分子量が2000以下、好ましくは
500ないし1000の低軟化点炭化水素重合体である。
軟化点が130℃を越える低軟化点炭化水素重合体
(B)を用いると超高分子量ポリエチレン(A)との分散
むらが生じるため、均一な延伸が行えず、高延伸
倍率を達成することができない。又、分子量が
2000を越える低軟化点炭化水素重合体(B)を用いる
と冷却固化する前にドラフトをかけた場合に延伸
切れを起こし、高弾性率、高引張強度の延伸物が
得られず、更に後述の如く延伸物から過剰の低軟
化点炭化水素重合体(B)を抽出することも出来な
い。一方軟化点が50℃未満のものは押出機にかか
らない虞れがある。 本発明の方法に用いる脂肪族炭化水素化合物あ
るいはその誘導体(C)とは、融点が10℃以上、好ま
しくは20℃ないし120℃、特に好ましくは40℃な
いし100℃で且つ沸点が130℃以上好ましくは160
℃以上、特に好ましくは190℃以上の脂肪族炭化
水素化合物あるいはその誘導体である。融点が10
℃未満の液状脂肪族炭化水素化合物あるいはその
誘導体を用いると超高分子量ポリエチレン(A)とス
クリユーとが共回りを起こして均一な溶融紡糸が
出来ない。一方、沸点が130℃未満の脂肪族炭化
水素化合物あるいはその誘導体を用いると、スク
リユー式押出機内での脂肪族炭化水素化合物ある
いはその誘導体の気化によるサージング並びにダ
イオリフイスを出た溶融ストランドの突発的な発
泡が生ずるため好ましくない。 本発明に用いる低軟化点炭化水素重合体(B)と
は、固体の非晶形ポリマーであり、通常粘着付与
樹脂として粘着テープ、塗料、およびホツトメル
ト接着剤用分野に用いられており、重合されるモ
ノマー源の違いにより次の様な樹脂を列挙するこ
とができる。例えば、石油、ナフサ等の分解によ
つて得られるC4留分、C5留分、これらの混合物
あるいはこれらの任意の留分、例えばC5留分中
のイソプレンおよび1,3−ペンタジエンなどを
主原料とする脂肪族系炭化水素樹脂、石油、ナフ
サ等の分解によつて得られるC9留分中のスチレ
ン誘導体およびインデン類を主原料とする芳香族
系炭化水素樹脂、C4・C5留分の任意の留分とC9
留分を共重合した脂肪族・芳香族共重合炭化水素
樹脂、芳香族系炭化水素樹脂を水素添加した脂環
族系炭化水素樹脂、脂肪族、脂環族および芳香族
を含む構造をもつ合成テルペン系炭化水素樹脂、
テレピン油中のα,β−ピネンを原料とするテル
ペン系炭化水素樹脂、コールタール系ナフサ中の
インデンおよびスチレン類を原料とするクマロン
インデン系炭化水素樹脂、低分子量スチレン系樹
脂およびロジン系炭化水素樹脂などである。 本発明に用いる脂肪族炭化水素化合物あるいは
その誘導体(C)は前記特性を有する限り特に限定は
されない。前記脂肪族炭化水素化合物あるいはそ
の誘導体(C)のうち脂肪族炭化水素化合物として
は、飽和脂肪族炭化水素化合物を主体とするもの
で、具体的にはドコサン、トリコサン、テトラコ
サン、トリアコンタン等の炭素数22以上のn−ア
ルカンあるいはこれらを主成分とした低級n−ア
ルカンとの混合物、石油から分離精製された所謂
パラフインワツクス、エチレンあるいはエチレン
と他のα−オレフインとを共重合して得られる低
分子量重合体である中・低圧法ポリエチレンワツ
クス、高圧法ポリエチレンワツクス、エチレン共
重合ワツクスあるいは中・低圧法ポリエチレン、
高圧法ポリエチレン等のポリエチレンを熱減成等
により分子量を低下させたワツクス及びそれらの
ワツクスの酸化物あるいはマレイン酸変性物等の
酸化ワツクス、マレイン酸変性ワツクス等が挙げ
られる。 次に脂肪族炭化水素化合物あるいはその誘導体
(C)のうち脂肪族炭化水素化合物誘導体としては、
例えば脂肪族炭化水素基(アルキル基、アルケニ
ル基)の末端もしくは内部に1個又はそれ以上、
好ましくは1ないし2個、特に好ましくは1個の
カルボキシル基、水酸基、カルバモイル基、エス
テル基、メルトカプト基、カルボニル基等の官能
基を有する化合物である炭素数8以上、好ましく
は炭素数12〜50又は分子量130〜2000、好ましく
は200〜800の脂肪酸、脂肪族アルコール、脂肪酸
アミド、脂肪酸エステル、脂肪族メルカプタン、
脂肪族アルデヒド、脂肪族ケトン等を挙げること
ができる。 具体的には、脂肪酸としてカプリン酸、ラウリ
ン酸、ミリスチン酸、パルミチン酸、ステアリン
酸、オレイン酸、脂肪族アルコールとしてラウリ
ルアルコール、ミリスチルアルコール、セチルア
ルコール、ステアリルアルコール、脂肪酸アミド
としてカプリンアミド、ラウリンアミド、パルミ
チンアミド、ステアリルアミド、脂肪酸エステル
としてステアリル酢酸エステル等を例示すること
ができる。 本発明に用いる前記脂肪族炭化水素化合物ある
いはその誘導体(C)の融点及び沸点範囲に入る他の
炭化水素化合物として例えばナフタリン、ジメチ
ルナフタリン等の芳香族炭化水素化合物がある
が、これらのものは脂肪族炭化水素化合物あるい
はその誘導体(C)と異なり超高分子量ポリエチレン
(A)との相溶性が劣り、本発明の方法に用いると超
高分子量ポリエチレン(A)への芳香族炭化水素化合
物の分散むらが生じ、均一延伸あるいは高延伸倍
率の達成が困難である。 本発明における軟化点はJIS K2531により環球
法により測定した値であり、融点はASTM
D3418により示差走査型熱量計(DSC)により測
定した値である。また分子量はGPC法(ゲル・
パーミエーシヨン・クロマトグラフイー)により
次の条件で測定して得た重量平均分子量である。 装置 :ウオーターズ社製 150C型 カラム:東洋曹達社製 TSK GMH−6(6mmφ×600mm) 溶媒 :オルソジクロルベンゼン(ODCB) 温度 :135℃ 流量 :1.0ml/min 注入濃度:30mg/20ml ODCB(注入量400μ) 尚、東洋曹達社製およびプレツシヤー・ケミカ
ル社製、標準ポリスチレンを用いてユニバーサル
法によりカラム溶出体積は較正した。 本発明の方法は前記超高分子量ポリエチレン
(A):15ないし80重量部、好ましくは30ないし50重
量部と低軟化点炭化水素重合体(B)と脂肪族炭化水
素化合物あるいはその誘導体(C)との可塑剤成分:
85ないし20重量部、好ましくは70ないし50重量部
との組成物をスクリユー式押出機で溶融混練しダ
イより未延伸物を押出し、次いで少なくとも3
倍、好ましくは5倍以上の延伸比で延伸する方法
である。 超高分子量ポリエチレン(A)の量が15重量部未満
ではスクリユー式押出機での溶融混練が困難であ
り、また押出されたものの延伸性が劣り、ブツ切
れを起こし高倍率延伸あるいはドラフトをかける
ことができない。一方80重量部を越えると、溶融
粘度が高くなり溶融押出しが困難であり、また押
出された未延伸物(ストランド)の肌荒れが激し
く延伸切れを起こし易い。 又、超高分子量ポリエチレン(A)に混合する低軟
化点炭化水素重合体(B)と脂肪族炭化水素化合物あ
るいはその誘導体(C)との可塑剤成分において(B)が
80重量%以上では、可塑剤成分を超高分子量ポリ
エチレン(A)に均一に分散させることができず、未
延伸物をダイから押出した際に、溶融ストランド
が不均質で延伸性がなく冷却固化する前にドラフ
トをかけることができない。従つて、高延伸倍率
を達成できず、高引張強度の延伸物を得ることが
できない。 尚、超高分子量ポリエチレン(A)と低軟化点炭化
水素重合体(B)と脂肪族炭化水素化合物あるいはそ
の誘導体(C)との混合はヘンシエルミキサー、V−
ブレンダー等による混合、あるいは混合後更に単
軸あるいは多軸押出機で溶融混練して造粒する方
法により行い得る。 超高分子量ポリエチレン(A)と低軟化点炭化水素
重合体(B)と脂肪族炭化水素化合物あるいはその誘
導体(C)との組成物の溶融混練温度及びダイの温度
は組成物が溶融する温度であればとくに限定はさ
れないが、溶融混練温度は通常組成物の溶融以上
280℃未満、好ましくは組成物の融点+10℃以上
250℃未満の温度であり、ダイの温度は通常組成
物の融点以上300℃未満、好ましくは組成物の融
点+10℃以上270℃未満の温度である。溶融混練
温度が280℃及びダイの温度が300℃以上になる
と、超高分子量ポリエチレン(A)が熱劣化して分子
量が低下する場合がある。 未延伸物をダイから押出した際に、該溶融物が
冷却固化する前に少なくとも1、好ましくは2を
越えるドラフトをかけることにより、ドラフトを
かけないものの延伸物に比べて高弾性率で高引張
強度の延伸物が得られる。 本発明におけるドラフトとは、スクリユー式押
出機より押出された溶融物の溶融時における延伸
を意味し、溶融物の引き落としのことである。即
ち、溶融樹脂のダイ・オリフイス内での押出速度
υ0と冷却固化した延伸物の巻き取り速度υとの比
をドラフト比として次式で定義した。 ドラフト比=υ/υ0 又、前記冷却は空冷、水冷いずれの方法でも良
い。 延伸時の温度は通常低軟化点炭化水素重合体(B)
の軟化点以上であり且つ脂肪族炭化水素化合物あ
るいはその誘導体(C)の融点以上組成物の融点+20
℃未満の範囲内であり、低軟化点炭化水素重合体
(B)の軟化点以下又は脂肪族炭化水素化合物あるい
はその誘導体(C)の融点未満では高倍率の延伸が達
成されない場合があり、一方、組成物の融点+20
℃を越えると超高分子量ポリエチレン(A)が軟化
し、延伸はされるものの、高弾性率の延伸物が得
られない虞れがある。 上記延伸時の熱媒は空気、水蒸気、溶媒のいず
れを用いても高弾性率の延伸物が得られるが、熱
媒として前記低軟化点炭化水素重合体(B)と脂肪族
炭化水素化合物あるいはその誘導体(C)を溶出ある
いは滲出除去することが出来る溶媒で沸点が組成
物の融点以上のもの、具体的には例えばデカリ
ン、デカン、灯油を用いると延伸時に過剰の低軟
化点炭化水素重合体(B)と脂肪族炭化水素化合物あ
るいはその誘導体(C)を抽出あるいは滲出した低軟
化点炭化水素重合体(B)と脂肪族炭化水素化合物あ
るいはその誘導体(C)の除去ができ、延伸時の延伸
むらの低減ならびに高延伸倍率の達成が可能とな
るので好ましい。また超高分子量ポリエチレン(A)
の延伸物から過剰の低軟化点炭化水素重合体(B)と
脂肪族炭化水素化合物あるいはその誘導体(C)を除
去する手段としては前記方法に限らず、未延伸物
をヘキサン、ヘプタン、熱エタノール、クロロホ
ルム、ベンゼン等の溶剤で処理後延伸する方法、
延伸物をヘキサン、ヘプタン、熱エタノール、ク
ロロホルム、ベンゼン等の溶剤で処理する方法に
よつても低軟化点炭化水素重合体(B)と脂肪族炭化
水素化合物あるいはその誘導体(C)を抽出除去出来
しかも高弾性率、高強度の延伸物が得られる。 上記溶媒あるいは溶剤で低軟化点炭化水素重合
体(B)と脂肪族炭化水素化合物あるいはその誘導体
(C)を抽出する際に、延伸物における低軟化点炭化
水素重合体(B)と脂肪族炭化水素化合物あるいはそ
の誘導体(C)の残量を10重量%以下にすると微細孔
繊維が得られ、重量換算によつて真断面積を求め
る方法から得た弾性率、強度ともに抽出前の延伸
物の値を下廻ることがなく好ましい。 前記溶媒中での延伸比が3倍未満では高引張強
度、高弾性率化の程度が少なく、また延伸物に延
伸むらが随伴するため、外観を損う例が多い。尚
延伸は、ドラフトをかける場合は最終延伸比が3
倍以上好ましくは5倍以上になればよく、1段延
伸でも2段以上の多段延伸でもよい。また、ドフ
ラフトをかけない場合には、最終延伸比が10倍以
上にすると高強度、高弾性率化が計れる。 また延伸の際の最終延伸速度はとくに限定はさ
れないが、生産性から3m/min以上、好ましく
は5m/min以上がよい。 本発明に用いる超高分子量ポリエチレン(A)に
は、耐熱安定剤、耐候安定剤、顔料、染料、無機
充填剤等通常ポリオレフインに添加することが出
来る添加剤を本発明の目的を損わない範囲で添加
しておいてもよい。 〔発明の効果〕 本発明の方法により得られる超高分子量ポリエ
チレンの延伸物は、従来の通常のポリエチレンの
延伸物では得られない高引張強度を有し、且つ高
弾性率であるので、モノフイラメント、テープ等
の従来の延伸物の分野に加えて高弾性率、高強度
繊維の分野への利用が可能となり、軽量性が要求
される各種補強材に使用できる。さらには、超高
延伸による結晶配列の高度な整列ならびに過剰の
低軟化点炭化水素重合体(B)と脂肪族炭化水素化合
物あるいはその誘導体(C)を抽出することにより副
次的に生成する微孔を利用した選択膜、エレクト
レツト等の機能材料への適性にも優れている。 〔実施例〕 次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を越えない限りそれら
の実施例に制約されるものではない。 実験例 1 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂ハイレツ
ツ R−100X(三井石油化学工業株式会社製;軟
化点=97.0℃、分子量=1220)とパラフインワツ
クス(融点=69℃、分子量=460)との25:25:
50ブレンド物を次の条件下で溶融紡糸延伸を行つ
た。 超高分子量ポリエチレンとハイレツツ R−
100Xとパラフインワツクスの各粉末を混合後、
ブラベンダー・プラストグラフ(ブラベンダー社
製、ドイツ)にローラー・ミキサータイプ50(容
量=58c.c.)を装着し、樹脂温度200℃で20〜30分
間溶融混練を行つた。該混練物は、プレス成形に
よりシート状にした後、切断して粒状化した。前
記ブラベンダー・プラストグラフにスクリユー式
押出機タイプ20D(D=3/4inch、L/D=20)を
装着し、該粒状化物を樹脂温度200℃でさらに溶
融混練し、次いでオリフイス径が1.0mmでダイ温
度を190℃に設定したダイより押し出し、エアー
ギヤツプ:20cmで室温の空気中にて固化させた。
この際、溶融樹脂の押出速度は6.0cm/minであ
り、巻き取り速度が18.0cm/minになる様に引き
落としを行つた。即ちドラフト比を3とした。引
き続き二対のゴデツトロールを用いてn−デカン
を熱媒とした延伸槽(槽内温度=130℃、槽の長
さ=40cm)で延伸を行つた。 延伸に際しては、第1ゴデツトロールの回転速
度を0.5m/minとして、第2ゴデツトロールお
よび第3ゴデツトロールの回転速度を適宜変更す
ることによつて延伸比の異なる繊維を得た。延伸
は、第2ゴデツトロールで予め延伸比8.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツト
ロールで所定の延伸比迄行つた。但し、延伸比は
ゴデツトロールの回転比より計算して求めた。各
延伸比における動的弾性率、引張弾性率、引張強
度および破断点伸度を表1に示す。尚、動的弾性
率は、動的粘弾性測定装置Vibron DDV−型
(東洋ボールドウイン社製)を用いて振動数110Hz
で室温(23℃)にて測定した。また、引張弾性
率、引張強度および破断点伸度はインストロン万
能試験機1123型(インストロン社製)を用いて室
温(23℃)にて測定した。この時、クランプ間の
試料長は100mmで引張速度100mm/分とした。但
し、引張弾性率は2%歪における応力を用いて計
算した。計算に必要な繊維断面積は、ポリエチレ
ンの密度を0.96g/cm3として繊維の重量と長さを
測定して求めた。
[Industrial Field of Application] The present invention relates to a method for melt extrusion and stretching of ultra-high molecular weight polyethylene. More specifically, by melt-extruding and stretching a composition consisting of ultra-high molecular weight polyethylene, a specific low softening point hydrocarbon polymer, and a plasticizer component of an aliphatic hydrocarbon compound or its derivative, tensile strength and elastic modulus can be improved. The present invention relates to a method for producing a large drawn ultra-high molecular weight polyethylene product. [Prior Art] Ultra-high molecular weight polyethylene is superior to general-purpose polyethylene in impact resistance, abrasion resistance, chemical resistance, tensile strength, etc., and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, it has an extremely high melt viscosity and poor fluidity, so it is very difficult to mold it by extrusion molding or injection molding, and most of it is molded by compression molding. Currently, rods and the like are extruded at extremely low speeds. On the other hand, as a method for drawing a monofilament of high-density polyethylene at a high magnification, an additive with a high boiling point higher than the melting point of polyethylene is allowed to coexist in the range of 20 to 150% of the weight of polyethylene, and the resulting high-concentration dispersion is A method in which a primary fibrous material is formed from the fibers, and then hot-stretched to 3 to 15 times the original length while leaving an amount of additives equivalent to 5 to 25% of the spun yarn in the spun yarn (special method). A method has been proposed in which a solution of linear polyethylene having a molecular weight of 400,000 or more is spun and stretched at a temperature of at least 20 GPa (Japanese Unexamined Patent Publication No. 15408/1982). However, these methods specifically involve dispersing or dissolving in a solvent such as o-dichlorobenzene, xylene, or decalin and spinning using a specific method. Even if an attempt was made to use such a liquid solvent as a stretchability improver for ultra-high molecular weight polyethylene with a high molecular weight, the difference in viscosity between the solvent and the powder was too large, making it impossible to mix the solvent and the powder at all. acts as a lubricant between the powder and the screw, causing the powder and screw to rotate together, making it almost impossible to extrude. Also,
For example, even if it could be extruded, it would not be possible to stretch it at all because it was not mixed uniformly, and it was currently impossible to carry out continuous melt extrusion spinning using a screw type extruder. Furthermore, since these solvents have low boiling points and are highly flammable, they are dangerous to use in screw-type extruders heated by electric heat, and special care must be taken when using them. On the other hand, in order to improve the moldability of ultra-high molecular weight polyethylene, a composition in which 10 to 60 parts by weight of low molecular weight polyethylene with a molecular weight of 5,000 to 20,000 is added to 100 parts by weight of ultra-high molecular weight polyethylene (JP-A-57
