JPS618134A - Light irradiation treatment apparatus - Google Patents

Light irradiation treatment apparatus

Info

Publication number
JPS618134A
JPS618134A JP12711584A JP12711584A JPS618134A JP S618134 A JPS618134 A JP S618134A JP 12711584 A JP12711584 A JP 12711584A JP 12711584 A JP12711584 A JP 12711584A JP S618134 A JPS618134 A JP S618134A
Authority
JP
Japan
Prior art keywords
discharge chamber
gas discharge
generation source
light
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12711584A
Other languages
Japanese (ja)
Inventor
Masaaki Yada
矢田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12711584A priority Critical patent/JPS618134A/en
Publication of JPS618134A publication Critical patent/JPS618134A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Abstract

PURPOSE:To guide light to a previous window with good efficiency, by mounting a light generation source constituted of a microwave generation source, a gas discharge chamber and an antenna and the previous window for guiding light with a specific wavelength region generated from the light generation source to an object to be treated. CONSTITUTION:After the pressure in a gas discharge chamber 5 is evacuated to 10<-6>Torr by operating an exhaust source 9, hydrogen is supplied into the gas discharge chamber 5 through a gas supply source 7 and the gas pressure in the gas discharge chamber 5 is adjusted to 0.1-several Torr by a mass flow controller 11. When a microwave generator 16 is operated in this state and a microwave is emitted into the gas discharge chamber from an antenna, a magnetic field, wherein magnetic field vectors are radial, is formed around the antenna 13 and uniform discharge (plasma) is generated around a partition wall tube 15 along the circumferential direction thereof.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は紫外線や赤外線を用いて各種材料の表面処理や
化学反応等を行なう光照射処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a light irradiation treatment apparatus that uses ultraviolet rays and infrared rays to perform surface treatments and chemical reactions on various materials.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、光CVD (Chemlcal Vapor D
epositlon)技術の進歩に伴い、真空中もしく
は特殊なガス雰囲気中に被処理物を収容し、この被処理
物に紫外線や赤外線の如きある特定の波長領域の光を照
射することによシ、上記被処理物を化学反応させたシ、
表面を浄化する等の作業が行なわれている。
In recent years, optical CVD (Chemical Vapor D)
With the advancement of technology (epositon), the above-mentioned method has been developed by housing the workpiece in a vacuum or a special gas atmosphere and irradiating the workpiece with light in a specific wavelength range such as ultraviolet rays or infrared rays. The material to be treated is subjected to a chemical reaction,
Work is being carried out to clean the surface.

ととるで、この種の作業には、被処理物に対し特定の光
を照射する光照射処理装置を必要とし、既存の装置は上
記特定の波長領域の光を発生する光発生源と、この光発
生源内の光が導かれるとともに、被処理物が収容される
処理室を主体として構成されている。
Therefore, this type of work requires a light irradiation treatment device that irradiates the object with a specific light, and existing devices require a light source that generates light in the specific wavelength range and a light source that emits light in the specific wavelength range. The processing chamber is mainly composed of a processing chamber through which light from a light source is guided and in which objects to be processed are accommodated.

このような光照射処理装置の光発生源は、現在のところ
実験的レベルでしかないため、内部が所定のガス雰囲気
に保たれた中空容器に、高周波コイルを介して高周波電
圧を印加させることにより、中空容器内のガスに放電を
生じせしめて、例えば200 nm以下の紫外線を発生
させ、この紫外線を透過窓を通じて処理室内に導く方式
となっている。
The light generation source for such light irradiation processing equipment is currently only at an experimental level, so it is possible to apply a high-frequency voltage via a high-frequency coil to a hollow container whose interior is maintained in a predetermined gas atmosphere. In this method, a discharge is caused in the gas inside the hollow container to generate ultraviolet rays of, for example, 200 nm or less, and the ultraviolet rays are guided into the processing chamber through a transmission window.

