JPS6179828A - Exhaust gas recirculating device in diesel engine - Google Patents

Exhaust gas recirculating device in diesel engine

Info

Publication number
JPS6179828A
JPS6179828A JP59202600A JP20260084A JPS6179828A JP S6179828 A JPS6179828 A JP S6179828A JP 59202600 A JP59202600 A JP 59202600A JP 20260084 A JP20260084 A JP 20260084A JP S6179828 A JPS6179828 A JP S6179828A
Authority
JP
Japan
Prior art keywords
exhaust gas
intake
temperature
throttle valve
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59202600A
Other languages
Japanese (ja)
Other versions
JPH063150B2 (en
Inventor
Yoshitaka Nomoto
義隆 野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59202600A priority Critical patent/JPH063150B2/en
Publication of JPS6179828A publication Critical patent/JPS6179828A/en
Publication of JPH063150B2 publication Critical patent/JPH063150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

PURPOSE:To prevent compressed pressure from lowering, in an engine in which an intake-air throttle valve is disposed in an intake-air passage upstream of the opening sections of EGR passages so that it is throttled upon EGR by a predetermined amount, by decreasing the throttling degree of the throttle valve when the temperature of the engine, etc. is low. CONSTITUTION:An exhaust recirculating device recirculates a part of exhaust gas from an exhaust passage 3 into an intake-air passage 2 through first and second EGR passages 4, 5. Further, an intake-air throttle vale 14 is disposed in the intake-air passage 2 upstream of the openings of the EGR passages 4, 5. These valves 6, 7, 14 are arranged to be controlled by a control unit 18 such that the EGR valve 6 is opened upon high load operation while the EGR valve 4 is opened upon intermediate load operation, and further the throttle valve 14 is closed while the EGR valve 7 is left to be opened upon low load operation. In this arrangement, control is made such that the lower the temperature of cooling water which is detected by a water temperature sensor, the less the throttling amount of the throttle valve is made.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はディーゼルエンジンの排気還流装置、特に吸気
絞弁を備えた排気還流装置における暖別時の制御に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas recirculation system for a diesel engine, particularly to control during warming up of an exhaust gas recirculation system equipped with an intake throttle valve.

(従 来 技 術) 自動車用等のエンジンにおいては、排気ガス中のNOx
を低減させるために、排気ガスの一部を吸気系に還流さ
せることが一般に行われているが、ディーゼルエンジン
の場合には、吸気負圧を利用して排気ガスを吸気系に吸
い込ませることができないという問題がある。そこで、
例えば特開昭57−41453号公報に開示されている
ように、吸気通路における排気還流通路の開口部上流側
に吸気絞弁を備え、排気還流時に該絞弁を閉作動させて
吸気負圧を発生させることにより排気ガスを効果的に還
流させることが行われている。
(Conventional technology) In automobile engines, NOx in exhaust gas
In order to reduce this, it is common practice to recirculate some of the exhaust gas back into the intake system, but in the case of diesel engines, it is also possible to draw exhaust gas into the intake system using intake negative pressure. The problem is that it can't be done. Therefore,
For example, as disclosed in Japanese Patent Application Laid-open No. 57-41453, an intake throttle valve is provided upstream of the opening of the exhaust gas recirculation passage in the intake passage, and the throttle valve is closed during exhaust gas recirculation to reduce the intake negative pressure. The exhaust gas is effectively refluxed by generating the exhaust gas.

一方、このような排気還流システムを備えたディーゼル
エンジンにおいては、上記公報にも記載されているよう
に、冷間始動時にエンジンの暖機を促進してI−(Cや
Go等の排出を低減させるために排気還流を行うことが
ある。つまり、高温の排気ガスを吸気系に導入すること
により、吸気を加熱して暖機を促進させるのであるが、
その場合、エンジン温度が低いほど排気還流量を多くし
て吸気加熱効果を高めるのが通例である。従って、上記
のように吸気絞弁を閉作動させることにより排気還流を
行うものにおいては、低温時はど吸気絞弁の絞量を多く
することになる。
On the other hand, in a diesel engine equipped with such an exhaust recirculation system, as described in the above publication, the engine warm-up is promoted during cold start to reduce emissions of I-(C, Go, etc.). Exhaust gas recirculation is sometimes performed in order to warm up the engine.In other words, by introducing high-temperature exhaust gas into the intake system, the intake air is heated and warmed up.
In this case, it is customary to increase the amount of exhaust gas recirculation to increase the intake air heating effect as the engine temperature decreases. Therefore, in the case where the exhaust gas is recirculated by closing the intake throttle valve as described above, the amount of throttle of the intake throttle valve is increased when the temperature is low.