However, in these compositions, the molecular weight of the added low molecular weight polyethylene is too large, making it impossible to stretch the melt-extrusion-spun monofilament to a high magnification of 20 times or more. It is not possible to obtain monofilaments with high elastic modulus and high tensile strength. [Problems to be Solved by the Invention] From this perspective, the present inventors aimed to develop a continuous extrusion molding method for a drawn product of ultra-high molecular weight polyethylene having high elastic modulus and high tensile strength using a screw extruder. As a result of various studies, it was found that the object of the present invention could be achieved by using a composition in which a specific aliphatic hydrocarbon compound or its derivative was blended with ultra-high molecular weight polyethylene.
-227447 and Japanese Patent Application No. 58-59976 were filed.
As a result of further investigation, it was found that ultra-high molecular weight polyethylene could be stably and continuously extruded using a screw extruder even if a low softening point hydrocarbon polymer was used in the coexistence with an aliphatic hydrocarbon compound or its derivative. The present invention has now been completed. [Means for Solving the Problems] That is, the present invention comprises: (a) 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having at least an intrinsic viscosity [η] of 5 dl/g or more; (b) at least a softening point 5 to 80% by weight of a low softening point hydrocarbon polymer (B) with a temperature of 130°C or less and a molecular weight of 2000 or less, and an aliphatic hydrocarbon compound or its derivative ( C) A composition consisting of 85 to 20 parts by weight of a plasticizer component consisting of 95 to 20% by weight, extruded from a die after melt-kneading, and then stretched at a stretching ratio of at least 3 times. The present invention provides a method for producing a stretched ultra-high molecular weight polyethylene product having high tensile strength and high elastic modulus. [Function] Ultra-high molecular weight polyethylene used in the method of the present invention
(A) means that the intrinsic viscosity [η] of the decalin solvent at 135°C is 5 dl/g or more, preferably 7 to 30
It is in the range of dl/g. If [η] is less than 5 dl/g, a stretched product with excellent tensile strength cannot be obtained even if stretched. The upper limit of [η] is not particularly limited, but if it exceeds 30 dl/g, it will not melt even if a low softening point hydrocarbon polymer (B) and an aliphatic hydrocarbon compound or its derivative (C), which will be described later, are added. It has a high viscosity and has poor melt spinnability using a screw extruder in the temperature range described below. Low softening point hydrocarbon polymer used in the method of the present invention
(B) has a softening point of 130°C or lower, preferably 50°C to 120°C, and a molecular weight of 2000 or lower, preferably
500 to 1000 low softening point hydrocarbon polymer.
Low softening point hydrocarbon polymer with a softening point exceeding 130℃
When (B) is used, uneven dispersion occurs with ultra-high molecular weight polyethylene (A), so uniform stretching cannot be performed and a high stretching ratio cannot be achieved. Also, the molecular weight
If a low softening point hydrocarbon polymer (B) exceeding 2000 is used, drawing breaks will occur if a draft is applied before cooling and solidifying, making it impossible to obtain a drawn product with high elastic modulus and high tensile strength. Similarly, it is also impossible to extract excess low softening point hydrocarbon polymer (B) from the drawn product. On the other hand, if the softening point is less than 50°C, there is a risk that it will not pass through the extruder. The aliphatic hydrocarbon compound or its derivative (C) used in the method of the present invention has a melting point of 10°C or higher, preferably 20°C to 120°C, particularly preferably 40°C to 100°C, and a boiling point of 130°C or higher. is 160
It is an aliphatic hydrocarbon compound or a derivative thereof having a temperature of 190°C or higher, particularly preferably 190°C or higher. Melting point is 10
If a liquid aliphatic hydrocarbon compound or a derivative thereof is used at a temperature below .degree. C., the ultra-high molecular weight polyethylene (A) and the screw will rotate together, making uniform melt spinning impossible. On the other hand, if an aliphatic hydrocarbon compound or its derivative with a boiling point of less than 130°C is used, surging due to vaporization of the aliphatic hydrocarbon compound or its derivative in the screw extruder and sudden melting of the molten strands exiting the die orifice may occur. This is not preferable because foaming occurs. The low softening point hydrocarbon polymer (B) used in the present invention is a solid amorphous polymer, which is usually used as a tackifying resin in the fields of adhesive tapes, paints, and hot melt adhesives, and is polymerized. Depending on the monomer source, the following resins can be listed. For example, C 4 fraction, C 5 fraction, a mixture thereof, or any fraction thereof obtained by cracking petroleum, naphtha, etc., such as isoprene and 1,3-pentadiene in the C 5 fraction. Aliphatic hydrocarbon resins as main raw materials, aromatic hydrocarbon resins whose main raw materials are styrene derivatives and indenes in the C 9 fraction obtained by cracking petroleum, naphtha, etc., C 4 and C 5 Any fraction of fractions and C 9
Aliphatic/aromatic copolymerized hydrocarbon resins obtained by copolymerizing fractions, alicyclic hydrocarbon resins obtained by hydrogenating aromatic hydrocarbon resins, and synthesis with structures containing aliphatics, alicyclics, and aromatics. terpene hydrocarbon resin,
Terpene hydrocarbon resins made from α,β-pinene in turpentine oil, coumaron indene hydrocarbon resins made from indene and styrene in coal tar naphtha, low molecular weight styrene resins, and rosin carbonized resins. Hydrogen resin, etc. The aliphatic hydrocarbon compound or its derivative (C) used in the present invention is not particularly limited as long as it has the above characteristics. Among the aliphatic hydrocarbon compounds or their derivatives (C), the aliphatic hydrocarbon compounds are mainly saturated aliphatic hydrocarbon compounds, specifically carbonaceous compounds such as docosane, tricosane, tetracosane, and triacontane. N-alkanes of number 22 or more or mixtures with lower n-alkanes containing these as main components, so-called paraffin wax separated and refined from petroleum, obtained by copolymerizing ethylene or ethylene and other α-olefins. Medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax or medium/low pressure polyethylene, which are low molecular weight polymers.
Examples include waxes obtained by reducing the molecular weight of polyethylene such as high-pressure polyethylene by thermal degradation, oxidized waxes such as oxides or maleic acid-modified products of these waxes, and maleic acid-modified waxes. Next, aliphatic hydrocarbon compounds or derivatives thereof
Among (C), aliphatic hydrocarbon compound derivatives include:
For example, one or more at the end or inside of an aliphatic hydrocarbon group (alkyl group, alkenyl group),
A compound having preferably 1 or 2, particularly preferably 1, functional group such as carboxyl group, hydroxyl group, carbamoyl group, ester group, meltcapto group, carbonyl group, etc., having 8 or more carbon atoms, preferably 12 to 50 carbon atoms. or a fatty acid, aliphatic alcohol, fatty acid amide, fatty acid ester, aliphatic mercaptan, with a molecular weight of 130 to 2000, preferably 200 to 800;
Examples include aliphatic aldehydes and aliphatic ketones. Specifically, the fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid; the fatty alcohols include lauryl alcohol, myristyl alcohol, cetyl alcohol, and stearyl alcohol; and the fatty acid amides include caprinamide, laurinamide, Examples of palmitinamide, stearylamide, and fatty acid ester include stearyl acetate. Examples of other hydrocarbon compounds that fall within the melting point and boiling point range of the aliphatic hydrocarbon compound or its derivative (C) used in the present invention include aromatic hydrocarbon compounds such as naphthalene and dimethylnaphthalene. Unlike group hydrocarbon compounds or their derivatives (C), ultra-high molecular weight polyethylene
It has poor compatibility with (A), and when used in the method of the present invention, uneven dispersion of the aromatic hydrocarbon compound in ultra-high molecular weight polyethylene (A) occurs, making it difficult to achieve uniform stretching or a high stretching ratio. The softening point in the present invention is the value measured by the ring and ball method according to JIS K2531, and the melting point is the value measured by the ASTM
This is a value measured using a differential scanning calorimeter (DSC) using D3418. In addition, the molecular weight is determined by the GPC method (gel
The weight average molecular weight was measured by permeation chromatography under the following conditions. Equipment: Waters 150C column: Toyo Soda TSK GMH-6 (6mmφ x 600mm) Solvent: Orthodichlorobenzene (ODCB) Temperature: 135℃ Flow rate: 1.0ml/min Injection concentration: 30mg/20ml ODCB (injection amount (400μ) The column elution volume was calibrated by the universal method using standard polystyrene manufactured by Toyo Soda Co. and Pressure Chemical Co., Ltd. The method of the present invention comprises the ultra-high molecular weight polyethylene
(A): 15 to 80 parts by weight, preferably 30 to 50 parts by weight, a plasticizer component of a low softening point hydrocarbon polymer (B) and an aliphatic hydrocarbon compound or its derivative (C):
A composition of 85 to 20 parts by weight, preferably 70 to 50 parts by weight, is melt-kneaded in a screw extruder, the unstretched product is extruded from a die, and then at least 3
This is a method of stretching at a stretching ratio of 5 times or more, preferably 5 times or more. If the amount of ultra-high molecular weight polyethylene (A) is less than 15 parts by weight, it will be difficult to melt and knead it in a screw extruder, and the extruded product will have poor stretchability, causing pieces to break and requiring high-magnification stretching or drafting. I can't. On the other hand, if it exceeds 80 parts by weight, the melt viscosity becomes high, making melt extrusion difficult, and the extruded unstretched product (strand) has a rough surface and is likely to break off. In addition, (B) is a plasticizer component of a low softening point hydrocarbon polymer (B) and an aliphatic hydrocarbon compound or its derivative (C) to be mixed with ultra-high molecular weight polyethylene (A).