ところが、この方式によると、高周波コイルに発生した
電磁界が外方に漏洩し易く、その分光を効率良く透過窓
から取シ出すことができなかった。
However, according to this method, the electromagnetic field generated in the high-frequency coil tends to leak outward, making it impossible to efficiently extract the spectrum from the transmission window.

この対策として、本発明者は上記高周波コイルの代シに
、マイクロ波を放射するアンテナを中空容器(気体放電
室)内に挿入することを考えた。このよう1することで
、外方に漏洩する電磁界は小さく々シ、その分効車が大
きく改善されることが明らかとなった。そして、このよ
うな光照射処理装置を実用化するに当っては、光を効率
良く発生させることばかシでなく、この発生した光を透
過窓を通じて効率良く外方に導くための構造が望まれて
いる。
As a countermeasure to this problem, the present inventor considered inserting an antenna that radiates microwaves into the hollow container (gas discharge chamber) instead of the above-mentioned high-frequency coil. It has become clear that by doing this 1, the electromagnetic field leaking to the outside is reduced to a small extent, and the effectiveness of the electromagnetic field is greatly improved. In order to put such a light irradiation processing device into practical use, it is not only necessary to generate light efficiently, but also to have a structure that efficiently guides the generated light to the outside through a transmission window. ing.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情にもとすいてなされたもので、
光を効率良く透過窓に導くことができる光照射処理装置
の提供を目的とする。
The present invention was made in view of these circumstances.
An object of the present invention is to provide a light irradiation processing device that can efficiently guide light to a transmission window.

〔発明の概要〕[Summary of the invention]

すなわち、本発明は上記目的を達成するため、特定の波
長領域の光を発生する光発生源を、マイクロ波発生源と
、気密構造をなすとともに光を取出す透過窓を備えた気
体放電室と、上記気体放電室内に導入され、上記マイク
ロ波発生源で発生されたマイクロ波を気体放電室内に発
射せしめてこの気体放電室内に放射状に電磁界を形成す
るアンテナとで構成し、この光発生源の気体放電室内に
は、上記放射状に形成された電磁界を、上記透過窓側に
向って偏曲させる磁界を発生させる磁界発生源を設けた
ことを特徴とする。
That is, in order to achieve the above object, the present invention includes a light generation source that generates light in a specific wavelength range, a microwave generation source, a gas discharge chamber having an airtight structure and a transmission window for extracting light; an antenna that is introduced into the gas discharge chamber and emits microwaves generated by the microwave generation source into the gas discharge chamber to form an electromagnetic field radially within the gas discharge chamber; The gas discharge chamber is characterized in that a magnetic field generation source is provided in the gas discharge chamber to generate a magnetic field that deflects the radially formed electromagnetic field toward the transmission window.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を、図面に示す一実施例にもとすいて説明す
る。
The present invention will be explained below based on one embodiment shown in the drawings.

この実施例は液晶表示パネルの表面に付着した有機物等
を除去して洗浄する装置について示し、符号1は光発生
源である。この光発生源1は中空状の容器2を備え、と
の容器2はそ、の両端開口部が夫々蓋部材3,4によっ
て気密に閉鎖されて内部に気体放電室5を形成している
This embodiment shows an apparatus for cleaning and removing organic matter adhering to the surface of a liquid crystal display panel, and reference numeral 1 represents a light source. The light source 1 includes a hollow container 2, whose openings at both ends are hermetically closed by cover members 3 and 4, respectively, to form a gas discharge chamber 5 therein.