然るに、暖機時において、エンジン温度が低いほど吸気
絞弁の絞量を多くすると、吸気の充填量が減少すると共
に、これに伴って圧縮圧力が低下し、更に圧縮による吸
気の温度上[tが少なくなる。つまり、吸気絞弁の絞量
を多くすると、排気還流による吸気の加熱効果は高まる
が、その反面で圧縮による吸気の温度上昇mが減少し、
その結果、暖機が効果的に行われないことになる。特に
、エンジン温度が低いFIji機開始直後においては、
未だ着火していない気筒があって排気ガスの温度が十分
高くなっていないから、この時期に吸気絞弁の絞…を多
くすると、排気還流による吸気の加熱効果よりも吸気充
填mの減少ないし圧縮圧力の低下による温度上昇量の減
少が上回り、その結果、81機性を却って悪くするので
ある。
However, during warm-up, if the throttle amount of the intake throttle valve is increased as the engine temperature is lower, the filling amount of the intake air decreases, the compression pressure decreases accordingly, and the temperature of the intake air due to compression [t becomes less. In other words, increasing the throttle amount of the intake throttle valve increases the heating effect of the intake air due to exhaust gas recirculation, but on the other hand, the temperature rise m of the intake air due to compression decreases.
As a result, warm-up is not performed effectively. Especially immediately after starting a FIji aircraft when the engine temperature is low,
There are cylinders that have not yet ignited, and the temperature of the exhaust gas is not high enough, so if the intake throttle valve is throttled more at this time, the intake air charge m will be reduced or compressed more than the heating effect of the intake air due to exhaust gas recirculation. The decrease in temperature increase due to the decrease in pressure exceeds the decrease, and as a result, the 81 mechanical properties are rather deteriorated.

(発  明  の  目  的) 本発明は、吸気通路に設けた吸気絞弁を閉作動させるこ
とにより排気還流を行うようにしたディーゼルエンジン
の排気還流装置において、暖機促進のための排気還流時
に、吸気絞りによる圧縮圧力の低下ないし吸気の温度上
昇量の減少を防止し、もって暖機を効果的に行ってHC
やCO等の排出を低減させることを目的とする。
(Object of the Invention) The present invention provides an exhaust gas recirculation device for a diesel engine in which exhaust gas recirculation is performed by closing an intake throttle valve provided in an intake passage. This prevents a decrease in compression pressure or a decrease in intake air temperature due to intake throttling, thereby effectively warming up the HC.
The purpose is to reduce emissions of carbon dioxide and CO.

(発  明  の  構  成) 即ち、本発明は、吸気通路における排気還流通路の開口
部上流側に吸気絞弁を備え、排気還流時に該吸気絞弁を
所定開度に絞るように構成したディ戸ゼルエンジンの排
気還流装置において、エンジン温度もしくは吸気温度に
関連する温度を検出する温度検出手段を設けると共に、
該検出手段で検出した温度が低い時に上記吸気絞弁の絞
量を減少させる排気還流制御手段を備えたことを特徴と
する。
(Structure of the Invention) That is, the present invention provides a di-door which is provided with an intake throttle valve on the upstream side of the opening of the exhaust gas recirculation passage in the intake passage, and configured to throttle the intake throttle valve to a predetermined opening degree during exhaust gas recirculation. In the exhaust gas recirculation device of a diesel engine, a temperature detection means for detecting a temperature related to the engine temperature or the intake air temperature is provided, and
The present invention is characterized in that it includes exhaust gas recirculation control means that reduces the amount of throttle of the intake throttle valve when the temperature detected by the detection means is low.