If it is 80% by weight or more, the plasticizer component cannot be uniformly dispersed in the ultra-high molecular weight polyethylene (A), and when the unstretched material is extruded from the die, the molten strand is non-uniform, has no stretchability, and solidifies on cooling. You cannot draft before you do so. Therefore, a high stretching ratio cannot be achieved and a stretched product with high tensile strength cannot be obtained. The ultra-high molecular weight polyethylene (A), the low softening point hydrocarbon polymer (B), and the aliphatic hydrocarbon compound or its derivative (C) are mixed using a Henschel mixer, V-
This can be carried out by mixing using a blender or the like, or by melt-kneading and granulating with a single-screw or multi-screw extruder after mixing. The melt-kneading temperature and die temperature of the composition of ultra-high molecular weight polyethylene (A), low softening point hydrocarbon polymer (B), and aliphatic hydrocarbon compound or its derivative (C) are the temperature at which the composition melts. Although there are no particular limitations, the melt-kneading temperature is usually higher than the melting temperature of the composition.
Less than 280℃, preferably melting point of the composition + 10℃ or more
The temperature of the die is usually above the melting point of the composition and below 300°C, preferably above the melting point of the composition plus 10°C and below 270°C. When the melt-kneading temperature is 280° C. and the die temperature is 300° C. or higher, the ultra-high molecular weight polyethylene (A) may undergo thermal deterioration and its molecular weight may decrease. When an undrawn material is extruded from a die, by applying at least one draft, preferably more than two drafts, before the molten material is cooled and solidified, it has a higher modulus of elasticity and a higher tensile strength than a drawn material without drafting. A strong drawn product can be obtained. The term "draft" in the present invention refers to the drawing of the melt extruded from the screw extruder during melting, and refers to the drawing down of the melt. That is, the ratio between the extrusion speed υ 0 of the molten resin in the die orifice and the winding speed υ of the cooled and solidified drawn material was defined as the draft ratio by the following equation. Draft ratio=υ/υ 0 Further, the cooling may be performed by either air cooling or water cooling. The temperature during stretching is usually low softening point hydrocarbon polymer (B)
The melting point of the composition is higher than the softening point of the aliphatic hydrocarbon compound or its derivative (C) +20
Low softening point hydrocarbon polymer in the range below ℃
Below the softening point of (B) or below the melting point of the aliphatic hydrocarbon compound or its derivative (C), high stretching ratio may not be achieved;
If the temperature exceeds .degree. C., the ultra-high molecular weight polyethylene (A) will soften, and although it can be stretched, there is a risk that a stretched product with a high elastic modulus may not be obtained. A stretched product with a high elastic modulus can be obtained by using any of air, water vapor, and a solvent as the heating medium during the above-mentioned stretching. If a solvent capable of eluting or exuding out the derivative (C) and having a boiling point higher than the melting point of the composition, specifically, for example, decalin, decane, or kerosene, is used, excess low softening point hydrocarbon polymer will be removed during stretching. The low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) extracted or exuded from (B) and aliphatic hydrocarbon compound or its derivative (C) can be removed during stretching. This is preferable since it is possible to reduce stretching unevenness and achieve a high stretching ratio. Also ultra-high molecular weight polyethylene (A)
The method for removing excess low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) from the drawn product is not limited to the above-mentioned method. , a method of stretching after treatment with a solvent such as chloroform or benzene,
Low softening point hydrocarbon polymers (B) and aliphatic hydrocarbon compounds or their derivatives (C) can also be extracted and removed by treating the stretched material with a solvent such as hexane, heptane, hot ethanol, chloroform, or benzene. Moreover, a stretched product with high elastic modulus and high strength can be obtained. A low softening point hydrocarbon polymer (B) and an aliphatic hydrocarbon compound or its derivative in the above solvent or solvent.
When extracting (C), if the remaining amount of the low softening point hydrocarbon polymer (B) and aliphatic hydrocarbon compound or its derivative (C) in the drawn product is 10% by weight or less, microporous fibers can be obtained. Both the elastic modulus and strength obtained from the method of determining the true cross-sectional area in terms of weight do not fall below the values of the stretched product before extraction, which is preferable. When the stretching ratio in the solvent is less than 3 times, the degree of high tensile strength and high elastic modulus is small, and the stretched product is accompanied by uneven stretching, which often impairs the appearance. For stretching, if drafting is applied, the final stretching ratio is 3.
The stretching may be at least 5 times or more, preferably 5 times or more, and may be one-stage stretching or multi-stage stretching of two or more stages. In addition, when no drafting is applied, high strength and high elastic modulus can be achieved by increasing the final stretching ratio to 10 times or more. Further, the final stretching speed during stretching is not particularly limited, but from the viewpoint of productivity it is preferably 3 m/min or more, preferably 5 m/min or more. The ultra-high molecular weight polyethylene (A) used in the present invention contains additives that can be normally added to polyolefins, such as heat stabilizers, weather stabilizers, pigments, dyes, and inorganic fillers, within a range that does not impair the purpose of the present invention. It may be added in advance. [Effects of the Invention] The drawn product of ultra-high molecular weight polyethylene obtained by the method of the present invention has high tensile strength and high elastic modulus that cannot be obtained with conventional drawn products of ordinary polyethylene, so it can be used as a monofilament. In addition to the field of conventional stretched products such as tapes, it can be used in the field of high modulus and high strength fibers, and can be used in various reinforcing materials that require lightness. Furthermore, by ultra-high stretching, the crystal alignment is highly aligned, and by extracting excess low softening point hydrocarbon polymers (B) and aliphatic hydrocarbon compounds or their derivatives (C), fine particles are generated as a by-product. It is also highly suitable for functional materials such as selective membranes and electrets that utilize pores. [Examples] Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded. Experimental example 1 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), aliphatic hydrocarbon resin Highlets R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 97.0°C, molecular weight = 1220) and paraffin wax (melting point = 69°C, molecular weight = 460) 25:25 with:
50 blend was subjected to melt spinning and drawing under the following conditions. Ultra-high molecular weight polyethylene and Hiretsu R-
After mixing each powder of 100X and paraffin wax,
A Brabender Plastograph (manufactured by Brabender, Germany) was equipped with a roller mixer type 50 (capacity = 58 c.c.), and melt-kneading was performed for 20 to 30 minutes at a resin temperature of 200°C. The kneaded material was formed into a sheet by press molding, and then cut into granules. A screw type extruder type 20D (D = 3/4 inch, L/D = 20) was attached to the Brabender Plastograph, and the granulated material was further melt-kneaded at a resin temperature of 200°C, and then the orifice diameter was 1.0 mm. It was extruded through a die with a die temperature of 190°C and solidified in air at room temperature with an air gap of 20 cm.
At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the withdrawal was performed so that the winding speed was 18.0 cm/min. That is, the draft ratio was set to 3. Subsequently, the film was stretched using two pairs of godet rolls in a stretching tank (tank temperature = 130°C, tank length = 40 cm) using n-decane as a heating medium. During the stretching, the rotational speed of the first godetroll was set at 0.5 m/min, and the rotational speeds of the second and third godetrolls were changed as appropriate to obtain fibers with different drawing ratios. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. However, the stretching ratio was calculated from the rotation ratio of the godet roll. Table 1 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio. The dynamic elastic modulus was measured using a dynamic viscoelasticity measuring device Vibron DDV-type (manufactured by Toyo Baldwin) at a frequency of 110 Hz.
Measured at room temperature (23°C). Further, the tensile modulus, tensile strength, and elongation at break were measured at room temperature (23° C.) using an Instron universal testing machine model 1123 (manufactured by Instron). At this time, the sample length between the clamps was 100 mm, and the tensile speed was 100 mm/min. However, the tensile modulus was calculated using stress at 2% strain. The fiber cross-sectional area required for calculation was determined by measuring the weight and length of the fiber, assuming the density of polyethylene as 0.96 g/cm 3 .