そして、気体放電室5は開閉弁6を介して例えば水素ガ
スを供給する気体供給源7に接続されているとともに、
他の開閉弁8を介して真空ポンダの如き排気源9に接続
されており、この気体放電室5内は上記排気源9により
例えば10 ”−’ Torr程度まで真空引きされた
後、気体供給源7を通じて水素ガスが導入され、数To
rrの水素ガス雰囲気に保たれるようになっている。
The gas discharge chamber 5 is connected to a gas supply source 7 that supplies, for example, hydrogen gas via an on-off valve 6, and
It is connected to an exhaust source 9 such as a vacuum pumper through another on-off valve 8, and after the inside of this gas discharge chamber 5 is evacuated to about 10''-' Torr by the exhaust source 9, the gas supply source is connected. Hydrogen gas is introduced through 7, and several To
A hydrogen gas atmosphere of rr is maintained.

なお、符号10は気体放電室5内のガス圧を検知する圧
力計、11は気体放電室5内のガス圧を調整するマス7
0−コントローラである。
In addition, the reference numeral 10 is a pressure gauge for detecting the gas pressure in the gas discharge chamber 5, and the reference numeral 11 is a mass 7 for adjusting the gas pressure in the gas discharge chamber 5.
0 - Controller.

ところで、上記一方の蓋部材3の中央には、コネクタ1
2を介して棒状のアンテナ13が支持されてお)、この
アンテナ13は蓋部材3に開設した通孔ノ4内を挿通し
て上記気体放電室5内に導入されている。ま九、通孔1
4の開口部には中空円筒状をなした石英ガラス製の隔壁
チューブ15が気密に取付けられておシ、この隔壁チュ
ーブ15は通孔14を閉鎖して気体放電室5内の気密を
確棟するとともに、上記アンテナ13の外周囲を同軸的
に覆い、アンテナ13の周囲と気体放電室5内とを区画
している。
By the way, in the center of one of the lid members 3, there is a connector 1.
A rod-shaped antenna 13 is supported through a hole 2), and this antenna 13 is introduced into the gas discharge chamber 5 by passing through a through hole 4 formed in the lid member 3. Maku, through hole 1
A hollow cylindrical bulkhead tube 15 made of quartz glass is airtightly attached to the opening of the gas discharge chamber 4, and this bulkhead tube 15 closes the through hole 14 to ensure airtightness inside the gas discharge chamber 5. At the same time, the outer periphery of the antenna 13 is coaxially covered, and the periphery of the antenna 13 and the inside of the gas discharge chamber 5 are partitioned.

なお、隔壁チューブ15内には好ましい例として、アン
テナ13を冷却するためのガスが流通されるようになっ
ている。
Note that, as a preferable example, gas for cooling the antenna 13 is made to flow through the partition tube 15.

アンテナ13にはマイクロ波発生f5ze内のマグネト
ロンからマイクロ波が供給されるが、このマイクロ波は
導波管17、同軸ケーブル変換器18から同軸ケーブル
19を介してアンテナ13に伝送される。そして、導波
管17内を伝送されるマイクロ波の出力は、常時パワー
メ−夕20でモニターされるとともに、同軸ケーブル変
換器18の終端部には、マイクロ波の反射波を最少に抑
えてマイクロ波を効率良くアンテナ13に伝送するため
のプランシャ21およびスリースタブチューナ22が設
置されている。
A microwave is supplied to the antenna 13 from a magnetron in the microwave generator f5ze, and this microwave is transmitted to the antenna 13 via a coaxial cable 19 from a waveguide 17 and a coaxial cable converter 18. The output of the microwave transmitted within the waveguide 17 is constantly monitored by a power meter 20, and the terminal of the coaxial cable converter 18 is equipped with a A plunger 21 and a three-stub tuner 22 are installed to efficiently transmit waves to the antenna 13.

したがって、上記気体放電室5内が数Torrの水素ガ
ス雰囲気に保たれた状態で、マイクロ波発生器16を動
作させ、アンテナ13を通じて気体放電室5内にマイク
ロ波を発射すると、この気体放電室5内の水素ガスに放
電が生じ、例えば200 nm以下の波長の紫外線が放
射されるようになっている。
Therefore, when the microwave generator 16 is operated and microwaves are emitted into the gas discharge chamber 5 through the antenna 13 while the inside of the gas discharge chamber 5 is maintained in a hydrogen gas atmosphere of several Torr, the gas discharge chamber A discharge occurs in the hydrogen gas within the chamber 5, and ultraviolet light with a wavelength of 200 nm or less, for example, is emitted.