このような構成によれば、暖機時においてエンジン温度
が比較的高温の場合は、排気還流によって効果的に吸気
が加熱されると共に、暖機開始直後等のエンジン低温時
、即ち排気ガスの温度が低いため排気還流による吸気加
熱効果が十分に得られない場合は、吸気絞弁の絞ωが少
なくされることにより、所要の吸気充liNが確保され
て圧縮圧力の増大による吸気温度の上昇効果が得られる
ことになる。従って、エンジン温度が低い時から比較的
高温に上昇するまでの広い範囲で良好な暖確性が得られ
ることになる。尚、吸気絞弁の絞母をエンジン温度ない
し吸気温度の低温時に少なくする方法としては、該温度
が低いほど無段階的に絞mを減少させる方法と、所定温
度の前接で絞量を段階的に変化させる方法とがある。
According to such a configuration, when the engine temperature is relatively high during warm-up, the intake air is effectively heated by exhaust gas recirculation, and when the engine is low, such as immediately after the start of warm-up, that is, the temperature of exhaust gas is If the intake air heating effect due to exhaust gas recirculation cannot be sufficiently obtained due to low will be obtained. Therefore, good heating accuracy can be obtained over a wide range from when the engine temperature is low to when the engine temperature rises to a relatively high temperature. Note that there are two methods for reducing the throttle mass of the intake throttle valve when the engine temperature or intake air temperature is low: one is to reduce the throttle m in a stepless manner as the temperature is lower, and the other is to reduce the throttling amount in stages before reaching a predetermined temperature. There is a way to change it.

(実  施  例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図に示すように、エンジン1には各気筒の燃焼室に
吸気を供給する吸気通路2と、燃焼によって生じた排気
ガスを外部に一放出する排気通路3とが設けられている
と共に、該排気通路3と吸気通路2との間には排気ガス
の一部を吸気通路2内に還流させる第1.第2排気還流
通路4.5が設けられ、且つこれらの通路4.5には排
気還流量を制御する第1.第2還流制御弁(以下、EG
R弁という)6.7が設置されている。そして、これら
のEGR弁6,7を夫々作動させる負圧ダイヤフラム式
のアクチュエータ8.9が備えられていると共に、図示
しない負圧ポンプと両アクチュエータ8.9との間の負
圧導入通路10.11には夫々デユーティ制御式の第1
.第2負圧制御弁12.13が設置され、該制御弁12
.13の開閉状態ないし開閉時間比率(デユーティ比)
に応じて各アクチュエータ8,9内の負圧がコントロー
ルされることにより、第1.第2EGR弁6゜7の開度
が制御されるようになっている。ここで、第1 EGR
弁6の全開時の通路面積は第2EGR弁7の全開時の通
路面積より小とされている。
As shown in FIG. 1, an engine 1 is provided with an intake passage 2 that supplies intake air to the combustion chamber of each cylinder, and an exhaust passage 3 that discharges exhaust gas generated by combustion to the outside. Between the exhaust passage 3 and the intake passage 2, there is a first pipe which recirculates part of the exhaust gas into the intake passage 2. A second exhaust gas recirculation passage 4.5 is provided, and a first exhaust gas recirculation passage 4.5 for controlling the amount of exhaust gas recirculation is provided in these passages 4.5. Second reflux control valve (hereinafter referred to as EG
6.7 (referred to as R valve) is installed. A negative pressure diaphragm type actuator 8.9 for operating these EGR valves 6 and 7, respectively, is provided, and a negative pressure introduction passage 10.9 is provided between a negative pressure pump (not shown) and both actuators 8.9. 11 each have a duty control type first
.. A second negative pressure control valve 12.13 is installed, the control valve 12.
.. 13 open/close states or open/close time ratio (duty ratio)
By controlling the negative pressure within each actuator 8, 9 according to the first. The opening degree of the second EGR valve 6°7 is controlled. Here, the first EGR
The passage area when the valve 6 is fully open is smaller than the passage area when the second EGR valve 7 is fully open.

一方、上記吸気通路2における第1.第2排気還流通路
4.5の開口部の上流側には吸気絞弁14が設けられて
いると共に、該吸気絞弁14を開閉駆動する負圧ダイレ
フ56式のアクチュエータ15が備えられている。そし
て、このアクチュエータ15に負圧を導入する負圧導入
通路16にもデユーティ制御式の第3負圧制御弁17が
設置されている。
On the other hand, the first. An intake throttle valve 14 is provided on the upstream side of the opening of the second exhaust gas recirculation passage 4.5, and a negative pressure die reflex 56 type actuator 15 for driving the intake throttle valve 14 to open and close is provided. A third negative pressure control valve 17 of duty control type is also installed in the negative pressure introduction passage 16 through which negative pressure is introduced into the actuator 15 .

然して、上記アクチュエータ8.9を介して第1、第2
EGR弁6.7を制御する第1.第2負圧制御弁12.
13及びアクチュエータ15を介して吸気絞弁14を制
御する第3負圧制御弁17には、コントロールユニット
18から夫々制御信号(デユーティ信号)A、B、Cが
送出されているようになっていると共に、該コントロー
ルユニット18には燃料噴射ポンプ19に備えられた回
転センサ20からの回転信号りと、該ポンプ19におけ
るコントロールレバーの位置からこれに連動するアクセ
ルペダルのポジションを検出するアクセルポジションセ
ンサ21からの負荷信号Eと、エンジン1のウォーター
ジャケットに備えられた水温センサ22から−の水温信
号Fとが入力され、これらの入力信号り、E、Fに基づ
いて、エンジン1の運転状態に応じて上記制御信号A、
B、Cを出力するようになっている。ここで、上記燃料
噴射ポンプ19はエンジン1の各気筒に備えられた燃料
噴射ノズル(図示せず)に燃料を圧送するものであるが
、その噴射mは該ポンプ19の回転速度(エンジン回転
速度に対応する)とアクセルポジションに応じて設定さ
れるようになっている。
Therefore, the first and second
The first one controls the EGR valve 6.7. Second negative pressure control valve 12.
Control signals (duty signals) A, B, and C are sent from the control unit 18 to the third negative pressure control valve 17 that controls the intake throttle valve 14 via the intake throttle valve 13 and the actuator 15, respectively. In addition, the control unit 18 includes a rotation signal from a rotation sensor 20 provided in the fuel injection pump 19, and an accelerator position sensor 21 that detects the position of the accelerator pedal linked to the control lever position of the pump 19. A load signal E from the engine 1 and a water temperature signal F from the water temperature sensor 22 provided in the water jacket of the engine 1 are input, and based on these input signals E, F, the engine 1 is and the above control signal A,
B and C are output. Here, the fuel injection pump 19 is for pumping fuel to fuel injection nozzles (not shown) provided in each cylinder of the engine 1, and the injection m is determined by the rotational speed of the pump 19 (engine rotational speed). ) and the accelerator position.

次に、この実施例の作動を第2図のフローチャート図に
従って説明する。
Next, the operation of this embodiment will be explained according to the flowchart shown in FIG.

先ず、コントロールユニット18は、第2図のステップ
S1.S2に従って第1図に示す水温センサ22からの
水温信号Fを入力し、該信号Fが示すエンジン1のウォ
ータージャケットにおける冷却水温度Tが80℃以上か
否かを判定する。そして、該温度Tが80℃以上の場合
、換言すればエンジン1の通常の運転時には、次にステ
ップS3.84に従って回転センサ20からの回転信号
りを入力し、該信号りに基づいてエンジン回転速度Nを
検出すると共に、該回転速度Nが900〜3000RP
Mの範囲内にあるか否かを判定し、この範囲内に含まれ
ている場合は、更にステップS5でアクセルポジション
センサ21からの負荷信号Eを入力する。この負荷信号
Eが示すアクセルポジションと上記エンジン回転速度N
とは第1図に示す燃料噴射ポンプ1つの燃料噴射量を決
定するものであるが、燃料噴射口は燃焼室内の図示平均
有効圧力に対応するので、上記アクセルポジションとエ
ンジン回転速度Nとから図示平均有効圧力peが求めら
れることになる。そして、コントロールユニット18は
、ステップS6でこの図示平均有効圧力pcがO〜6 
K’3 / cAの範囲内にあるか否かを判定し、この
範囲内にある時にステップ87〜S 12による通常運
転時の排気還流制御を行う。つまり、冷却水温度Tが8
0℃以上であり、エンジン回転速度Nが900〜300
0PPMの範囲内にあり、且つ図示平均有効圧力peが
O〜6 KCI/ crAの範囲内にある時に通常の排
気還流制御が行われるのである。
First, the control unit 18 performs step S1 in FIG. According to S2, the water temperature signal F from the water temperature sensor 22 shown in FIG. 1 is input, and it is determined whether the cooling water temperature T in the water jacket of the engine 1 indicated by the signal F is 80° C. or higher. When the temperature T is 80° C. or higher, in other words, during normal operation of the engine 1, the rotation signal from the rotation sensor 20 is inputted in accordance with step S3.84, and the engine speed is increased based on the signal. While detecting the speed N, the rotation speed N is 900 to 3000RP
It is determined whether or not it is within the range of M, and if it is within this range, the load signal E from the accelerator position sensor 21 is further input in step S5. The accelerator position indicated by this load signal E and the engine rotation speed N
determines the fuel injection amount of one fuel injection pump shown in FIG. 1. Since the fuel injection port corresponds to the indicated average effective pressure in the combustion chamber, The average effective pressure pe will be determined. Then, in step S6, the control unit 18 determines that the indicated mean effective pressure pc is O~6.
It is determined whether or not it is within the range of K'3/cA, and when it is within this range, the exhaust gas recirculation control during normal operation is performed in steps 87 to S12. In other words, the cooling water temperature T is 8
The temperature is 0°C or higher, and the engine rotation speed N is 900 to 300
Normal exhaust gas recirculation control is performed when the indicated mean effective pressure pe is within the range of 0 PPM and within the range of 0 to 6 KCI/crA.

この制御は、上記図示平均有効圧力Peの値に応じて次
のように行われる。即ち、コントロールユニット18は
、該圧力peが5〜6 n / ctAの範囲内にある
比較的高負荷時にはステップS7からステップS8を実
行して、第1図に示す通路面積の小さい第1 EGR弁
6を開くように第1負圧制御弁12に制御信号Aを出力
し、また該圧力peが4.5〜51’l /crAの範
囲内にある中負荷時には上記ステップSrからステップ
S9.S+oを実行して、通路面積の大きい第22GR
弁7を開くように第2負圧制御弁13に制御信号Bを出
力する。
This control is performed as follows depending on the value of the indicated mean effective pressure Pe. That is, when the pressure pe is in the range of 5 to 6 n/ctA and the load is relatively high, the control unit 18 executes steps S7 to S8 to control the first EGR valve with a small passage area shown in FIG. A control signal A is output to the first negative pressure control valve 12 so as to open the control valve 6, and when the pressure pe is in the range of 4.5 to 51'l/crA and the load is medium, the step Sr to step S9. Execute S+o and move to the 22nd GR, which has a large passage area.
A control signal B is output to the second negative pressure control valve 13 to open the valve 7.

更に、該圧力peがO〜4 、5 豹/ crAの範囲
内にある低負荷時には上記ステップS9からステップS
o、S+zを実行し、第2EGR弁7を開くように第2
負圧制御弁13に制御信号Bを出力すると共に、吸気絞
弁14を閉じるように第3負圧制郊弁17に制御信号C
を出力する。そのため、上記の排気還流制御を行う領域
において、高負荷時には第1排気還流通路4により通路
面積の小さい第1 EGR弁8を通って比較的少量の排
気ガスが排気通路3から吸気通路2に還流され、また中
負荷時には第2排気還流通路5により通路面積の大きい
第2EGR弁7を通って比較的多量の排気ガスが還流さ
れることになり、更に低負荷時には通路面積の大きい第
2EGR弁7が開くと同時に、吸気通路2における吸気
絞弁14が閉じて排気還流通路5の開口部周辺の負圧が
高まることにより、一層多吊の排気ガスが吸気通路2に
還流されることになる。その結果、第3図に示すように
負荷に応じて段階的に変化する排気還流特性が得られる
Furthermore, at low load when the pressure pe is within the range of O to 4.5 crA, the steps S9 to S are performed.
o, S+z to open the second EGR valve 7.
A control signal B is output to the negative pressure control valve 13, and a control signal C is output to the third negative pressure control valve 17 to close the intake throttle valve 14.
Output. Therefore, in the region where the above-mentioned exhaust gas recirculation control is performed, when the load is high, a relatively small amount of exhaust gas is recirculated from the exhaust passage 3 to the intake passage 2 through the first EGR valve 8, which has a small passage area, by the first exhaust gas recirculation passage 4. In addition, at medium loads, a relatively large amount of exhaust gas is recirculated by the second exhaust gas recirculation passage 5 through the second EGR valve 7 with a large passage area, and at low loads, the second EGR valve 7 with a large passage area is recirculated. At the same time as opening, the intake throttle valve 14 in the intake passage 2 closes and the negative pressure around the opening of the exhaust gas recirculation passage 5 increases, so that even more exhaust gas is recirculated to the intake passage 2. As a result, as shown in FIG. 3, an exhaust gas recirculation characteristic that changes stepwise according to the load is obtained.

ここで、低角荷時はど排気還流mを多くするのは、ディ
ーゼルエンジンの場合、低負荷時には燃料噴射最に対す
る空気過剰率が著しく大きくなるので、多山の排気ガス
を還流しなければ所期の効果(NOx低減効果)が得ら
れないからであり、また所定負荷以上(図示平均有効圧
力が6AV/d以上)の高負荷域で排気還流を行わない
のは、このような領域で排気還流を行うと燃焼状態が著
しく悪化してスモークが発生するからである。
The reason for increasing the exhaust gas recirculation m when the angle load is low is that in the case of a diesel engine, the excess air ratio relative to the fuel injection point becomes significantly large at low loads, so if a large number of exhaust gases are not recirculated, it is necessary to This is because the effect (NOx reduction effect) cannot be obtained during the period, and the reason why exhaust gas recirculation is not performed in a high load range above a predetermined load (indicated average effective pressure is 6 AV/d or more) is because exhaust gas recirculation is not performed in such a region. This is because if reflux is performed, the combustion condition will be significantly deteriorated and smoke will be generated.

然して、冷却水温度Tが80℃以下のエンジン1の暖機
時には、コントロールユニット18は第2図のステップ
S2からステップ813を実行し、エンジン回転数Nが
1000〜3000PPMの範囲内にあるか否かを判定
して、この範囲内にある時はステップ814〜S +e
による暖機時の排気還流RIJ Illを行う。つまり
、ステップS 14で第1EGR弁6を開くと共に、ス
テップS +sで上記水温センサ22からの信号Fが示
す冷加水温度Tに応じて吸気絞弁14のwUIiθを設
定する。この時、咳間度θは冷部水@度Tに対して予め
設定されたマツプから読み取ることにより設定されるが
、このマツプは第4図に示すような特性で設定されてい
る。つまり、冷却水温度Tが低いほど吸気絞弁14の開
度θが大きくなるように(絞量が少なくなるように)設
定されているのである。そして、この特性に従って吸気
絞弁14の開度θを冷却水温度Tに応じて設定した模、
コントロールユニット18はステップS +sで吸気絞
弁14の開度が上記設定開度θとなるように制御信号(
デユーティ信号)Cを第3負圧制御弁17に出力する。
However, when warming up the engine 1 when the coolant temperature T is 80° C. or lower, the control unit 18 executes steps S2 to 813 in FIG. If it is within this range, step 814~S +e
Perform exhaust gas recirculation RIJ Ill during warm-up. That is, in step S14, the first EGR valve 6 is opened, and in step S2+s, wUIiθ of the intake throttle valve 14 is set in accordance with the chilled water temperature T indicated by the signal F from the water temperature sensor 22. At this time, the cough interval degree θ is set by reading from a preset map for cold water @ temperature T, and this map is set with characteristics as shown in FIG. In other words, the lower the cooling water temperature T, the larger the opening degree θ of the intake throttle valve 14 (the smaller the throttle amount). In accordance with this characteristic, the opening degree θ of the intake throttle valve 14 is set according to the cooling water temperature T.
In step S+s, the control unit 18 sends a control signal (
Duty signal) C is output to the third negative pressure control valve 17.