【表】 実験例 2 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂ハイレツ
ツ R−100X(三井石油化学工業株式会社製;軟
化点=97.0℃、分子量=1220)とハイワツクス
110P(三井石油化学工業株式会社製;融点=109
℃、分子量=900)との25:25:50ブレンド物を
実験例1と同一条件下で溶融紡糸延伸を行つた。
但し、オリフイス径が1.0mmでダイ温度を190℃に
設定したダイより溶融物を押し出し、エアーギヤ
ツプ:20cmで室温の空気中にて固化させた。この
際、溶融樹脂の押出速度は6.0cm/minであり、
巻き取り速度が6.0cm/minになる様に引き落と
しを行つた。即ち、ドラフト比を1とした。延伸
は、第2ゴデツトロールで予め延伸比8.0倍に延
伸した後、引き続き2段目の延伸を第3ゴデツト
ロールで所定の延伸比迄行つた。各延伸比におけ
る動的弾性率、引張弾性率、引張強度および破断
点伸度を表2に示す。
[Table] Experimental example 2 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20dl/g) and aliphatic hydrocarbon resin Hiretsu R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 97.0°C, molecular weight = 1220) and Hiwax
110P (manufactured by Mitsui Petrochemical Industries, Ltd.; melting point = 109
℃, molecular weight = 900), and a 25:25:50 blend was subjected to melt-spinning and drawing under the same conditions as in Experimental Example 1.
However, the melt was extruded through a die with an orifice diameter of 1.0 mm and a die temperature set at 190°C, and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min,
The withdrawal was performed so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 2 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 3 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂ハイレツ
ツ R−100X(三井石油化学工業株式会社製;軟
化点=97.0℃、分子量=1220)とステアリン酸
(融点=71.5℃、沸点=232℃/15mmHg)との
25:25:50ブレンド物を実験例1と同一条件下で
溶融紡糸延伸を行つた。但し、オリフイス径が
1.0mmでダイ温度を190℃に設定したダイより溶融
物を押し出し、エアーギヤツプ:20cmで室温の空
気中にて固化させた。この際、溶融樹脂の押出速
度は6.0cm/minであり、巻き取り速度が30.0cm/
minになる様に引き落としを行つた。即ち、ドラ
フト比を5とした。延伸は、第2ゴデツトロール
で予め延伸比8.0倍に延伸した後、引き続き2段
目の延伸を第3ゴテツトロールで所定の延伸比迄
行つた。各延伸比における動的弾性率、引張弾性
率、引張強度および破断点伸度を表3に示す。
[Table] Experimental example 3 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), aliphatic hydrocarbon resin Highlets R-100X (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 97.0°C, molecular weight = 1220) and stearic acid (melting point = 71.5°C, boiling point = 232°C/ 15mmHg)
The 25:25:50 blend was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the orifice diameter
The melt was extruded through a die with a diameter of 1.0 mm and a die temperature of 190°C, and was solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min, and the winding speed was 30.0 cm/min.
I made a withdrawal so that the amount would be min. That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 3 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 4 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と芳香族系炭化水素樹脂ペトロジ
ン #100(三井石油化学工業株式会社製;軟化点
=100℃、分子量=1200)とパラフインワツクス
(融点=69℃、分子量=460)との25:25:50ブレ
ンド物を実験例1と同一条件下で溶融紡糸延伸を
行つた。但し、オリフイス径が1.0mmでダイ温度
を190℃に設定したダイより溶融物を押し出し、
エアーギヤツプ:20cmで室温の空気中にて固化さ
せた。この際、溶融樹脂の押出速度は6.0cm/
minであり、巻き取り速度が18.0cm/minになる
様に引き落としを行つた。即ち、ドラフト比を3
とした。延伸は、第2ゴデツトロールで予め延伸
比8.0倍に延伸した後、引き続き2段目の延伸を
第3ゴデツトロールで所定の延伸比迄行つた。各
延伸比における動的弾性率、引張弾性率、引張強
度および破断点伸度を表4に示す。
[Table] Experimental example 4 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), the aromatic hydrocarbon resin Petrosine #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 100°C, molecular weight = 1200) and paraffin wax (melting point = 69°C, molecular weight = 460). The 25:25:50 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt is extruded through a die with an orifice diameter of 1.0 mm and a die temperature of 190°C.
Air gap: 20 cm and solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/
min, and the withdrawal was performed so that the winding speed was 18.0 cm/min. That is, the draft ratio is 3
And so. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 4 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 5 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と芳香族系炭化水素樹脂ペトロジ
ン #100(三井石油化学工業株式会社製;軟化点
=100℃、分子量=1200)とパラフインワツクス
(融点=109℃、分子量=900)との25:25:50ブ
レンド物を実験例1と同一条件下で溶融紡糸延伸
を行つた。但し、オリフイス径が1.0mmでダイ温
度を190℃に設定したダイより溶融物を押し出し、
エアーギヤツプ:20cmで室温の空気中て固化させ
た。この際、溶融樹脂の押出速度は6.0cm/min
であり、巻き取り速度が6.0cm/minになる様に
引き落としを行つた。即ち、ドラフト比を1とし
た。延伸は、第2ゴデツトロールで予め延伸比
8.0倍に延伸した後、引き続き2段目の延伸を第
3ゴデツトロールで所定の延伸比迄行つた。各延
伸比における動的弾性率、引張弾性率、引張強度
および破断点伸度を表5に示す。
[Table] Experimental example 5 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), aromatic hydrocarbon resin Petrosine #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 100°C, molecular weight = 1200) and paraffin wax (melting point = 109°C, molecular weight = 900). The 25:25:50 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt is extruded through a die with an orifice diameter of 1.0 mm and a die temperature of 190°C.
Air gap: 20 cm and solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/min.
The wire was withdrawn so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. Stretching is carried out using the second godet roll in advance at a stretching ratio.
After stretching to 8.0 times, a second stage of stretching was subsequently performed using a third godet roll to a predetermined stretching ratio. Table 5 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 6 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と芳香族系炭化水素樹脂ペトロジ
ン #100(三井石油化学工業株式会社製;軟化点
=100℃、分子量=1200)とステアリン酸(融点
=71.5℃、沸点=232℃/15mmHg)との25:25:
50ブレンド物を実験例1と同一条件下で溶融紡糸
延伸を行つた。但し、オリフイス径が1.0mmでダ
イ温度を190℃に設定したダイより溶融物を押し
出し、エアーギヤツプ:20cmで室温の空気中にて
固化させた。この際、溶融樹脂の押出速度は6.0
cm/minであり、巻き取り速度が30.0cm/minに
なる様に引き落としを行つた。即ち、ドラフト比
を5とした。延伸は、第2ゴデツトロールで予め
延伸比8.0倍に延伸した後、引き続き2段目の延
伸を第3ゴデツトロールで所定の延伸比迄行つ
た。各延伸比における動的弾性率、引張弾性率、
引張強度および破断点伸度を表6に示す。
[Table] Experimental example 6 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), aromatic hydrocarbon resin Petrosine #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 100°C, molecular weight = 1200) and stearic acid (melting point = 71.5°C, boiling point = 232°C/15mmHg). ) with 25:25:
50 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, the melt was extruded through a die with an orifice diameter of 1.0 mm and a die temperature set at 190°C, and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0
cm/min, and the withdrawal was performed so that the winding speed was 30.0 cm/min. That is, the draft ratio was set to 5. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Dynamic modulus, tensile modulus at each stretching ratio,
Table 6 shows the tensile strength and elongation at break.