気体放電室5の一側壁には光取出し口23が設けられて
おシ、この光取出し口23は上記アンテナ13および隔
壁チューブ15の先端部に対向されている。そして、光
取出し口23の開口部には紫外線を取出すための透過窓
24が気密に取付けられておシ、本実施例の場合は、透
過窓24の材質として紫外線の透過性に優れたugit
’2やLIF等のアルカソノ1ライドを使用している。
A light extraction port 23 is provided on one side wall of the gas discharge chamber 5, and the light extraction port 23 faces the antenna 13 and the tip of the partition tube 15. A transmission window 24 for extracting ultraviolet rays is airtightly attached to the opening of the light extraction port 23. In the case of this embodiment, the material of the transmission window 24 is Ugit, which has excellent ultraviolet transmittance.
I use Arca Sono 1 Ride such as '2 and LIF.

このような透過窓24には液晶表示パネル等の被処理物
26を収容した処理ケース27が接離自在に衝合されて
お)、この処理ケース27内は酸素がス雰囲気に保たれ
るようになっている。
A processing case 27 containing a processing object 26 such as a liquid crystal display panel is attached to the transparent window 24 so as to be able to come into contact with and separate from the processing case 27, so that an oxygen atmosphere is maintained inside the processing case 27. It has become.

ととるで、上記気体放電室5内には、透過窓24とはア
ンテナ13を挾んだ反対側に位置して磁界発生源28が
配置されている。本実施例の磁界発生源28は、例えば
ステンレス等の導体からなる線材を連続的に折シ曲げて
構成したもので、第2図に示したように、アシテナ13
の径方向両側に互に平行に配置されたアンテナ13の軸
方向に沿う2本の縦線部29&、29bと、とれら縦線
部29m 、29bの先端部間を結ぶ横線部30を備え
、この横線部30はアンテナ13の周囲を半周程取シ巻
くように円弧状に彎曲されている。そして、縦線部29
a。
Therefore, in the gas discharge chamber 5, a magnetic field generation source 28 is arranged on the opposite side of the antenna 13 from the transmission window 24. The magnetic field generation source 28 of this embodiment is constructed by continuously bending a wire made of a conductor such as stainless steel, and as shown in FIG.
Two vertical line portions 29&, 29b along the axial direction of the antenna 13 are arranged parallel to each other on both sides in the radial direction, and a horizontal line portion 30 connecting the tips of the vertical line portions 29m, 29b, This horizontal line portion 30 is curved in an arc shape so as to surround the antenna 13 about half a circumference. And the vertical line part 29
a.

2.91)の他端部は、上記横線部30と同様の曲率で
以って互に近接する方向に延長されておシ、これら延長
部31 m + 3 l bの先端部は互に近接されて
いるとともに、一定の間隔を存して気体放電室5の周壁
に向って屈曲され、との周壁に設けた接続端子J Ra
 e J 2bを介して直流電源33の両柩に夫々接続
されている。したがって、磁界発生源28は閉回路を構
成しておシ、その縦線部29a、29b、横線部30お
よび延長部31g、31bには、直流電流の通電によっ
て磁場ベクトルが第2図および第3図中矢印方向の磁界
が生じるように表っている。
2.91) The other end portions have the same curvature as the horizontal line portion 30 and are extended in a direction close to each other, and the tips of these extension portions 31 m + 3 l b are close to each other. and is bent toward the peripheral wall of the gas discharge chamber 5 at a constant interval, and is connected to a connecting terminal JRa provided on the peripheral wall of the gas discharge chamber 5.
It is connected to both coffins of the DC power supply 33 via e J 2b. Therefore, the magnetic field generation source 28 constitutes a closed circuit, and a magnetic field vector is generated in the vertical line portions 29a, 29b, horizontal line portion 30, and extension portions 31g, 31b by applying direct current. It appears as if a magnetic field is generated in the direction of the arrow in the figure.