これにより、暖機時における吸気絞弁14の絞量が冷部
水@[Tが低いほど少なくなり、そのため、暖機開始直
後等のエンジン低温時に所要量の吸気充填mが確保され
ると共に、これに伴って高い圧縮圧力と、この圧縮によ
る吸気の十分な温度上昇が得られることになり、その結
果、暖機が促進されることになる。その場合に、吸気絞
弁14の絞mが少ないことにより排気還流9が減少する
が、エンジン低温時には排気ガスの温度が低いので、排
気還流量を多くすることよりも上記のように吸気充lX
ff1ないし圧縮圧力を確保することによる方が@機促
進に対して有効なのである。そして、エンジン温度が上
昇すれば、これに伴って吸気絞弁14の絞量が増大され
ることにより排気還流量が多くなり、高温となった排気
ガスにより吸気が効果的に加熱されて、更に暖機が促進
されることになる。
As a result, the throttle amount of the intake throttle valve 14 during warm-up becomes smaller as the cold part water @ Accordingly, a high compression pressure and a sufficient temperature rise of the intake air due to this compression are obtained, and as a result, warm-up is promoted. In this case, the exhaust gas recirculation 9 is reduced due to the small throttle m of the intake throttle valve 14, but since the temperature of the exhaust gas is low when the engine is low, the intake air refill l
It is more effective to promote @machine by securing ff1 or compression pressure. When the engine temperature rises, the amount of throttle of the intake throttle valve 14 increases accordingly, increasing the amount of exhaust gas recirculation, and the intake air is effectively heated by the high-temperature exhaust gas. Warming up will be accelerated.

ここで、この実施例においては、吸気絞弁14の絞量(
開度)をデユーティ制御して、第4図に示すように冷却
水温度が低いほど開度を無段階的に増大させるように構
成したが、冷却水温度のある値を境として低温側では吸
気絞弁を開き、高温側では閉じるように制(社)しても
よい。
Here, in this embodiment, the throttle amount of the intake throttle valve 14 (
As shown in Figure 4, the lower the cooling water temperature, the lower the cooling water temperature is, the lower the opening degree is. The throttle valve may be opened and closed on the high temperature side.

(発  明  の  効  果) 以上のように本発明によ枕ば、排気還流時に吸気通路に
設けた吸気絞弁を閉作動させるように構成したディーゼ
ルエンジンの排気還流装置において、暖機促進のための
排気還流時に、暖機開始直後のエンジン低温時には所要
の吸気充填量ないし圧縮圧力が確保されて、この圧縮に
よる吸気温度の上昇効果が得られ、またエンジン温度が
上昇すればa潟の排気ガスによる吸気加熱効果が得られ
ることになる。これにより、暖機開始直後から良好な暖
機性が得られ、暖機が促進されると共に、暖機中におけ
るHCやco等の排出が低減される。
(Effects of the Invention) As described above, according to the present invention, an exhaust gas recirculation device for a diesel engine configured to close an intake throttle valve provided in an intake passage during exhaust gas recirculation can be used to promote warm-up. During exhaust gas recirculation, when the engine temperature is low immediately after the start of warm-up, the required intake air filling amount or compression pressure is ensured, and this compression produces the effect of increasing the intake air temperature, and when the engine temperature rises, the exhaust gas in the This results in an intake air heating effect. As a result, good warm-up performance is obtained immediately after the start of warm-up, warm-up is promoted, and emissions of HC, co, etc. are reduced during warm-up.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は制御シス
テム図、第2図は作動を示すフローチャート図、第3図
は通常の排気還流制御の特性図、第4図は暖機時の排気
還流制御における吸気絞弁開度の制御特性図である。 1・・・エンジン、2・・・吸気通路、3・・・排気通
路、4.5・・・排気還流通路、14・・・吸気絞弁、
18・・・排気還流制御手段(コントロールユニット)
、22・・・温度検出手段(水濡センサ)。
The drawings show an embodiment of the present invention; Fig. 1 is a control system diagram, Fig. 2 is a flowchart showing the operation, Fig. 3 is a characteristic diagram of normal exhaust gas recirculation control, and Fig. 4 is a diagram showing the warm-up time. FIG. 3 is a control characteristic diagram of the intake throttle valve opening degree in exhaust gas recirculation control. DESCRIPTION OF SYMBOLS 1... Engine, 2... Intake passage, 3... Exhaust passage, 4.5... Exhaust recirculation passage, 14... Intake throttle valve,
18...Exhaust recirculation control means (control unit)
, 22...Temperature detection means (water wetness sensor).

Claims (1)

【特許請求の範囲】[Claims] (1)吸気通路における排気還流通路の開口部上流側に
吸気絞弁を備え、排気還流時に該吸気絞弁を所定開度に
絞るように構成したディーゼルエンジンの排気還流装置
であって、エンジン温度もしくは吸気温度に関連する温
度を検出する温度検出手段と、該検出手段で検出した温
度が低い時に上記吸気絞弁の絞量を減少させる排気還流
制御手段とを備えたことを特徴とするディーゼルエンジ
ンの排気還流装置。
(1) An exhaust gas recirculation device for a diesel engine, which is equipped with an intake throttle valve upstream of the opening of the exhaust gas recirculation passage in the intake passage, and is configured to throttle the intake throttle valve to a predetermined opening degree during exhaust gas recirculation, the device comprising: Alternatively, a diesel engine comprising temperature detection means for detecting a temperature related to intake air temperature, and exhaust recirculation control means for reducing the throttle amount of the intake throttle valve when the temperature detected by the detection means is low. Exhaust recirculation device.
JP59202600A 1984-09-26 1984-09-26 Exhaust gas recirculation system for diesel engine Expired - Lifetime JPH063150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202600A JPH063150B2 (en) 1984-09-26 1984-09-26 Exhaust gas recirculation system for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202600A JPH063150B2 (en) 1984-09-26 1984-09-26 Exhaust gas recirculation system for diesel engine

Publications (2)

Publication Number Publication Date
JPS6179828A true JPS6179828A (en) 1986-04-23
JPH063150B2 JPH063150B2 (en) 1994-01-12

Family

ID=16460137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202600A Expired - Lifetime JPH063150B2 (en) 1984-09-26 1984-09-26 Exhaust gas recirculation system for diesel engine

Country Status (1)

Country Link
JP (1) JPH063150B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352364U (en) * 1989-09-28 1991-05-21
CN109555606A (en) * 2017-09-26 2019-04-02 株式会社斯巴鲁 EGR control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176639U (en) * 1981-04-30 1982-11-08
JPS5867955A (en) * 1981-10-20 1983-04-22 Nissan Motor Co Ltd Exhaust gas recirculating device of diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176639U (en) * 1981-04-30 1982-11-08
JPS5867955A (en) * 1981-10-20 1983-04-22 Nissan Motor Co Ltd Exhaust gas recirculating device of diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352364U (en) * 1989-09-28 1991-05-21
CN109555606A (en) * 2017-09-26 2019-04-02 株式会社斯巴鲁 EGR control device
CN109555606B (en) * 2017-09-26 2022-10-11 株式会社斯巴鲁 EGR control device

Also Published As

Publication number Publication date
JPH063150B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US6925804B2 (en) Method for responding to sensor failures on EGR/VGT engines
US20020069859A1 (en) Internal combustion engine
US6625985B2 (en) Control of turbocharger
JP3690078B2 (en) Spark ignition engine
JP2010096049A (en) Control device of internal combustion engine
JP3040153B2 (en) Engine exhaust gas recirculation system
JP2006266216A (en) Intake/exhaust device for diesel engine
JPH0532563B2 (en)
CN111788378B (en) Internal combustion engine and control method thereof
JPH06257519A (en) Exhaust reflux device of engine with turbo supercharger
JPH11280565A (en) Egr device
US20200200100A1 (en) Throttle Valve Controller Device for Internal Combustion Engine
JPS6179828A (en) Exhaust gas recirculating device in diesel engine
JPH1061503A (en) Exhaust gas recirculation device of multi-cylinder engine with supercharger
JP3305416B2 (en) Engine exhaust recirculation system
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JP3533891B2 (en) Diesel engine intake control device
JPH0338449Y2 (en)
JPH0329568Y2 (en)
JP6493279B2 (en) Engine control device
JPS6338354Y2 (en)
JPH11236829A (en) Method and device for warming up engine
JP2002089311A (en) Internal combustion engine
JPH05133235A (en) Internal combustion engine with mechanical supercharger
JPS6321726Y2 (en)