【表】 実験例 7 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂エスコレ
ツツ 5300(東燃石油化学株式会社製;軟化点=
105℃、分子量=1200)とパラフインワツクス
(融点=69℃、分子量=460)との25:25:50ブレ
ンド物を実験例1と同一条件下で溶融紡糸延伸を
行つた。但し、オリフイス径が1.0mmでダイ温度
を190℃に設定したダイより溶融物を押し出し、
エアーギヤツプ:20cmで室温の空気中にて固化さ
せた。この際、溶融樹脂の押出速度は6.0cm/
minであり、巻き取り速度が18.0cm/minになる
様に引き落としを行つた。即ち、ドラフト比を3
とした。延伸は、第2ゴデツトロールで予め延伸
比8.0倍に延伸した後、引き続き2段目の延伸を
第3ゴデツトロールで所定の延伸比迄行つた。各
延伸比における動的弾性率、引張弾性率、引張強
度および破断点伸度を表7に示す。
[Table] Experimental example 7 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g) and aliphatic hydrocarbon resin Escorets 5300 (manufactured by Tonen Petrochemical Co., Ltd.; softening point =
A 25:25:50 blend of 105°C, molecular weight = 1200) and paraffin wax (melting point = 69°C, molecular weight = 460) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt is extruded through a die with an orifice diameter of 1.0 mm and a die temperature of 190°C.
Air gap: 20 cm and solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/
min, and the withdrawal was performed so that the winding speed was 18.0 cm/min. That is, the draft ratio is 3
And so. For stretching, the film was first stretched to a stretching ratio of 8.0 times using a second godet roll, and then a second stage of stretching was performed to a predetermined stretching ratio using a third godet roll. Table 7 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 8 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂エスコレ
ツツ 5300(東燃石油化学株式会社製;軟化点=
105℃、分子量=1200)とパラフインワツクス
(融点=109℃、分子量=900)との25:25:50ブ
レンド物を実験例1と同一条件下で溶融紡糸延伸
を行つた。但し、オリフイス径が1.0mmでダイ温
度を190℃に設定したダイより溶融物を押し出し、
エアーギヤツプ:20cmで室温の空気中にて固化さ
せた。この際、溶融樹脂の押出速度は6.0cm/
minであり、巻き取り速度が6.0cm/minになる様
に引き落としを行つた。即ち、ドラフト比を1と
した。延伸は、第2ゴデツトロールで予め延伸比
8.0倍に延伸した後、引き続き2段目の延伸を第
3ゴデツトロールで所定の延伸比迄行つた。各延
伸比における動的弾性率、引張弾性率、引張強度
および破断点伸度を表8に示す。
[Table] Experimental example 8 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g) and aliphatic hydrocarbon resin Escorets 5300 (manufactured by Tonen Petrochemical Co., Ltd.; softening point =
A 25:25:50 blend of 105°C, molecular weight = 1200) and paraffin wax (melting point = 109°C, molecular weight = 900) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, the melt is extruded through a die with an orifice diameter of 1.0 mm and a die temperature of 190°C.
Air gap: 20 cm and solidified in air at room temperature. At this time, the extrusion speed of the molten resin was 6.0 cm/
min, and the withdrawal was performed so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. Stretching is carried out using the second godet roll in advance at a stretching ratio.
After stretching to 8.0 times, a second stage of stretching was subsequently performed using a third godet roll to a predetermined stretching ratio. Table 8 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 9 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂アルコン
P−100(荒川林産化学株式会社製;軟化点=
100℃、分子量=800)とパラフインワツクス(融
点=69℃、分子量=460)との25:25:50ブレン
ド物を実験例1と同一条件下で溶融紡糸延伸を行
つた。但し、オリフイス径が1.0mmでダイ温度を
190℃に設定したダイより溶融物を押し出し、エ
アーギヤツプ:20cmで室温の空気中にて固化させ
た。この際、溶融樹脂の押出速度は6.0cm/min
であり、巻き取り速度が18.0cm/minになる様に
引き落としを行つた。即ち、ドラフト比を3とし
た。延伸は、第2ゴデツトロールで予め延伸比
8.0倍に延伸した後、引き続き2段目の延伸を第
3ゴデツトロールで所定の延伸比迄行つた。各延
伸比における動的弾性率、引張弾性率、引張強度
および破断点伸度を表9に示す。
[Table] Experimental example 9 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g) and aliphatic hydrocarbon resin Alcon P-100 (manufactured by Arakawa Forestry Chemical Co., Ltd.; softening point =
A 25:25:50 blend of 100°C, molecular weight = 800) and paraffin wax (melting point = 69°C, molecular weight = 460) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, when the orifice diameter is 1.0 mm, the die temperature
The melt was extruded through a die set at 190°C and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min.
The wire was withdrawn so that the winding speed was 18.0 cm/min. That is, the draft ratio was set to 3. Stretching is carried out using the second godet roll in advance at a stretching ratio.
After stretching to 8.0 times, a second stage of stretching was subsequently performed using a third godet roll to a predetermined stretching ratio. Table 9 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 実験例 10 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂アルコン
P−100(荒川林産化学株式会社製;軟化点=
100℃、分子量=800)とパラフインワツクス(融
点=109℃、分子量=900)との25:25:50ブレン
ド物を実験例1と同一条件下で溶融紡糸延伸を行
つた。但し、オリフイス径が1.0mmでダイ温度を
190℃に設定したダイより溶融物を押し出し、エ
アーギヤツプ:20cmで室温の空気中にて固化させ
た。この際、溶融樹脂の押出速度は6.0cm/min
であり、巻き取り速度が6.0cm/minになる様に
引き落としを行つた。即ち、ドラフト比を1とし
た。延伸は、第2ゴデツトロールで予め延伸比
8.0倍に延伸した後、引き続き2段目の延伸を第
3ゴデツトロールで所定の延伸比迄行つた。各延
伸比における動的弾性率、引張弾性率、引張強度
および破断点伸度を表10に示す。
[Table] Experimental example 10 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g) and aliphatic hydrocarbon resin Alcon P-100 (manufactured by Arakawa Forestry Chemical Co., Ltd.; softening point =
A 25:25:50 blend of 100°C, molecular weight = 800) and paraffin wax (melting point = 109°C, molecular weight = 900) was melt-spun and stretched under the same conditions as in Experimental Example 1. However, when the orifice diameter is 1.0 mm, the die temperature
The melt was extruded through a die set at 190°C and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min.
The wire was withdrawn so that the winding speed was 6.0 cm/min. That is, the draft ratio was set to 1. Stretching is carried out using the second godet roll in advance at a stretching ratio.
After stretching to 8.0 times, a second stage of stretching was subsequently performed using a third godet roll to a predetermined stretching ratio. Table 10 shows the dynamic modulus, tensile modulus, tensile strength, and elongation at break at each stretching ratio.