次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.

まず、排気源9を作動させ、圧力計10の管理のもとて
気体放電室5内の圧力が10−’Torrになるまで排
気する。次に、気体供給源7を通じて気体放電室5内に
水素ガスを供給すると゛ともに、マスフローコントロー
ラ11によシス体放電室5内のガス圧を0.1〜数To
rrに調整する。
First, the exhaust source 9 is activated and the gas discharge chamber 5 is evacuated under the control of the pressure gauge 10 until the pressure within the gas discharge chamber 5 reaches 10-' Torr. Next, hydrogen gas is supplied into the gas discharge chamber 5 through the gas supply source 7, and the gas pressure in the system discharge chamber 5 is adjusted to 0.1 to several Ton by the mass flow controller 11.
Adjust to rr.

このような状態でマイクロ波発生器16を動作させ、ア
ンテナ13から気体放電室5内にマイクロ波を発射させ
ると、このアンテナ13の周囲には第3図中破線で示し
たように、磁場ベクトルが放射状の電磁界が形成され、
この結果、隔壁チューブ15の周囲に周方向に沿って均
一な放電(fラズマ)が生起される。
When the microwave generator 16 is operated in this state and microwaves are emitted from the antenna 13 into the gas discharge chamber 5, a magnetic field vector is generated around the antenna 13 as shown by the broken line in FIG. A radial electromagnetic field is formed,
As a result, a uniform discharge (f-lasma) is generated around the partition tube 15 along the circumferential direction.

次に直流電源33から直流電流を磁界発生源28に供給
する。この際の電流値は、気体放電室5内のガス圧やガ
スの種類によっても異なるが、例えば気体放電室5内の
水素ガス圧が       60、5 Torrの場合
には、2〜3A程度とすることが望ましい。この通電に
よル磁界発生源28には磁界が発生するが、その磁場ベ
クトルは上記アンテナ13の周囲の電磁界のうち、透過
窓24の反対側に向う電磁界のベクトル方向とは逆向き
となるので、磁場が互に反発し合い、第3図中破線の矢
印で示したように透過窓24の反対側釦向う電磁界が、
透過窓24の側゛に偏曲される。この結果、隔壁チュー
f15の周囲に生起されていた放電域Hが、上記磁界発
生源28に生じた磁界によって透過窓24側に集中的に
近づけられる。特に本実施例の磁界発生源28は、アン
テナ13の透過窓24とは反対側を半周程取シ囲んでい
るので、透過窓24の側方への放電の広がシが抑えられ
、放電域はよシ集中的に透過窓24側へ移動されること
になる。
Next, a DC current is supplied from the DC power supply 33 to the magnetic field generation source 28 . The current value at this time varies depending on the gas pressure in the gas discharge chamber 5 and the type of gas, but for example, when the hydrogen gas pressure in the gas discharge chamber 5 is 60.5 Torr, it is set to about 2 to 3 A. This is desirable. This energization generates a magnetic field in the magnetic field generation source 28, but the magnetic field vector is in the opposite direction to the vector direction of the electromagnetic field directed to the opposite side of the transmission window 24 among the electromagnetic fields around the antenna 13. Therefore, the magnetic fields repel each other, and the electromagnetic field directed toward the button on the opposite side of the transmission window 24 is
It is bent to the side of the transmission window 24. As a result, the discharge region H that has been generated around the partition wall tube f15 is intensively brought closer to the transmission window 24 side by the magnetic field generated by the magnetic field generation source 28. In particular, the magnetic field generation source 28 of this embodiment surrounds the antenna 13 on the side opposite to the transparent window 24 for about half the circumference, so that the spread of the discharge to the side of the transparent window 24 is suppressed, and the discharge area In other words, the light is intensively moved toward the transmission window 24 side.

