JPS6179142A - Infrared absorption analysis method - Google Patents

Infrared absorption analysis method

Info

Publication number
JPS6179142A
JPS6179142A JP59200502A JP20050284A JPS6179142A JP S6179142 A JPS6179142 A JP S6179142A JP 59200502 A JP59200502 A JP 59200502A JP 20050284 A JP20050284 A JP 20050284A JP S6179142 A JPS6179142 A JP S6179142A
Authority
JP
Japan
Prior art keywords
plate
sample
refractive index
transmission
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59200502A
Other languages
Japanese (ja)
Inventor
Michio Osawa
大沢 通夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59200502A priority Critical patent/JPS6179142A/en
Publication of JPS6179142A publication Critical patent/JPS6179142A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure an IR transmission spectrum and IR reflection spectrum with the same sample by forming a thin film or layer of a sample on a base plate such as crystal silicon plate which has a large refractive index and allows the transmission or IR rays. CONSTITUTION:The base plate 5 is constituted of the single crystal silicon plate which has the refractive index of a large value and is finished to a specular surface. The thin film 2 of the sample to be measured is stuck on the surface of the plate 5 and the refractive index of the film 2 is smaller than the refractive index of the silicon crystal. The single crystal silicon plate as the plate 5 allows about 50% transmission of IR light and therefore the measurement by a transmission method is made possible by irradiating the IR light thereto from above the film 2. Since the difference in the refractive index between the film 2 and the plate 5 is large, the reflectivity at the boundary face between the film 2 and the single crystal silicon plate is large and the measurement of the reflection with the same high sensitivity as with a metallic plate is made possible.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は赤外吸収分析法に係り、特に薄膜や薄層およ
び表面吸着物質゛などの分子構造、分子配向および膜厚
などを調べるために行う赤外吸収分析法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to an infrared absorption analysis method, particularly for investigating the molecular structure, molecular orientation, film thickness, etc. of thin films, thin layers, and surface adsorbed substances. Regarding the infrared absorption analysis method.

〔従来技術と問題点〕[Conventional technology and problems]

赤外吸収分析法は赤外線の吸収現象を利用した分析法で
あり、物質に赤外線をあてると特定波長での共鳴吸収が
起こり、育種性分子は固有の吸収スペクトルを与えこれ
を利用して物質の分析を行うことができる。第6図はこ
の種の赤外吸収分析法のうち、透過法を示したものであ
り、赤外線を透過する臭化カリウム(に8「)の結晶板
lの表面に試料としての薄膜2を形成し、薄膜2の側か
ら赤外光3を照射し、透過法により薄膜の赤外吸収スペ
クトルを得るようにしたものである。また、赤外吸収ス
ペクトルを得る他の方法として反射法が知られ、これは
第7図に示されたように、金属板4の上に形成された試
料としての薄膜2に対して赤外光3を斜めに入射し、金
属板4の表面で反射する赤外線から赤外吸収スペクトル
を得る方法である。この反射法のうち、高怒度反射法が
最近注目され、この方法は大きな入射角と入射面に平行
な偏光を用いて金属板上の特に薄い層のスペクトルを得
るのに有効である。
Infrared absorption analysis is an analysis method that utilizes the absorption phenomenon of infrared rays. When a substance is exposed to infrared rays, resonance absorption occurs at a specific wavelength, and breeding molecules give a unique absorption spectrum, which can be used to study the substance. Analysis can be performed. Figure 6 shows the transmission method of this type of infrared absorption analysis, in which a thin film 2 as a sample is formed on the surface of a potassium bromide (8'') crystal plate l that transmits infrared rays. Then, infrared light 3 is irradiated from the side of the thin film 2, and the infrared absorption spectrum of the thin film is obtained by the transmission method.Also, the reflection method is known as another method for obtaining the infrared absorption spectrum. As shown in FIG. 7, infrared light 3 is obliquely incident on a thin film 2 as a sample formed on a metal plate 4, and the infrared light reflected from the surface of the metal plate 4 is detected. This is a method of obtaining infrared absorption spectra. Among these reflection methods, the high-intensity reflection method has recently attracted attention, and this method uses a large incident angle and polarized light parallel to the plane of incidence to obtain a particularly thin layer on a metal plate. Effective for obtaining spectra.

この高域度反射法により得られるスペクトルは透過法に
より得られるスペクトルと若干異なっている。i3過法
により得られるスペクトルはデータ集も豊富であり、未
知の物質のスペクトルからその物質を同定することも容
易である。ところが、高感度反射スペクトルについては
公表されているデータも非常に少なく、また高感度反射
スペクトルと透過スペクトルとの比較検討もあまりされ
ていない、この原因のひとつは従来の方法では反射法の
測定と透過法の測定の際に一方では金属板他方では臭化
カリウムの結晶板というように別々の木板上に試料とし
ての薄膜を形成し、別々の試料で測定する必要があった
ことに基因している。
The spectrum obtained by this high-frequency reflection method is slightly different from the spectrum obtained by the transmission method. Spectra obtained by the i3 traverse method have a rich collection of data, and it is easy to identify unknown substances from their spectra. However, there is very little published data on high-sensitivity reflectance spectra, and there has not been much comparative study between high-sensitivity reflectance spectra and transmission spectra.One of the reasons for this is that conventional methods cannot measure reflection spectra. This was due to the fact that during transmission method measurements, it was necessary to form thin films as samples on separate wooden plates, such as a metal plate on the one hand and a potassium bromide crystal plate on the other, and perform measurements on separate samples. There is.

このように、反射法と透過法とで別々の試料を必要とす
ることは試料作成上の不便があるばかりでなく反射スペ
クトルと透過スペクトルとの差異を比較検討する上でも
試料の違いおよび基板の違いに基づく差異の可能性を排
除できずスペクトルの差異の検討が十分に出来ないとい
う問題があった。
In this way, requiring separate samples for the reflection method and the transmission method is not only inconvenient for sample preparation, but also makes it difficult to compare and examine the differences between the reflection spectrum and transmission spectrum. There was a problem in that the possibility of differences due to differences could not be excluded and the differences in spectra could not be sufficiently investigated.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は、上述した従来の高怒度反射法
が有する問題点を解消し、同一試料で反射法と透過法の
両方の赤外吸収スペクトルを取得できるように赤外吸収
分析法を提供することにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems of the conventional high-intensity reflection method, and to develop an infrared absorption analysis method that allows infrared absorption spectra of both the reflection method and the transmission method to be obtained from the same sample. Our goal is to provide the following.

〔発明の要点〕[Key points of the invention]

上記目的を達成するために、この発明は試料の屈折率よ
りも大きな屈折率をもち赤外光を透過する基板の上に試
料の薄膜、薄層または吸着物質を付着させ、反射法と透
過法の両方法で赤外吸収スペクトルを測定するようにし
たことを特徴するものである。
In order to achieve the above object, this invention deposits a thin film, thin layer, or adsorbed substance of a sample on a substrate that has a refractive index larger than that of the sample and transmits infrared light, and uses a reflection method and a transmission method. This method is characterized in that infrared absorption spectra are measured using both methods.

〔発明の実施例〕[Embodiments of the invention]

以下この発明による赤外吸収分析法の実施例を    
 ゛第1図り至第4図を参照して説明する。
Examples of the infrared absorption analysis method according to this invention are shown below.
``This will be explained with reference to Figures 1 to 4.

第1図は透過法による赤外吸収分析を示し、第2図は同
一基板および同一試料について高怒度反肘法による赤外
吸収分析を示している。
FIG. 1 shows an infrared absorption analysis using a transmission method, and FIG. 2 shows an infrared absorption analysis using a high-intensity anti-elbow method for the same substrate and the same sample.

第1図および第2図において、符号5は基板を示し、こ
の基板5は屈折率が約3.4と有機物などに比べ非常に
大きな値をもつ鏡面仕上げした単結晶シリコン板によっ
て構成されている。この基板5の表面に測定すべき試料
の薄膜2が付着されている。この薄膜2は屈折率がシリ
コン結晶よりも小さいものである。
In FIGS. 1 and 2, reference numeral 5 indicates a substrate, and this substrate 5 is composed of a mirror-finished single crystal silicon plate having a refractive index of about 3.4, which is much larger than that of organic materials. . A thin film 2 of a sample to be measured is attached to the surface of this substrate 5. This thin film 2 has a refractive index smaller than that of silicon crystal.

上記基板5としての単結晶シリコン板は赤外光を約50
%透過するため第1図に示したように薄膜2の上方より
赤外光を照射して透過法による測定が可能となる。また
、Fi[2と基FiSとの屈折率の差は大きいから、第
2図に示したように薄膜2と単結晶シリコン板との界面
での反射率が大きくなり、金属板と同様に高感度反射測
定が可能となる。
The single crystal silicon plate serving as the substrate 5 emits infrared light at approximately 50%
As shown in FIG. 1, it is possible to irradiate infrared light from above the thin film 2 and perform measurement using a transmission method. In addition, since the difference in refractive index between Fi[2 and the base FiS is large, the reflectance at the interface between the thin film 2 and the single crystal silicon plate increases as shown in Figure 2, resulting in a high reflectance similar to that of the metal plate. Sensitive reflection measurement becomes possible.

第3図は結晶シリコン板の上に試料物質として膜厚が5
40人の酸化シリコン(Sioi)を形成した場合にお
ける高感度反射スペクトルと透過スペクトルの反射率ま
たは透過率を示した線図である。これらのデータはフー
リエ変換型赤外分光計を用ll″−高域度高域側反射測
定る入射角は75″であり、測定は反射法、透過法共に
ダブルビームツノ式で参照光側に結晶シリコン板を入れ
、Sio、の膜厚はエリプソメータで測定した。その結
果、透過スペクトルは臭化カリウム板上に5io!膜を
形成した場合のスペクトルとほぼ同じであり、一方高域
度反射スベクトルは、金属Al上にSio□膜を形成し
た場合の反射スペクトルに近似していることが分かった
。このようにして得られた両スペクトルは同一の試料か
ら得られたものであるため両者の差異は試料の違いや基
板の違いによるものではなく測定法の違いによるもので
ある。高感度反射スペクトルでみられる1240aa 
’は吸収は透過法ではみられないものであり、その吸収
強度は1000Å以下の膜厚では膜厚に対する比例性が
あり、(第4図参照)膜厚評価にも利用できる。
Figure 3 shows a film with a thickness of 5 mm as a sample material on a crystalline silicon plate.
FIG. 4 is a diagram showing the reflectance or transmittance of a high-sensitivity reflection spectrum and a transmission spectrum when 40 silicon oxides (Sioi) are formed. These data were measured using a Fourier transform infrared spectrometer at an angle of incidence of 75'' for reflection on the high-frequency side, and both the reflection method and the transmission method were measured using a double beam horn method on the reference light side. A crystalline silicon plate was inserted, and the film thickness of Sio was measured using an ellipsometer. As a result, the transmission spectrum was 5io! on the potassium bromide plate. It was found that the spectrum was almost the same as that when a film was formed, and the high-frequency reflection spectrum was found to be close to the reflection spectrum when a Sio□ film was formed on metal Al. Since both spectra obtained in this way were obtained from the same sample, the difference between them is not due to a difference in the sample or substrate, but to a difference in the measurement method. 1240aa seen in high sensitivity reflection spectrum
Absorption cannot be observed in the transmission method, and the absorption intensity is proportional to the film thickness for films with a thickness of 1000 Å or less (see Fig. 4), and can also be used for film thickness evaluation.

第5図は試料物質として膜厚が1010人のフッ化カー
ボンオイルを結晶シリコン板の上に塗布した場合の高感
度反射スペクトルと通過スペクトルを示したものである
。これらのデータを作成するにあたっては赤外分光計と
してフーリエ変換型赤外分光計を用い、高感度反射測定
は入射角75°で行ったにの測定結果から明らかなよう
に、透過スペクトルは臭素カリウム結晶板の上のフン化
カーボンオイルの透過スペクトルとほぼ同じであり、高
感度反射スペクトルは、アルミニウムの基板の上のフン
化カーボンオイルの反射スペクトルとほぼ同じであるこ
とが分かった。i3過スペクトルと高感度反射スペクト
ルでは差異があるが、これらは同一の試料から得られた
ものであり、試料の違いや基板の違いによるものではな
い。
FIG. 5 shows a high-sensitivity reflection spectrum and a transmission spectrum when fluorinated carbon oil having a film thickness of 1010 mm is coated on a crystalline silicon plate as a sample material. In creating these data, a Fourier transform infrared spectrometer was used as the infrared spectrometer, and the high-sensitivity reflectance measurements were performed at an incident angle of 75°.As is clear from the measurement results, the transmission spectrum is similar to potassium bromine. It was found that the transmission spectrum of fluorinated carbon oil on a crystal plate is almost the same, and the high-sensitivity reflection spectrum is almost the same as the reflection spectrum of fluorinated carbon oil on an aluminum substrate. Although there is a difference between the i3 hyperspectrum and the high-sensitivity reflection spectrum, these are obtained from the same sample and are not due to differences in the sample or substrate.

このように結晶シリコン板上に試料勧賞を形成または塗
布することによりほとんどの有機物と多くの無機物につ
いて透過スペクトルと高感度反射スペクトルの測定が可
能となる。
By forming or coating a sample sample on a crystalline silicon plate in this way, it becomes possible to measure the transmission spectra and highly sensitive reflection spectra of most organic substances and many inorganic substances.

高感度反射スペクトルは100人〜1000人位の膜厚
の範囲でスペクトルの形がほぼ同じであるため、この範
囲の膜厚のものを結晶シリコン板上に形成または塗布し
てそれを標準試料として、その透過スペクトルおよび高
感度反射スペクトルを標準スペクトルとして蓄積すれば
、未知の薄膜の高感度反射スペクトルの同定に役立てる
ことができると共に高感度反射スペクトルと透過スペク
トルの違いに悩まされることがなくなり、高感度反射ス
ペクトルが非常に利用し易いものになる。
Since the shape of the high-sensitivity reflection spectrum is almost the same in the film thickness range of 100 to 1000 films, a film with a film thickness in this range is formed or coated on a crystalline silicon plate and used as a standard sample. If the transmission spectrum and high-sensitivity reflection spectrum are accumulated as standard spectra, it will be useful for identifying the high-sensitivity reflection spectrum of unknown thin films, and you will no longer be troubled by the difference between the high-sensitivity reflection spectrum and the transmission spectrum. The sensitivity reflection spectrum becomes very accessible.

なお、前記実施例で使用した結晶シリコン基板に代えて
、同じように赤外線を透過し屈折率の大きな結晶ゲルマ
ニウム板を使用することもできる。
Note that instead of the crystalline silicon substrate used in the above embodiment, a crystalline germanium plate that similarly transmits infrared rays and has a large refractive index can also be used.

また、本発明による方法は結晶シリコン板上の二成分以
上の薄膜や2N以上の多種構造の試料についても使用で
きる。特に物質Aと物1tBとを結晶シリコン板上に二
層形成し、透過スペクトルと反射スペクトルとを測定す
ることにより物質Aと物質Bとの相互作用を分子配向な
どの観点から調べることができる。
Furthermore, the method according to the present invention can also be used for thin films of two or more components on crystalline silicon plates and samples of various structures of 2N or more. In particular, by forming two layers of substance A and substance 1tB on a crystalline silicon plate and measuring the transmission spectrum and reflection spectrum, the interaction between substance A and substance B can be investigated from the viewpoint of molecular orientation, etc.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、屈折率が大きくかつ
赤外線を透過する結晶シリコン仮などの基板の上に試料
の薄膜または薄層を形成するようにしたから、赤外透過
スペクトルと赤外反射スペクトルを同一の試料について
測定でき両スペクトルの比較を試料の違いや基板の違い
にわずられされることなく行うことができる。したがっ
て、高感度反射スペクトルのデータを標準データとして
取得し蓄積すれば高感度反射スペクトルにより物質の同
定を行う上で便利となり高感度反射スペクトルが非常に
利用しやす(なる。
As described above, according to the present invention, a thin film or thin layer of the sample is formed on a substrate such as crystalline silicon which has a large refractive index and transmits infrared rays. Reflection spectra can be measured for the same sample, and both spectra can be compared without being affected by differences in samples or substrates. Therefore, if high-sensitivity reflectance spectra data is acquired and stored as standard data, it will be convenient to identify substances using high-sensitivity reflectance spectra, and high-sensitivity reflectance spectra will be extremely easy to use.

【図面の簡単な説明】 第1図は本発明による赤外透過測定法を示した説明図、
第2図は本発明による赤外高感度反射測定法を示した説
明図、第3図は波長と透過率または反射率との関係を示
した線図、第4図は膜厚と吸収ピーク強度との関係を示
した線図、第5図は波長と透過率または反射率との関係
を示した線図、第6図は従来の透過法を示した説明図、
第7図は従来の反射測定法を示した説明図である。 2・・・試料、3・・・赤外光、5・・・基板箋9困 JL歇  CDrrrす
[Brief Description of the Drawings] Figure 1 is an explanatory diagram showing the infrared transmission measurement method according to the present invention;
Fig. 2 is an explanatory diagram showing the highly sensitive infrared reflectance measurement method according to the present invention, Fig. 3 is a diagram showing the relationship between wavelength and transmittance or reflectance, and Fig. 4 is a diagram showing the relationship between film thickness and absorption peak intensity. Figure 5 is a diagram showing the relationship between wavelength and transmittance or reflectance, Figure 6 is an explanatory diagram showing the conventional transmission method,
FIG. 7 is an explanatory diagram showing a conventional reflection measurement method. 2...Sample, 3...Infrared light, 5...Substrate paper

Claims (3)

【特許請求の範囲】[Claims] (1)試料の屈折率よりも大きな屈折率をもち赤外光を
透過する基板の上に試料の薄膜、薄層または吸着物質を
付着させ、反射法と透過法の両方法で赤外吸収スペクト
ルを測定するようにしたことを特徴とする赤外吸収分析
法。
(1) A thin film, thin layer, or adsorbed substance of the sample is attached onto a substrate that has a refractive index larger than that of the sample and transmits infrared light, and the infrared absorption spectrum is measured using both the reflection method and the transmission method. An infrared absorption analysis method characterized by measuring.
(2)特許請求の範囲第1項に記載の赤外吸収分析法に
おいて、上記基板は単結晶シリコン板によって構成した
ことを特徴とする赤外吸収分析法。
(2) The infrared absorption analysis method according to claim 1, wherein the substrate is formed of a single crystal silicon plate.
(3)特許請求の範囲第1項に記載の赤外吸収分析法に
おいて、上記基板は単結晶ゲルマニウム板で構成したこ
とを特徴とする赤外吸収分析法。
(3) The infrared absorption analysis method according to claim 1, wherein the substrate is made of a single crystal germanium plate.
JP59200502A 1984-09-27 1984-09-27 Infrared absorption analysis method Pending JPS6179142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200502A JPS6179142A (en) 1984-09-27 1984-09-27 Infrared absorption analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200502A JPS6179142A (en) 1984-09-27 1984-09-27 Infrared absorption analysis method

Publications (1)

Publication Number Publication Date
JPS6179142A true JPS6179142A (en) 1986-04-22

Family

ID=16425380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200502A Pending JPS6179142A (en) 1984-09-27 1984-09-27 Infrared absorption analysis method

Country Status (1)

Country Link
JP (1) JPS6179142A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823009A (en) * 1986-04-14 1989-04-18 Massachusetts Institute Of Technology Ir compatible deposition surface for liquid chromatography
US5334837A (en) * 1991-10-05 1994-08-02 Horiba, Ltd. Micro analytical method, sampling plate used in same, method of detecting organic compound by use of said micro analytical method, apparatus for same and method of dividing for micro-liquid flow
US5595916A (en) * 1993-03-29 1997-01-21 Fujitsu Limited Silicon oxide film evaluation method
WO2000012980A1 (en) * 1998-08-27 2000-03-09 Northrop Grumman Corporation Method of spectral nondestructive evaluation
JP2005249674A (en) * 2004-03-05 2005-09-15 Jasco Corp Reflection measuring instrument of high sensitivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823009A (en) * 1986-04-14 1989-04-18 Massachusetts Institute Of Technology Ir compatible deposition surface for liquid chromatography
US5334837A (en) * 1991-10-05 1994-08-02 Horiba, Ltd. Micro analytical method, sampling plate used in same, method of detecting organic compound by use of said micro analytical method, apparatus for same and method of dividing for micro-liquid flow
US5595916A (en) * 1993-03-29 1997-01-21 Fujitsu Limited Silicon oxide film evaluation method
WO2000012980A1 (en) * 1998-08-27 2000-03-09 Northrop Grumman Corporation Method of spectral nondestructive evaluation
JP2005249674A (en) * 2004-03-05 2005-09-15 Jasco Corp Reflection measuring instrument of high sensitivity

Similar Documents

Publication Publication Date Title
US6421128B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges
US5991488A (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
US6330387B1 (en) Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges
Johs et al. Optical analysis of complex multilayer structures using multiple data types
JP2000504829A (en) Analysis method and analyzer
JP3790628B2 (en) Method and apparatus for measuring film thickness and optical constant
Ehler et al. Surface plasmon studies of thin silver/gold bimetallic films
JP2002357543A (en) Analyzing element and method for analyzing sample using the same
Arwin et al. A reflectance method for quantification of immunological reactions on surfaces
Nyamekye et al. Experimental analysis of waveguide-coupled surface-plasmon-polariton cone properties
JPS6179142A (en) Infrared absorption analysis method
EP0620916A1 (en) Analytical device with light scattering
US20190056389A1 (en) System and method for determining the presence or absence of adsorbed biomolecules or biomolecular structures on a surface
JPH0769215B2 (en) Spectroscopic analysis method for thin film samples
US6738139B1 (en) Method of determining bulk refractive indicies of fluids from thin films thereof
JPH0296639A (en) Method and jig for measuring infrared absorption spectrum
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JPS6287829A (en) Specimen for infrared absorption analysis
Van Gent et al. Chromoionophores in optical ion sensors
JP2917938B2 (en) Polarization analysis method and polarization analyzer
JPH0783824A (en) Method and device for analysis by attenuated total reflection
JP2522480B2 (en) Refractive index measurement method
JP2001116518A (en) Method and instrument for measuring film thickness
JP3321886B2 (en) Attenuated total reflection thin film evaluation system