【表】 比較例 1 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と脂肪族系炭化水素樹脂ハイレツ
ツ R−100×(三井石油化学工業株式会社製;軟
化点=97.0℃、分子量=1220)との50:50ブレン
ド物を実験例1と同一条件下で溶融紡糸延伸を行
つた。但し、オリフイス径が1.0mmでダイ温度を
190℃に設定したダイより溶融物を押し出し、エ
アーギヤツプ:20cmで室温の空気中にて固化させ
た。この際、溶融樹脂の押出速度6.0cm/minで
あつた。しかしながら、混合物がスクリユー式押
出機内で共回りをするため、均一な溶融ストラン
ドが得られず、均一な延伸繊維を得ることができ
なかつた。 比較例 2 超高分子量ポリエチレン ハイゼツクス・ミリ
オン 145M(三井石油化学工業株式会社製;〔η〕
=8.20dl/g)と芳香族系炭化水素樹脂ペトロジ
ン #100(三井石油化学工業株式会社製;軟化点
=100℃、分子量=1200)とパラフインワツクス
(融点=69℃、分子量=460)との25:70:5ブレ
ンド物を実験例1と同一条件下で溶融紡糸延伸を
行つた。但し、オリフイス径が1.0mmでダイ温度
を190℃に設定したダイより押し出し、エアーギ
ヤツプ:20cmで室温の空気中にて固化させた。こ
の際、溶融樹脂の押出速度は6.0cm/minであつ
た。しかしながら、混合物がスクリユー式押出機
内で共回りをするため、均一な溶融ストランドが
得られず、均一な延伸繊維を得ることができなか
つた。
[Table] Comparative example 1 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g) and aliphatic hydrocarbon resin Highlets R-100x (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 97.0°C, molecular weight = 1220) in the same manner as in Experimental Example 1. Melt spinning drawing was carried out under these conditions. However, when the orifice diameter is 1.0 mm, the die temperature
The melt was extruded through a die set at 190°C and solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min. However, since the mixture co-rotates within the screw extruder, uniform molten strands cannot be obtained and uniform drawn fibers cannot be obtained. Comparative Example 2 Ultra-high molecular weight polyethylene Hi-Zex Million 145M (manufactured by Mitsui Petrochemical Industries, Ltd.; [η]
= 8.20 dl/g), the aromatic hydrocarbon resin Petrosine #100 (manufactured by Mitsui Petrochemical Industries, Ltd.; softening point = 100°C, molecular weight = 1200) and paraffin wax (melting point = 69°C, molecular weight = 460). The 25:70:5 blend was subjected to melt spinning and drawing under the same conditions as in Experimental Example 1. However, it was extruded through a die with an orifice diameter of 1.0 mm and a die temperature of 190°C, and was solidified in air at room temperature with an air gap of 20 cm. At this time, the extrusion speed of the molten resin was 6.0 cm/min. However, since the mixture co-rotates within the screw extruder, uniform molten strands cannot be obtained and uniform drawn fibers cannot be obtained.