そして、このような放電によシ生起された紫外線が透過
窓24を通じて処理ケース27内に導入され、この処理
ケース27内の酸素が紫外線を受けてオゾンになる。こ
のオゾンの酸化反応によシ、被処理物26の表面に付着
している有機物が除去され、所定の光照射処理がなされ
る〇このよりな一実施例によれば、磁界発生源28に生
じた磁界によって隔壁チューブ15の周囲に生起された
放電域が透過窓24側に近づけられるので、光を効率良
く透過窓24に導ひくことができる。したがって、照射
面上の輝°度が向上し、効率良く光照射処理を行なえる
。特に本実施例の場合は、磁界発生源28に供給される
直流電流の電流値を変えることで、隔壁チューブ15の
周囲の電磁界の広がシや偏よシ具合を変化させることが
でき、封入ガス圧やガスの種類が変わった場合でも容易
に対処する仁とができる。
The ultraviolet rays generated by such discharge are introduced into the processing case 27 through the transmission window 24, and the oxygen within the processing case 27 is exposed to the ultraviolet rays and becomes ozone. Due to this oxidation reaction of ozone, organic matter adhering to the surface of the object to be treated 26 is removed, and a predetermined light irradiation treatment is performed. Since the discharge region generated around the partition tube 15 is brought closer to the transmission window 24 by the magnetic field, light can be efficiently guided to the transmission window 24. Therefore, the brightness on the irradiation surface is improved, and the light irradiation process can be performed efficiently. Particularly in the case of this embodiment, by changing the current value of the DC current supplied to the magnetic field generation source 28, the spread and deflection of the electromagnetic field around the partition tube 15 can be changed. Even if the pressure of the sealed gas or the type of gas changes, it can be easily handled.

また上記構成によれば、気体放電室5内に放電のエネル
ギー源となるアンテナ13が挿入されているので、マイ
クロ波の漏洩による損失が小さく、とのため所望の波長
領域の光(本実施例の場合状紫外線)を効率良く供給で
きる利点がある。
Further, according to the above configuration, since the antenna 13 serving as the energy source for discharge is inserted into the gas discharge chamber 5, the loss due to leakage of microwaves is small. It has the advantage of being able to efficiently supply ultraviolet rays).

また、本実施例ではアンテナ13の周囲と気体放電室5
内とを、隔壁チューブ15によって区画しであるので、
アンテナ13が放電空間に直接露出されずに済み、した
がって、アンテナ13がス/ヤツタリングされることも
なく、長寿命となる。
In addition, in this embodiment, the surroundings of the antenna 13 and the gas discharge chamber 5 are
Since the inside is partitioned by the partition tube 15,
The antenna 13 does not need to be directly exposed to the discharge space, so the antenna 13 is not shattered and has a long lifespan.

なお、上述した実施例では、磁界発生源で発生した磁界
と、透過窓の反対側の電磁界とを反発させることによシ
、この電磁界を透*窓側へ押し曲げるようにしたが、例
えば透過窓とアンテナとの間に上記磁界発生源を設け、
この磁界発生源に供給される直流電流の流れ方向を上記
一実施例とは逆向きとすることにょ)、透過窓の反対側
に向う電磁界を窓側に引き雷せるよう姥しても良い。
In the above-mentioned embodiment, the magnetic field generated by the magnetic field source and the electromagnetic field on the opposite side of the transparent window are pushed and bent toward the transparent window by repelling the magnetic field, but for example, The magnetic field generation source is provided between the transmission window and the antenna,
By setting the flow direction of the direct current supplied to this magnetic field generation source in the opposite direction to that in the above embodiment), the electromagnetic field directed to the opposite side of the transparent window may be caused to strike the window side.

またアンテナの周囲の2箇所に磁界発生源を設け1その
磁界のベクトル方向を透過窓側に向けることによシ、透
過窓の反対側に向う電磁界を窓側に偏曲させるようにし
ても良い。
Furthermore, by providing two magnetic field generating sources around the antenna and directing the vector direction of the magnetic field toward the transparent window, the electromagnetic field directed to the opposite side of the transparent window may be deflected toward the window.

そして、この磁界発生源自体の構成も上記実施例に制約
されるものではなく、例えば電磁石あるいは単なる磁石
でちっても何ら差し支えない。
The configuration of the magnetic field generation source itself is not limited to the above embodiments, and may be an electromagnet or a simple magnet, for example.

さらに、本発明において、被処理物は液晶表示パネルに
限定されるものではなく、したがって処理に用いる光も
紫外fsK限らず、赤外線であっても良い。
Further, in the present invention, the object to be processed is not limited to a liquid crystal display panel, and therefore the light used for processing is not limited to ultraviolet fsK but may also be infrared rays.

また、気体放電室内に導入するガスも水素に限らず、処
理の種類や被処理物に応じてクリプトン(Kr)やキセ
ノン(Xe)ガス又はこれらの混合がス釦変えても良い
ことは言うまでもない。
Furthermore, it goes without saying that the gas introduced into the gas discharge chamber is not limited to hydrogen, but may also be krypton (Kr), xenon (Xe) gas, or a mixture thereof depending on the type of treatment and the object to be treated. .

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発IJHCよれば、マイクロ波の全てが
気体放電室内に発射されるので、マイクロ波の損失が小
さく所望の波長領域の光を効率良く供給できる。しかも
、磁界発生源に生じた磁界によってアンテナの周囲に均
一に生起された放電域が強制的に透過窓側に偏曲され、
気体放電室内の発光部が透過窓接近づくので、光を窓側
に効率良く導ひくことができ、この結果照射面上の輝度
が向上し、効率の良い光照射処理を行なえる利点がある
According to the present IJHC described in detail above, all of the microwaves are emitted into the gas discharge chamber, so that the loss of the microwaves is small and light in a desired wavelength range can be efficiently supplied. Moreover, the magnetic field generated by the magnetic field source forces the discharge region uniformly generated around the antenna to be deflected toward the transmission window.
Since the light emitting part in the gas discharge chamber approaches the transmission window, light can be efficiently guided to the window side, and as a result, the brightness on the irradiation surface is improved, and there is an advantage that efficient light irradiation processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は光照射処理装
置の概略構成図、第2図は磁界発生源の斜視図、第3図
は第1図中■−■線に沿う断面図である。 1・・・光発生源、5・・・気体放電室、7・・・気体
供給源、9・・・排気源、13・・・アンテナ、16・
・・マイクロ波発生源(マイクロ波発生器)、24・・
・透過窓、26・・・被処理物、28・・・磁界発生源
The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic configuration diagram of a light irradiation processing device, Fig. 2 is a perspective view of a magnetic field generation source, and Fig. 3 is a cross section taken along the line ■-■ in Fig. 1. It is a diagram. DESCRIPTION OF SYMBOLS 1... Light generation source, 5... Gas discharge chamber, 7... Gas supply source, 9... Exhaust source, 13... Antenna, 16...
...Microwave source (microwave generator), 24...
- Transmission window, 26... object to be treated, 28... magnetic field generation source.

Claims (2)

【特許請求の範囲】[Claims] (1)光発生源と、この光発生源で発生された特定の波
長領域の光を被処理物に向つて導く透過窓とを具備し、 上記光発生源は、マイクロ波発生源と、気密構造をなす
とともに上記透過窓を備えた気体放電室と、上記気体放
電室内に導入され、上記マイクロ波発生源で発生された
マイクロ波を気体放電室内に発射せしめてこの気体放電
室内に放射状に電磁界を形成するアンテナとで構成し、
この光発生源の気体放電室内には、上記放射状に形成さ
れた電磁界を、上記透過窓側に向つて偏曲させる磁界を
発生させる磁界発生源を設けたことを特徴とする光照射
処理装置。
(1) A light generation source and a transmission window that guides light in a specific wavelength range generated by the light generation source toward the workpiece, the light generation source comprising a microwave generation source and an airtight A gas discharge chamber having a structure and having the above-mentioned transmission window, and a microwave introduced into the gas discharge chamber and generated by the above-mentioned microwave generation source are emitted into the gas discharge chamber to generate an electromagnetic wave radially within the gas discharge chamber. It consists of an antenna that forms a field,
A light irradiation processing device characterized in that a magnetic field generation source is provided in the gas discharge chamber of the light generation source for generating a magnetic field that deflects the radially formed electromagnetic field toward the transmission window side.
(2)上記気体放電室内とアンテナの周囲とを、石英ガ
ラス製の隔壁によつて区画したことを特徴とする特許請
求の範囲第(1)項記載の光照射処理装置。
(2) The light irradiation processing device according to claim (1), wherein the gas discharge chamber and the area around the antenna are partitioned by a partition wall made of quartz glass.
JP12711584A 1984-06-20 1984-06-20 Light irradiation treatment apparatus Pending JPS618134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12711584A JPS618134A (en) 1984-06-20 1984-06-20 Light irradiation treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12711584A JPS618134A (en) 1984-06-20 1984-06-20 Light irradiation treatment apparatus

Publications (1)

Publication Number Publication Date
JPS618134A true JPS618134A (en) 1986-01-14

Family

ID=14951976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12711584A Pending JPS618134A (en) 1984-06-20 1984-06-20 Light irradiation treatment apparatus

Country Status (1)

Country Link
JP (1) JPS618134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005431A1 (en) * 1993-08-19 1995-02-23 Ppv Verwaltungs Ag Method and apparatus for recycling waste containing plastic and/or organic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005431A1 (en) * 1993-08-19 1995-02-23 Ppv Verwaltungs Ag Method and apparatus for recycling waste containing plastic and/or organic material

Similar Documents

Publication Publication Date Title
US4123663A (en) Gas-etching device
KR100291152B1 (en) Plasma generating apparatus
KR0145302B1 (en) Plasma processing method
US4192706A (en) Gas-etching device
KR970071945A (en) Plasma treatment method and apparatus
US6087774A (en) Non-electrode discharge lamp apparatus and liquid treatment apparatus using such lamp apparatus
KR920007084A (en) Microwave Plasma Treatment Method and Apparatus
ES2127999T3 (en) MICROWAVE ACTIVATED ION GENERATOR FOR IONIC IMPLANTATION.
JPS61208743A (en) Ultraviolet treatment device
JPS618134A (en) Light irradiation treatment apparatus
KR101946936B1 (en) Microwave plasma reactor for treating harmful gas and apparatus for treating harmful gas with the same
KR101946935B1 (en) Microwave plasma reactor for treating harmful gas and apparatus for treating harmful gas with the same
JPH059315A (en) Apparatus for treating surface
KR100272143B1 (en) Dry cleaning method
JPS60257833A (en) Light irradiation processing apparatus
JPS6157237A (en) Light irradiation treatment apparatus
JP2864020B2 (en) Vacuum microwave light source device
JP2007227285A (en) Plasma treatment device and method
JPS6436021A (en) Microwave plasma processor
JP2515885B2 (en) Plasma processing device
JP2511433B2 (en) Microwave plasma processing equipment
JP2003229300A (en) Microwave discharge generating device, and environment pollution gas treating method
JPH02149339A (en) Apparatus for microwave plasma treatment
JPH06349776A (en) Semiconductor manufacturing apparatus
JPS61240562A (en) Microwave discharge light source device