Claims (1)

【特許請求の範囲】 1 (a) 少なくとも極限粘度〔η〕が5dl/g以
上の超高分子量ポリエチレン(A)15ないし80重量
部と、 (b) 少なくとも軟化点が130℃以下で且つ分子量
が2000以下の低軟化点炭化水素重合体(B)5ない
し80重量%及び少なくとも融点が10℃以上で且
つ沸点が130℃以上の脂肪族炭化水素化合物あ
るいはその誘導体(C)95ないし20重量%とからな
る可塑剤成分85ないし20重量部、 とからなる組成物を溶融混練後ダイより未延伸物
を押出し、次いで少なくとも3倍を越える延伸比
で延伸することを特徴とする超高分子量ポリエチ
レン延伸物の製造法。
[Scope of Claims] 1 (a) 15 to 80 parts by weight of ultra-high molecular weight polyethylene (A) having at least an intrinsic viscosity [η] of 5 dl/g or more; (b) at least a softening point of 130°C or less and a molecular weight of 5 to 80% by weight of a low softening point hydrocarbon polymer (B) of 2000 or less, and 95 to 20% by weight of an aliphatic hydrocarbon compound or its derivative (C) with a melting point of at least 10°C or higher and a boiling point of 130°C or higher. 85 to 20 parts by weight of a plasticizer component consisting of 85 to 20 parts by weight of a plasticizer component; manufacturing method.
JP59127469A 1984-05-16 1984-06-22 Manufacture of super high molecular polyethylene stretched product Granted JPS618323A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59127469A JPS618323A (en) 1984-06-22 1984-06-22 Manufacture of super high molecular polyethylene stretched product
CA000481470A CA1216119A (en) 1984-05-16 1985-05-14 Process for producing stretched article of ultrahigh- molecular weight polyethylene
DE8585303421T DE3586864T2 (en) 1984-05-16 1985-05-15 METHOD FOR PRODUCING STRETCHED PRODUCTS FROM POLYAETHYLENE OF VERY HIGH MOLECULAR WEIGHT.
EP85303421A EP0168923B1 (en) 1984-05-16 1985-05-15 Process for producing stretched article of ultrahigh-molecular weight polyethylene
US07/423,592 US5055248A (en) 1984-05-16 1989-10-16 Process for producing stretched article of ultrahigh-molecular weight polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127469A JPS618323A (en) 1984-06-22 1984-06-22 Manufacture of super high molecular polyethylene stretched product

Publications (2)

Publication Number Publication Date
JPS618323A JPS618323A (en) 1986-01-16
JPH0417132B2 true JPH0417132B2 (en) 1992-03-25

Family

ID=14960695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127469A Granted JPS618323A (en) 1984-05-16 1984-06-22 Manufacture of super high molecular polyethylene stretched product

Country Status (1)

Country Link
JP (1) JPS618323A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260813B2 (en) * 2001-03-30 2013-08-14 住友化学株式会社 Polyolefin resin film and composition for producing polyolefin resin film
JP5318307B2 (en) * 2001-03-30 2013-10-16 住友化学株式会社 Polyolefin resin film and composition for polyolefin resin film
CN102304784B (en) * 2006-04-07 2014-07-23 帝斯曼知识产权资产管理有限公司 High-strength polyethylene fiber and method for producing the same
JP5497255B2 (en) * 2006-04-07 2014-05-21 東洋紡株式会社 High-strength polyethylene fiber and method for producing the same
JP2011208162A (en) * 2011-07-26 2011-10-20 Sumitomo Chemical Co Ltd Polyolefin resin film and composition for manufacturing polyolefin resin film

Also Published As

Publication number Publication date
JPS618323A (en) 1986-01-16

Similar Documents

Publication Publication Date Title
EP0168923B1 (en) Process for producing stretched article of ultrahigh-molecular weight polyethylene
EP0115192B1 (en) Process for producing stretched filaments of ultrahigh-molecular-weight polyethylene
DE69832866T2 (en) HIGH-DENSITY POLYETHYLENE FILMS WITH IMPROVED CURING CAPACITY
JPH0240763B2 (en)
JPH0678379B2 (en) Ultra high molecular weight crystalline polyethylene modified product and method for producing the same
JPS648083B2 (en)
JPS63182349A (en) Production of ultrahigh molecular weight polyolefin composition
JPH0379173B2 (en)
JPH0417132B2 (en)
JPS60240432A (en) Manufacture of elongated polyethylene of superhigh molecular weight
JPH036246B2 (en)
JPH0240764B2 (en)
JPH0336930B2 (en)
JPH0379174B2 (en)
JP3034934B2 (en) High molecular weight polyethylene molecular orientation molding
JPH0226915A (en) Production of ultra-high-molecular weight polyolefin fiber
JPH01280013A (en) Production of ultra-high-molecular weight polyolefin drawn product
JPH0729372B2 (en) Stretched tape made of ultra high molecular weight polyethylene
CA1216118A (en) Process for producing stretched articles of ultrahigh- molecular-weight polyethylene
JPH0482909A (en) Production of high-molecular weight polyolefin fiber
JPS6339941A (en) Production of ultrahigh-molecular weight polyolefin mixture
JPS60244524A (en) Preparation of stretched polyethylene article
JPS61275417A (en) Short-fiber material and production thereof
JPH0745538B2 (en) Modified ultra-high molecular weight crystalline polyethylene stretched product
JPH03178418A (en) Polyethylene formed body and manufacture of oriented formed body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees