JP2917938B2 - Polarization analysis method and polarization analyzer - Google Patents

Polarization analysis method and polarization analyzer

Info

Publication number
JP2917938B2
JP2917938B2 JP29853096A JP29853096A JP2917938B2 JP 2917938 B2 JP2917938 B2 JP 2917938B2 JP 29853096 A JP29853096 A JP 29853096A JP 29853096 A JP29853096 A JP 29853096A JP 2917938 B2 JP2917938 B2 JP 2917938B2
Authority
JP
Japan
Prior art keywords
component
light
polarized
polarized component
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29853096A
Other languages
Japanese (ja)
Other versions
JPH10142060A (en
Inventor
一郎 廣沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP29853096A priority Critical patent/JP2917938B2/en
Publication of JPH10142060A publication Critical patent/JPH10142060A/en
Application granted granted Critical
Publication of JP2917938B2 publication Critical patent/JP2917938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料または試料表
面に付着した膜の屈折率、吸収率、複屈折性および膜厚
等を同定する偏光解析方法および偏光解析装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization analysis method and apparatus for identifying the refractive index, absorptivity, birefringence, film thickness and the like of a sample or a film attached to the surface of the sample.

【0002】[0002]

【従来の技術】基板上の薄膜の屈折率や膜厚を、特定の
波長光の、P偏光成分に対するS偏光成分の振幅の反射
の比(振幅反射率比)を測定することによって決定する
ことが広く行われており、例えば、以下の文献に記述さ
れている。「木下、横田 応用物理34巻782ページ
1965年等」。
2. Description of the Related Art The refractive index and the thickness of a thin film on a substrate are determined by measuring the ratio of the reflection of the amplitude of the S-polarized component to the P-polarized component of a specific wavelength light (amplitude reflectance ratio). Is widely performed, and is described in, for example, the following literature. "Kinoshita, Yokota Applied Physics 34, 782, 1965, etc.".

【0003】振幅反射率比は、S偏光成分(試料面に平
行な振動成分)とP偏光成分(光の進行方向およびS偏
光成分に垂直な振動成分)の振幅比が等しい光を試料表
面に入射したときに発生する反射光の偏光状態を、該反
射光が回転する偏光子または位相子を通過したときの強
度を測定することにより決定される(回転検光子法また
は回転位相子法)。
The amplitude reflectance ratio is such that light having the same amplitude ratio between the S-polarized component (vibration component parallel to the sample surface) and the P-polarized component (vibration component perpendicular to the traveling direction of light and the S-polarized component) is applied to the sample surface. The state of polarization of the reflected light generated upon incidence is determined by measuring the intensity of the reflected light when passing through a rotating polarizer or phaser (rotating analyzer method or rotating phaser method).

【0004】振幅反射率比の値は膜の屈折率および膜厚
に依存するため、上記のような測定により求められた振
幅反射率比により、膜の屈折率と膜厚を決定することが
でき、例えば、以下の文献に記述されている。「アザ
ム、バサラ、エリプソメトリーアンド ポーラライズド
ライト ノースホーランド刊 R.M. Azzm and Bashar
a, Ellipsometry and Polarized light, North-Hollan
d」。
Since the value of the amplitude reflectance ratio depends on the refractive index and the film thickness of the film, the refractive index and the film thickness of the film can be determined from the amplitude reflectance ratio obtained by the above-described measurement. For example, it is described in the following literature. "RM Azzm and Bashar, published by Asam, Basara, Ellipsometry and Polarized Light North Holland
a, Ellipsometry and Polarized light, North-Hollan
d ".

【0005】上記の方法を発展させ、試料に複数の入射
角で光を入射したり、複数の波長の光を入射させる方法
により、多層膜の膜厚および屈折率を測定する方法や異
方性膜の屈折率や膜厚を測定する方法が提案され、以下
に示す各公報に開示されている。
By developing the above method, a method of measuring the thickness and refractive index of a multilayer film by a method of irradiating a sample with light at a plurality of incident angles or a plurality of wavelengths, Methods for measuring the refractive index and thickness of a film have been proposed and are disclosed in the following publications.

【0006】特開平07−208937号公報:「膜厚
および誘電率の測定装置」 特開平05−249030号公報:「偏光解析装置」 特開平05−005699号公報:「異方性薄膜の屈折
率および膜厚測定方法」 特開平04−361106号公報:「中間層測定方法」 特開平04−339204号公報:「薄膜測定方法」 特開平04−320904号公報:「薄膜の屈折率膜厚
測定方法」 上記各公報に述べられている偏光解析は、試料表面に測
定用の光を入射させ、その出射光の偏光状態の変化から
試料の物性に起因する位相差を示すΔと、振幅反射率比
を示すΨとを求め、これらの値から試料または試料表面
に付着した膜の屈折率、吸収率、複屈折性および膜厚等
を同定するものである。
JP-A-07-208937: "Measurement device for film thickness and dielectric constant" JP-A-05-249030: "Ellipsometer" JP-A-05-005699: "Refractive index of anisotropic thin film" JP-A-04-361106: "Intermediate layer measuring method" JP-A-04-339204: "Thin film measuring method" JP-A-04-320904: "Method of measuring refractive index and film thickness of thin film The polarization analysis described in each of the above publications involves measuring light incident on the sample surface, changing the polarization state of the emitted light to indicate a phase difference caused by physical properties of the sample, and an amplitude reflectance ratio. Is determined, and the refractive index, absorptance, birefringence, film thickness, and the like of the sample or the film attached to the sample surface are identified from these values.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特定の
波長についての屈折率を測定する際、試料によってはP
偏光成分の振幅反射率が極めて小さく、反射光が見かけ
上直線偏光に近くなる場合がある。このような場合、従
来法では反射光のS偏光成分とP偏光成分の位相差を決
定することが困難となり、試料の膜厚を正確に求めるこ
とができないという問題点がある。
However, when measuring the refractive index for a specific wavelength, depending on the sample, P
In some cases, the amplitude reflectance of the polarized light component is extremely small, and the reflected light is apparently close to linearly polarized light. In such a case, it is difficult to determine the phase difference between the S-polarized light component and the P-polarized light component of the reflected light by the conventional method, and there is a problem that the film thickness of the sample cannot be accurately obtained.

【0008】上記のような問題点は光の入射角が膜の偏
光角(Brewstar角)に近い場合に発生し、上述した全て
の従来技術において発生する。
The above problems occur when the incident angle of light is close to the polarization angle (Brewstar angle) of the film, and occur in all the above-mentioned prior arts.

【0009】本発明は上述したような従来の技術が有す
る問題点に鑑みてなされたものであって、上記課題を解
決し、試料の振幅反射率比(特に位相成分)を精度よく
測定して、薄膜の膜厚と屈折率を精度よく決定すること
が可能な方法と装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has been made to solve the above-mentioned problems and to accurately measure the amplitude reflectance ratio (particularly, phase component) of a sample. It is another object of the present invention to provide a method and apparatus capable of accurately determining the thickness and refractive index of a thin film.

【0010】[0010]

【課題を解決するための手段】本発明の偏光解析方法
は、偏光子により直線偏光化された光を試料表面に入射
させ、その出射光の偏光状態の変化から試料または試料
表面に付着した膜の屈折率、吸収率、複屈折性および膜
厚等を同定する偏光解析方法において、前記偏光子を第
1の振動方向に設定したときの出射光における、試料面
に平行な振動成分であるS偏光成分と光の進行方向およ
びS偏光成分に直交するP偏光成分との位相差が予め設
定された所定範囲以内であるかを確認し、S偏光成分と
P偏光成分の位相差が前記所定範囲内であることが確認
された場合には、偏光子を前記第1の振動方向に設定し
て測定を行ない、S偏光成分とP偏光成分の位相差が前
記所定範囲内にないことが確認された場合には、偏光子
を前記第1の振動方向よりもS偏光成分に対するP偏光
成分の割合が大きくなる第2の振動方向に設定して測定
を行なうことを特徴とする。
According to the ellipsometry method of the present invention, light linearly polarized by a polarizer is made incident on a sample surface, and a change in the polarization state of the emitted light is caused by a change in the polarization state of the sample or the film attached to the sample surface. In the polarization analysis method for identifying the refractive index, the absorptance, the birefringence, the film thickness, and the like, the vibration component S, which is a vibration component parallel to the sample surface, in the emitted light when the polarizer is set in the first vibration direction. It is checked whether the phase difference between the polarized light component and the traveling direction of light and the P polarized light component orthogonal to the S polarized light component is within a predetermined range, and the phase difference between the S polarized light component and the P polarized light component is within the predetermined range. When it is confirmed that the phase difference is within the range, the polarizer is set in the first vibration direction and measurement is performed, and it is confirmed that the phase difference between the S-polarized component and the P-polarized component is not within the predetermined range. In this case, the polarizer is moved to the first vibration mode. And performing measurement by setting the second vibration direction ratio of P-polarized component increases with respect to S-polarized light component than.

【0011】本発明の他の形態による偏光測定方法は、
偏光子により直線偏光化された光を試料表面に入射さ
せ、その出射光の偏光状態の変化から試料または試料表
面に付着した膜の屈折率、吸収率、複屈折性および膜厚
等を同定する偏光解析方法において、前記偏光子を第1
の振動方向に設定したときの出射光における、試料面に
平行な振動成分であるS偏光成分と光の進行方向および
S偏光成分に直交するP偏光成分との振幅反射率比が予
め定められた閾値以上であるかを確認し、S偏光成分と
P偏光成分の振幅反射率比が閾値以上であることが確認
された場合には、偏光子を前記第1の振動方向に設定し
て測定を行ない、S偏光成分とP偏光成分の振幅反射率
比が閾値よりも小さなことが確認された場合には、偏光
子を前記第1の振動方向よりもS偏光成分に対するP偏
光成分の割合が大きくなる第2の振動方向に設定して測
定を行なうことを特徴とする。
[0011] According to another aspect of the present invention, there is provided a method for measuring polarization.
Light that has been linearly polarized by a polarizer is incident on the sample surface, and the refractive index, absorptance, birefringence, film thickness, etc. of the sample or the film attached to the sample surface are identified from the change in the polarization state of the emitted light. In the ellipsometry, the polarizer may be a first polarizer.
The amplitude reflectance ratio of the S-polarized component, which is a vibration component parallel to the sample surface, to the traveling direction of light and the P-polarized component orthogonal to the S-polarized component in the emitted light when the vibration direction is set to be predetermined. It is checked whether it is equal to or more than the threshold value, and when it is confirmed that the amplitude reflectance ratio of the S-polarized component and the P-polarized component is equal to or more than the threshold value, the polarizer is set in the first vibration direction and the measurement is performed. When it is confirmed that the amplitude reflectance ratio of the S-polarized component and the P-polarized component is smaller than the threshold, the polarizer is set to have a larger ratio of the P-polarized component to the S-polarized component than the first vibration direction. The measurement is performed with the second vibration direction set.

【0012】本発明の偏光解析装置は、偏光子により直
線偏光化された光を試料表面に入射させ、その出射光を
測定して偏光状態の変化から試料または試料表面に付着
した膜の屈折率、吸収率、複屈折性および膜厚等を同定
する偏光解析装置において、予め設定される位相差の所
定範囲を記憶する記憶手段を備え、前記偏光子を含む光
学系の制御を行なうとともにその測定結果から偏光解析
を行ない、前記偏光子を第1の振動方向に設定したとき
の出射光における、試料面に平行な振動成分であるS偏
光成分と光の進行方向およびS偏光成分に直交するP偏
光成分との位相差が前記記憶手段に記憶される前記所定
範囲以内であるかを確認し、S偏光成分とP偏光成分の
位相差が所定範囲以内であることが確認された場合に
は、偏光子を前記第1の振動方向に設定して測定を行な
い、S偏光成分とP偏光成分の位相差が前記所定範囲に
ないことが確認された場合には、偏光子を前記第1の振
動方向よりもS偏光成分に対するP偏光成分の割合が大
きくなる第2の振動方向に設定して測定を行なう偏光制
御演算部を有することを特徴とする。
In the ellipsometer of the present invention, light linearly polarized by a polarizer is made incident on the surface of a sample, the emitted light is measured, and the refractive index of the sample or a film attached to the surface of the sample is measured based on a change in the polarization state. A polarization analyzer for identifying absorptivity, birefringence, film thickness, and the like, comprising storage means for storing a predetermined range of a preset phase difference, controlling an optical system including the polarizer and measuring the same. Polarization analysis is performed based on the results, and the S-polarized component, which is a vibration component parallel to the sample surface, and the P direction orthogonal to the light traveling direction and the S-polarized component in the emitted light when the polarizer is set in the first vibration direction. Check whether the phase difference between the polarization component is within the predetermined range stored in the storage means, if it is confirmed that the phase difference between the S polarization component and the P polarization component is within the predetermined range, Polarizer When the phase difference between the S-polarized light component and the P-polarized light component is not within the predetermined range, the polarizer is set to the S-polarized light component more than the first vibration direction. And a polarization control operation unit that performs measurement by setting the ratio in the second vibration direction in which the ratio of the P-polarized component with respect to is increased.

【0013】本発明の他の形態による偏光解析装置は、
偏光子により直線偏光化された光を試料表面に入射さ
せ、その出射光を測定して偏光状態の変化から試料また
は試料表面に付着した膜の屈折率、吸収率、複屈折性お
よび膜厚等を同定する偏光解析装置において、前記偏光
子を含む光学系の制御を行なうとともにその測定結果か
ら偏光解析を行ない、前記偏光子を第1の振動方向に設
定したときの出射光における、試料面に平行な振動成分
であるS偏光成分と光の進行方向およびS偏光成分に直
交するP偏光成分との振幅反射率比が予め定められた閾
値以上であるかを確認し、S偏光成分とP偏光成分の振
幅反射率比が閾値以上であることが確認された場合に
は、偏光子を前記第1の振動方向に設定して測定を行な
い、S偏光成分とP偏光成分の振幅反射率比が閾値より
も小さなことが確認された場合には、偏光子を前記第1
の振動方向よりもS偏光成分に対するP偏光成分の割合
が大きくなる第2の振動方向に設定して測定を行なう偏
光制御演算部を有することを特徴とする。
[0013] An ellipsometer according to another aspect of the present invention comprises:
The light linearly polarized by the polarizer is made incident on the sample surface, the emitted light is measured, and the change in the polarization state is used to determine the refractive index, absorption, birefringence, film thickness, etc. of the sample or the film attached to the sample surface. In the ellipsometer for identifying the, while controlling the optical system including the polarizer and perform a polarization analysis from the measurement result, in the emitted light when the polarizer is set in the first vibration direction, on the sample surface It is checked whether the amplitude reflectance ratio between the S-polarized component, which is a parallel vibration component, the traveling direction of light, and the P-polarized component orthogonal to the S-polarized component is equal to or greater than a predetermined threshold. When it is confirmed that the amplitude reflectance ratio of the component is equal to or larger than the threshold value, the polarizer is set in the first vibration direction and measurement is performed, and the amplitude reflectance ratio of the S-polarized component and the P-polarized component is determined. Confirmed to be smaller than threshold If the, the polarizer first
And a polarization control operation unit that performs measurement by setting the second vibration direction so that the ratio of the P-polarized component to the S-polarized component is larger than the vibration direction.

【0014】「作用」上記のように構成される本発明に
おいては、入射光の偏光状態を規定する偏光子の振動方
向の角度を調整することにより、例えば、S偏光成分に
対するP偏光成分の振幅比が同じ光と、P偏光成分がS
偏光成分よりも大きい光を入射して、それぞれの場合に
生じる反射光の偏光状態を回転検光子法または回転位相
子法で測定する。
In the present invention configured as described above, the amplitude of the P-polarized component with respect to the S-polarized component is adjusted by adjusting the angle of the oscillation direction of the polarizer that defines the polarization state of the incident light. Light with the same ratio and P-polarized light component
Light larger than the polarization component is incident, and the polarization state of the reflected light generated in each case is measured by a rotation analyzer method or a rotation phaser method.

【0015】偏光子の振動方向を7.5°に設定した場
合、P偏光成分のS偏光成分に対する振幅強度比は7.
59倍になる。なお、測定に適する入射光のS偏光成分
とP偏光成分は試料によって差があるため、まず、従来
法による測定を行い、P偏光成分の反射率が小さな場合
に偏光子を調整して入射光のP偏光成分を大きくして再
測定を行い、測定精度の向上をはかる。
When the oscillation direction of the polarizer is set to 7.5 °, the amplitude intensity ratio of the P-polarized component to the S-polarized component is 7.
59 times. Since the S-polarized light component and the P-polarized light component of the incident light suitable for the measurement differ depending on the sample, the measurement is first performed by the conventional method, and when the reflectance of the P-polarized light component is small, the polarizer is adjusted to adjust the incident light. The re-measurement is carried out by increasing the P-polarized light component to improve the measurement accuracy.

【0016】P偏光成分がS偏光成分よりも大きな光を
入射する場合、P偏光成分の振幅反射率が小さくても、
反射光は従来法ほど扁平な楕円偏光とはならないためS
偏光成分とP偏光成分の位相差の決定が容易になる。
In the case where light whose P-polarized component is larger than the S-polarized component is incident, even if the amplitude reflectance of the P-polarized component is small,
The reflected light is not as flat elliptically polarized light as the conventional method,
It is easy to determine the phase difference between the polarization component and the P polarization component.

【0017】S偏光成分とP偏光成分の振幅強度比が1
である光を入射した場合に生じる反射光のP偏光成分E
sおよびS偏光成分Epにより示される偏光状態を振幅
反射率Rs,Rpを用いて表すと、 Es=Rs・sin(ωt) Ep=Rp・sin(ωt+Δ) (Δは位相差を示す)となる。Rs》Rpの場合、XY
直交座標において(Es,Ep)の描く軌跡はΔの値に
関わらず、Y軸にほぼ沿った線分に近く、非常に扁平な
楕円となる。P偏光成分がS偏光成分に対してa倍の振
幅比の光を入射した場合には、 Es=Rs・sin(ωt) Ep=aRp・sin(ωt+Δ) となり、(Es,Ep)の軌跡は位相差Δに対する依存
性が顕著になった楕円となるため、位相差Δの測定精度
の向上が見込まれる。
When the amplitude intensity ratio between the S-polarized component and the P-polarized component is 1
P component of the reflected light generated when the incident light
When the polarization state represented by the s and S polarization components Ep is represented by using the amplitude reflectances Rs and Rp, the following expression is obtained: Ep = Rs · sin (ωt) Ep = Rp · sin (ωt + Δ) (Δ indicates a phase difference) . In the case of Rs >> Rp, XY
In the rectangular coordinates, the locus drawn by (Es, Ep) is very close to a line segment substantially along the Y axis regardless of the value of Δ, and is a very flat ellipse. When the P-polarized component enters light having an amplitude ratio a times that of the S-polarized component, Es = Rs · sin (ωt) Ep = aRp · sin (ωt + Δ), and the locus of (Es, Ep) is Since the ellipse becomes remarkably dependent on the phase difference Δ, the measurement accuracy of the phase difference Δ is expected to be improved.

【0018】図1および図2のそれぞれは、反射光の偏
光状態を回転検光子法で測定するときの検光子を透過す
る光の強度を示す図である。例えば、Rp/Rs=0.
07である反射光の偏光状態を測定する場合、計算によ
り求められる検光子を透過する光の強度は、図1の実線
により示されるΔ=2°の場合と、破線により示される
Δ=94°の場合との差が小さく、位相差Δの測定精度
が悪いことが予想される。
FIGS. 1 and 2 show the intensity of light transmitted through the analyzer when the polarization state of the reflected light is measured by the rotation analyzer method. For example, Rp / Rs = 0.
In the case of measuring the polarization state of the reflected light which is 07, the intensity of the light transmitted through the analyzer obtained by the calculation is as follows: Δ = 2 ° indicated by the solid line in FIG. 1 and Δ = 94 ° indicated by the broken line. It is expected that the difference from the above case is small and the measurement accuracy of the phase difference Δ is poor.

【0019】上記のいずれの場合も反射光は直線偏光に
近いため、検光子の角度が0°または180°の近傍で
透過光強度がほぼ0になる。
In any of the above cases, since the reflected light is close to linearly polarized light, the transmitted light intensity becomes almost zero when the angle of the analyzer is near 0 ° or 180 °.

【0020】一方、偏光子の振動方向を例えば7.5°
の向きに設定すると、P偏光成分の振幅はS偏光成分の
7.59倍となり、図2に示すようにΔ=2°の場合
(実線)と94°の場合(破線)の差が大きくなり、位
相差Δをより正確に測定することができる。
On the other hand, the vibration direction of the polarizer is set to, for example, 7.5 °.
In this case, the amplitude of the P-polarized light component is 7.59 times that of the S-polarized light component, and the difference between Δ = 2 ° (solid line) and 94 ° (dashed line) increases as shown in FIG. , The phase difference Δ can be measured more accurately.

【0021】[0021]

【発明の実施の形態】次に、本発明の実施例について図
面を参照して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0022】実施例1 図3は本発明による偏光解析装置の一実施例の光学的構
成を示す図である。本実施例は、回転検光子法を用いた
ものであり、1mWのHe−Neレーザーである光源
1、偏光子2、1/4波長板3、試料4、検光子5、光電
子増倍管にプリアンプと直線増幅器とを組み合わせた光
検出器6から構成されている。
Embodiment 1 FIG. 3 is a diagram showing an optical configuration of an embodiment of the polarization analyzer according to the present invention. In this embodiment, a rotating analyzer method is used, and a light source 1, a polarizer 2, a quarter-wave plate 3, a sample 4, an analyzer 5, and a photomultiplier tube, which are 1 mW He-Ne lasers, are used. It comprises a photodetector 6 combining a preamplifier and a linear amplifier.

【0023】図示される光学系は、光源1から出射され
た光が偏光子2および1/4波長板3を通過し、試料4に
て反射された後に検光子5を通過して検出器6に入射す
るように構成されている。
In the illustrated optical system, light emitted from a light source 1 passes through a polarizer 2 and a quarter-wave plate 3, is reflected by a sample 4, passes through an analyzer 5, and passes through a detector 6. It is configured to be incident on.

【0024】本実施例は、1/4波長板3または検光子5
を回転させて測定を行なうものであり(回転位相子法ま
たは回転検光子法)、偏光子2を通過した後の光が測定
光となる。
In this embodiment, a quarter-wave plate 3 or an analyzer 5
Is rotated (rotational phase shifter method or rotation analyzer method), and the light after passing through the polarizer 2 becomes the measurement light.

【0025】Δ,Ψの測定時には、偏光子2と1/4波長
板3を所定の方位に設定して試料に入射される光を円偏
光光や楕円偏光光とし、検光子5または1/4波長板3の
いずれかを回転させたときの検出器6の出力強度変化か
らΔ,Ψを変数の関数として表されるフーリエ係数を求
め、これを解いてΔ,Ψを算出する。
At the time of measurement of Δ and Ψ, the polarizer 2 and the quarter-wave plate 3 are set in a predetermined direction, and the light incident on the sample is made into circularly polarized light or elliptically polarized light. From the change in the output intensity of the detector 6 when any one of the four-wavelength plates 3 is rotated, a Fourier coefficient that expresses Δ and 関 数 as a function of a variable is obtained, and this is solved to calculate Δ and Ψ.

【0026】本実施例においては、入射光の偏光状態は
偏光子2の振動方向を調整することで決定した。
In the present embodiment, the polarization state of the incident light is determined by adjusting the vibration direction of the polarizer 2.

【0027】上記の装置を用いて、ガラス基板(コーニ
ング社製7059)上にCVD法によって堆積させたS
iO2膜の膜厚と屈折率の測定を入射角55°で行っ
た。
Using the above apparatus, S deposited on a glass substrate (Corning 7059) by a CVD method.
The thickness and refractive index of the iO 2 film were measured at an incident angle of 55 °.

【0028】図4は上記のような試料についての比較例
としての測定結果を示す図であり、検光子を通過した光
の強度を従来法により測定した結果を示す図である。
FIG. 4 is a view showing a measurement result as a comparative example of the sample as described above, and is a view showing a result of measuring the intensity of light passing through the analyzer by a conventional method.

【0029】検光子角度が0°および180°近傍で透
過光強度がほぼ0になっているので、この試料の振幅反
射率比Rp/Rsが小さく、位相差成分の測定精度が悪
いことが予想される。
Since the transmitted light intensity is almost 0 near the analyzer angles of 0 ° and 180 °, it is expected that the amplitude reflectance ratio Rp / Rs of this sample is small and the measurement accuracy of the phase difference component is poor. Is done.

【0030】一方、偏光子の振動方向を7.5°とし
て、S偏光成分のP偏光成分に対する振幅比が7.59
である光を試料に入射した際に生じる反射光が検光子を
通過すると、検光子を通過した光の強度は図5に示すも
のとなる。反射光が楕円偏光であることが明らかであ
る。この測定結果からRp/Rs=0.07、Δ=9
2.04°が得られた。さらに、堆積した膜は膜厚6
4.1nm、屈折率1.37と計算された。
On the other hand, when the oscillation direction of the polarizer is 7.5 °, the amplitude ratio of the S-polarized component to the P-polarized component is 7.59.
When the reflected light generated when the light is incident on the sample passes through the analyzer, the intensity of the light passing through the analyzer is as shown in FIG. It is clear that the reflected light is elliptically polarized light. From this measurement result, Rp / Rs = 0.07, Δ = 9
2.04 ° was obtained. Further, the deposited film has a thickness of 6
The calculated value was 4.1 nm and the refractive index was 1.37.

【0031】実施例2 膜表面を布でこすること(ラビング処理)によって表面
近傍の分子を配向させたガラス基板上のポリイミド膜の
光学的異方性を入射角60°で測定した。膜が光学的異
方性を有する場合は反射光の偏光状態の入射方位依存性
が表れる。
Example 2 The optical anisotropy of a polyimide film on a glass substrate in which molecules near the surface were oriented by rubbing the film surface with a cloth (rubbing treatment) was measured at an incident angle of 60 °. In the case where the film has optical anisotropy, the polarization direction of the reflected light depends on the incident direction.

【0032】試料を以下の手順により作製した。まず、
ポリイミド原料液の日立化成社製のLQ120−T03
を、一辺150mmの正方形のコーニング社製7059
ガラスの表面にスピンコート装置を用いて塗布した後、
250℃で2時間加熱による焼成を行った。
A sample was prepared according to the following procedure. First,
LQ120-T03 manufactured by Hitachi Chemical Co., Ltd.
Is a square Corning 7059 with a side of 150 mm.
After applying to the surface of the glass using a spin coater,
Firing by heating at 250 ° C. for 2 hours was performed.

【0033】次に、半径40mmのバフ布ローラを用い
て、布の押込み長さ0.4mm、回転数200rpm、
移動速度20mm/sで5回のラビングを行った。光学
的異方性の測定は光の試料への入射角を常に60°と
し、様々な入射方位で測定を行うために試料を10°間
隔で面内回転させてそれぞれの方位で反射光の偏光状態
を測定した。
Next, using a buff cloth roller having a radius of 40 mm, the cloth was pushed in at a length of 0.4 mm, the number of rotations was 200 rpm,
Rubbing was performed 5 times at a moving speed of 20 mm / s. In the measurement of optical anisotropy, the incident angle of light to the sample is always 60 °, and the sample is rotated in the plane at 10 ° intervals to perform measurement in various incident directions, and the polarization of reflected light in each direction is measured. The condition was measured.

【0034】図6は上記のようにして作製した試料につ
いて、比較例としての測定結果を示す図であり、従来法
のように入射光のS偏光成分とP偏光成分の振幅強度比
を1:1にして測定した反射光の位相差Δの入射方位依
存性を示す図である。
FIG. 6 is a diagram showing the measurement results as a comparative example of the sample manufactured as described above, and the amplitude intensity ratio of the S-polarized light component and the P-polarized light component of the incident light is set to 1: FIG. 4 is a diagram showing the incident azimuth dependence of the phase difference Δ of the reflected light measured at 1;

【0035】振幅反射率比Rp/Rsが0.034と極
く小さいために位相差Δを正確に測定することができ
ず、反射光の入射方位依存性が明らかではない。
Since the amplitude reflectance ratio Rp / Rs is as small as 0.034, the phase difference Δ cannot be measured accurately, and the incident azimuth dependence of the reflected light is not clear.

【0036】一方、偏光子の振動方向を7.5°にして
S偏光成分のP偏光成分に対する振幅比が7.59であ
る光を用いて測定した結果は図7に示すように位相差Δ
に明瞭な異方性が見られた。
On the other hand, when the vibration direction of the polarizer was set to 7.5 ° and the amplitude ratio of the S-polarized light component to the P-polarized light component was measured to be 7.59, the result of measurement was as shown in FIG.
A clear anisotropy was observed.

【0037】図8は、図3に光学系が示された偏光解析
装置の制御系の構成を示すブロック図である。
FIG. 8 is a block diagram showing a configuration of a control system of the ellipsometer in which the optical system is shown in FIG.

【0038】本実施例の制御は、制御演算部91により
行なわれる。制御演算部91は、装置動作の制御を行な
うものであり、装置利用者から不図示の入力装置を介し
て入力される測定を行なう際に用いられる各種パラメー
タを記憶する記憶手段(不図示)を備え該入力内容およ
び光検出器6からの測定信号に基づいて偏光子駆動機構
93、1/4波長板94および検光子駆動機構95をそれ
ぞれ介して偏光子2、1/4波長板3および検光子5の回
転状態を制御し、また、Δ,Ψを求めて、試料または試
料表面に付着した膜の屈折率、吸収率、複屈折性および
膜厚等を同定し、表示部92に表示させる。
The control of this embodiment is performed by the control calculation section 91. The control operation unit 91 controls the operation of the apparatus, and includes a storage unit (not shown) for storing various parameters used when performing a measurement input from an apparatus user via an input device (not shown). Based on the input contents and the measurement signal from the photodetector 6, the polarizer 2, the / 4 wavelength plate 3, and the detector are respectively transmitted through the polarizer driving mechanism 93, the / 4 wavelength plate 94, and the analyzer driving mechanism 95. The rotation state of the photon 5 is controlled, and Δ and Ψ are determined to identify the refractive index, the absorptivity, the birefringence, the film thickness, and the like of the sample or the film attached to the sample surface, and display them on the display unit 92. .

【0039】図9は制御演算部91の制御動作を示すフ
ローチャートであり、以下に図9を参照して制御動作に
ついて説明する。
FIG. 9 is a flowchart showing the control operation of the control calculation section 91. The control operation will be described below with reference to FIG.

【0040】図9に示される制御は、位相差Δの値に応
じて測定光の変更が行なわれる。制御演算部91は測定
動作が開始されると、偏光子2の通過光がS偏光成分と
P偏光成分の比が等しいものとなるように偏光子駆動機
構93を介して偏光子2を制御し、この状態で1/4波長
板94または検光子駆動機構95をそれぞれ介して1/4
波長板3または検光子5を回転させて測定を行ないΔ,
Ψを求める(ステップS901)。
In the control shown in FIG. 9, the measurement light is changed according to the value of the phase difference Δ. When the measurement operation is started, the control operation unit 91 controls the polarizer 2 via the polarizer driving mechanism 93 such that the ratio of the S-polarized light component to the P-polarized light component is equal for the light passing through the polarizer 2. In this state, the 波長 wavelength plate 94 or the analyzer driving mechanism 95 is 1
The measurement is performed by rotating the wave plate 3 or the analyzer 5 and Δ,
Ψ is obtained (step S901).

【0041】次に、ステップS901にて求めたΔが予
め装置利用者により入力されている位相差に対して所定
範囲内であるかを確認する(ステップS902)。ここ
で、装置利用者により入力される内容としては、被測定
物である試料または試料上に成長した膜の材質および膜
厚により予想される位相差が入力されるものとする。
Next, it is confirmed whether or not Δ obtained in step S901 is within a predetermined range with respect to the phase difference previously input by the apparatus user (step S902). Here, as the contents input by the user of the apparatus, it is assumed that a phase difference expected according to the material and thickness of the sample to be measured or the film grown on the sample is input.

【0042】Δが所定範囲内である場合にはステップS
901にて求めたΔ,Ψにより試料または試料表面に付
着した膜の屈折率、吸収率、複屈折性および膜厚等を同
定し(ステップS903)、これを表示して(ステップ
S905)終了する。
If Δ is within the predetermined range, step S
The refractive index, absorptance, birefringence, film thickness, etc. of the sample or the film attached to the sample surface are identified by Δ and 求 め obtained in 901 (Step S903), and these are displayed (Step S905) and the processing is ended. .

【0043】また、ステップS902にてΔが所定範囲
にないことが確認された場合には、偏光子の振動方向を
7.5°として、S偏光成分のP偏光成分に対する振幅
比が7.59である測定光に変更したうえで、1/4波長
板3または検光子5を回転させて測定を行ないΔ,Ψを
求め、試料または試料表面に付着した膜の屈折率、吸収
率、複屈折性および膜厚等を同定し(ステップS90
4)、これを表示して(ステップS905)終了する。
If it is confirmed in step S902 that Δ is not within the predetermined range, the oscillation direction of the polarizer is set to 7.5 °, and the amplitude ratio of the S-polarized component to the P-polarized component is set to 7.59. After the measurement light is changed, the quarter-wave plate 3 or the analyzer 5 is rotated to perform measurement, and Δ and Ψ are obtained, and the refractive index, absorptance, and birefringence of the sample or the film attached to the sample surface are determined. The properties and the film thickness are identified (step S90).
4), this is displayed (step S905), and the process ends.

【0044】なお、測定光の変更は、判断基準となるΔ
の範囲は±0.5゜程度とすることが望ましく、±0.
05゜程度とすることがより望ましい。このような場合
に測定光のP偏光成分を大きくすることにより、反射光
の変更状態を精度よく測定することができる。
It should be noted that the change of the measuring light is determined by Δ
Is preferably about ± 0.5 °, and ± 0.5 °.
More preferably, it is about 05 °. In such a case, by changing the P-polarized light component of the measurement light, the changed state of the reflected light can be accurately measured.

【0045】また、上記の説明においては、装置利用者
が入力した位相差に対して所定範囲であるかを確認する
ものとして説明したが、装置利用者が位相差の範囲を直
接入力するものとしてもよく、このように構成してもよ
い。
In the above description, it has been described that the phase difference input by the device user is confirmed to be within a predetermined range. However, it is assumed that the device user directly inputs the range of the phase difference. Alternatively, such a configuration may be adopted.

【0046】以上のような制御が行なわれる本実施例に
おいては、膜の屈折率、吸収率、複屈折性および膜厚等
を同定するために直接関係するΔの値に応じて測定光が
変更されるため、測定精度を向上することができる。
In this embodiment in which the above control is performed, the measurement light is changed according to the value of Δ which is directly related to identify the refractive index, absorptance, birefringence, film thickness, etc. of the film. Therefore, measurement accuracy can be improved.

【0047】図10は制御演算部91の他の制御動作を
示すフローチャートであり、以下に図10を参照して他
の制御動作について説明する。
FIG. 10 is a flowchart showing another control operation of the control operation section 91. The other control operation will be described below with reference to FIG.

【0048】制御演算部91は測定動作が開始される
と、偏光子2の通過光がS偏光成分とP偏光成分の比が
等しいものとなるように偏光子駆動機構93を介して偏
光子2を制御し、この状態でP変更成分のΨを求める
(ステップS1001)。
When the measurement operation is started, the control operation section 91 controls the polarizer 2 via the polarizer driving mechanism 93 so that the light passing through the polarizer 2 has the same ratio between the S-polarized component and the P-polarized component. Is controlled, and in this state, Ψ of the P change component is obtained (step S1001).

【0049】次に、ステップS1001にて求めたΨが
予め定められた値(閾値)以上であるかを確認する(ス
テップS1002)。
Next, it is checked whether Ψ obtained in step S1001 is equal to or larger than a predetermined value (threshold) (step S1002).

【0050】Ψが所定値以上である場合には、S偏光成
分とP偏光成分の比が等しい測定光として1/4波長板9
4または検光子駆動機構95をそれぞれ介して1/4波長
板3または検光子5を回転させて測定を行ないΔ,Ψを
求め、試料または試料表面に付着した膜の屈折率、吸収
率、複屈折性および膜厚等を同定し(ステップS100
3)、これを表示して(ステップS1005)終了す
る。
If Ψ is equal to or larger than a predetermined value, the measurement light having the same ratio of the S-polarized light component to the P-polarized light
The ま た は wavelength plate 3 or the analyzer 5 is rotated through the analyzer 4 or the analyzer driving mechanism 95, respectively, and measurement is performed to obtain Δ and Ψ. The refractivity and the film thickness are identified (step S100
3) This is displayed (step S1005), and the processing ends.

【0051】また、ステップS1002にて反射率比R
pが所定値以上でないことが確認された場合には、偏光
子の振動方向を7.5°として、S偏光成分のP偏光成
分に対する振幅比が7.59である測定光に変更したう
えで、1/4波長板3または検光子5を回転させて測定を
行ないΔ,Ψを求め、試料または試料表面に付着した膜
の屈折率、吸収率、複屈折性および膜厚等を同定し(ス
テップS1004)、これを表示して(ステップS10
05)終了する。
In step S1002, the reflectance ratio R
When it is confirmed that p is not equal to or more than the predetermined value, the oscillation direction of the polarizer is set to 7.5 °, and the measurement light is changed to the measurement light in which the amplitude ratio of the S-polarized component to the P-polarized component is 7.59. , The / 4 wavelength plate 3 or the analyzer 5 is rotated to perform measurement, and Δ and 同 定 are obtained, and the refractive index, absorptance, birefringence, film thickness and the like of the sample or the film attached to the sample surface are identified ( This is displayed (step S1004) and displayed (step S10).
05) End.

【0052】以上のような制御が行なわれる本実施例に
おいては、まず、Ψにより測定光の変更を行なうかが判
断され、この後、膜の屈折率、吸収率、複屈折性および
膜厚等を同定するために直接関係するΔの値が求められ
る。
In the present embodiment in which the above-described control is performed, it is first determined whether or not to change the measurement light by Δ, and thereafter, the refractive index, absorptance, birefringence, film thickness and the like of the film are determined. The value of Δ that is directly related is determined to identify.

【0053】ΔはΨから決定されるものであり、本実施
例においては、Δを求めることは測定光の変更に関する
ことなく一度しか行なわれない。このため、測定光の変
更を行なう場合にはΔを2度求めることが必要となる図
9のフローチャートに示した制御手順による実施例と本
実施例とを比較すると全体の測定動作を迅速に行なうこ
とができるものとなっている。
Δ is determined from Ψ, and in this embodiment, Δ is obtained only once without relating to a change in the measurement light. For this reason, when the measurement light is changed, Δ needs to be obtained twice. When the embodiment according to the control procedure shown in the flowchart of FIG. 9 is compared with this embodiment, the entire measurement operation is performed quickly. It is something that can be done.

【0054】なお、測定光の変更は、判断基準となるΨ
の値が5゜以下の場合に変更することが望ましく、10
゜以下の場合に変更することがより望ましい。このよう
な値の場合に測定光のP偏光成分を大きくすることによ
り、反射光の変更状態を精度よく測定することができ
る。
The change of the measuring light is a criterion for determination.
Is desirably changed when the value of is less than 5 °.
変 更 It is more desirable to change in the following cases. By increasing the P-polarized light component of the measurement light in such a case, the changed state of the reflected light can be accurately measured.

【0055】また、上記のいずれの実施例においても、
P偏光成分を大きくする際の偏光子の振動方向は7.5
°として説明したが、振動方向を0.6゜よりも小さく
した場合にはP偏光成分の割合があまり大きくならず、
また、12゜以上とするとP偏光成分の割合が大きくな
りすぎるため、その設定範囲は0.6゜〜12゜の範囲
とし、ΔまたはΨの値に応じて適宜調整すればよい。
In any of the above embodiments,
The vibration direction of the polarizer when increasing the P polarization component is 7.5.
Although described as °, when the vibration direction is smaller than 0.6 °, the ratio of the P-polarized light component is not so large,
If the angle is set to 12 ° or more, the ratio of the P-polarized light component becomes too large. Therefore, the setting range is set to a range of 0.6 ° to 12 ° and may be appropriately adjusted according to the value of Δ or Ψ.

【0056】[0056]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0057】請求項1に記載の方法または請求項3に記
載のものにおいては、P偏光成分とS偏光成分の位相差
が所定の範囲内にない場合には偏光子の角度を調整して
P偏光成分の強度をS偏光成分より大きくした測定光に
より測定がなされるため、従来法よりも精度よく反射光
の偏光状態(特に位相差成分)を測定することができ、
試料の膜厚や屈折率等を精度よく求めることができる効
果がある。
In the method according to the first aspect or the third aspect, when the phase difference between the P-polarized light component and the S-polarized light component is not within a predetermined range, the angle of the polarizer is adjusted to adjust the P-polarized light component. Since the measurement is performed using the measurement light in which the intensity of the polarization component is larger than that of the S polarization component, the polarization state (particularly, the phase difference component) of the reflected light can be measured more accurately than the conventional method.
There is an effect that the film thickness and the refractive index of the sample can be accurately obtained.

【0058】請求項2に記載の方法または請求項4に記
載のものにおいては、P偏光成分とS偏光成分の振幅反
射率比が所定の閾値よりも低い場合には偏光子の角度を
調整してP偏光成分の強度をS偏光成分より大きくした
測定光により測定がなされるため、従来法よりも精度よ
く反射光の偏光状態(特に位相差成分)を測定すること
ができ、試料の膜厚や屈折率等を精度よく求めることを
より迅速に行なうことができる効果がある。
In the method according to the second aspect or the fourth aspect, when the amplitude reflectance ratio of the P-polarized component and the S-polarized component is lower than a predetermined threshold, the angle of the polarizer is adjusted. Since the measurement is performed using measurement light in which the intensity of the P-polarized component is greater than that of the S-polarized component, the polarization state (particularly, the phase difference component) of the reflected light can be measured more accurately than in the conventional method, There is an effect that it is possible to more quickly obtain the refractive index and the refractive index with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料にS偏光成分とP偏光成分の振幅強度が等
しい光によって発生する反射光の検光子を透過する割合
の検光子角依存性を計算した結果を示す図であり、実線
はRp/Rs=0.07 Δ=2°の試料、破線はRp
/Rs=0.07 Δ=94°の試料に対しての計算結
果を示している。
FIG. 1 is a diagram showing a result of calculating an analyzer angle dependency of a ratio of a reflected light generated by light having the same amplitude intensity of an S-polarized component and a P-polarized component to a sample, and the solid line represents Rp. /Rs=0.07 Sample with Δ = 2 °, broken line indicates Rp
/Rs=0.07 shows the calculation results for the sample with Δ = 94 °.

【図2】試料にP偏光成分とS偏光成分の振幅強度比が
7.59の光を入射した際に発生する反射光の検光子を
透過する割合の検光子角依存性を計算した結果を示す図
であり、実線はRp/Rs=0.07 Δ=2°の試
料、破線はRp/Rs=0.07 Δ=94°の試料に
対しての計算結果を示している。
FIG. 2 shows a result of calculating an analyzer angle dependency of a ratio of a reflected light generated when a light having an amplitude intensity ratio of a P-polarized component and an S-polarized component of 7.59 is incident on a sample, transmitted through the analyzer. In the drawing, the solid line shows the calculation result for the sample with Rp / Rs = 0.07 Δ = 2 °, and the broken line shows the calculation result for the sample with Rp / Rs = 0.07 Δ = 94 °.

【図3】本発明による装置の一実施例の構成を示す図で
ある。
FIG. 3 is a diagram showing the configuration of an embodiment of the apparatus according to the present invention.

【図4】ガラス基板(コーニング7059)上にCVD
法にて堆積したSiO2膜に入射角55°でP偏光成分
のS偏光成分に対する振幅比が1である光を入射した際
に発生する反射光の検光子透過強度の検光子角度の依存
性の測定結果を示す図であり、横軸は検光子角度、縦軸
は光の検出強度である。
FIG. 4 shows CVD on a glass substrate (Corning 7059)
Dependence of analyzer angle on analyzer transmission intensity of reflected light generated when light with an amplitude ratio of P-polarized component to S-polarized component of 1 is incident on an SiO 2 film deposited by the method at an incident angle of 55 °. 5 is a diagram showing the measurement results, wherein the horizontal axis is the analyzer angle and the vertical axis is the light detection intensity.

【図5】ガラス基板(コーニング7059)上にCVD
法にて堆積したSiO2膜に入射角55°でP偏光成分
のS偏光成分に対する振幅比が7.59である光を入射
した際に発生する反射光の検光子透過強度の検光子角度
の依存性の測定結果を示す図であり、横軸は検光子角
度、縦軸は光の検出強度である。
FIG. 5: CVD on a glass substrate (Corning 7059)
Of the analyzer angle of the analyzer transmission intensity of the reflected light generated when light having an amplitude ratio of the P-polarized component to the S-polarized component of 7.59 is incident on the SiO 2 film deposited by the method at an incident angle of 55 °. It is a figure which shows the measurement result of dependence, a horizontal axis is an analyzer angle and a vertical axis is light detection intensity.

【図6】ガラス基板上のラビング処理したポリイミド薄
膜に入射角60°でP偏光成分のS偏光成分に対する振
幅比が1である光を入射した場合に発生する反射光の位
相差の入射方位依存性の測定結果を示す図であり、横軸
がラビング方向を0°とした場合の光の入射方位角、縦
軸は反射光の位相差の測定値である。
FIG. 6 shows the incident azimuth dependence of the phase difference of reflected light generated when light having an amplitude ratio of a P-polarized component to an S-polarized component of 1 is incident on a rubbed polyimide thin film on a glass substrate at an incident angle of 60 °. It is a figure which shows the measurement result of the characteristic, the horizontal axis is the incident azimuth of light when the rubbing direction is 0 °, and the vertical axis is the measured value of the phase difference of the reflected light.

【図7】ガラス基板上のラビング処理したポリイミド薄
膜に入射角60°でP偏光成分のS偏光成分に対する振
幅比が7.59である光を入射した場合に発生する反射
光の位相差の入射方位依存性の測定結果を示す図であ
り、横軸がラビング方向を0°とした場合の光の入射方
位角、縦軸は反射光の位相差の測定値である。
FIG. 7 shows the incidence of a phase difference of reflected light generated when light having an amplitude ratio of P-polarized component to S-polarized component of 7.59 is incident on a rubbed polyimide thin film on a glass substrate at an incident angle of 60 °. It is a figure which shows the measurement result of azimuth dependence, and a horizontal axis is an incident azimuth of light when the rubbing direction is 0 degree, and a vertical axis is a measured value of the phase difference of reflected light.

【図8】図3に示した実施例の制御系の構成を示すブロ
ック図である。
FIG. 8 is a block diagram showing a configuration of a control system of the embodiment shown in FIG.

【図9】図8に示した制御系の制御動作を示すフローチ
ャートである。
9 is a flowchart showing a control operation of the control system shown in FIG.

【図10】図8に示した制御系の他の制御動作を示すフ
ローチャートである。
10 is a flowchart showing another control operation of the control system shown in FIG.

【符号の説明】[Explanation of symbols]

1 光源 2 偏光子 3 1/4波長板 4 試料 5 検光子 6 光検出器 S901〜S905,S1101〜S1105 ステ
ップ
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarizer 3 1/4 wavelength plate 4 Sample 5 Analyzer 6 Photodetector S901-S905, S1101-S1105 Step

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01J 4/00 G01B 11/06 G01N 21/21 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01J 4/00 G01B 11/06 G01N 21/21

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 偏光子により直線偏光化された光を試料
表面に入射させ、その出射光の偏光状態の変化から試料
または試料表面に付着した膜の屈折率、吸収率、複屈折
性および膜厚等を同定する偏光解析方法において、 前記偏光子を第1の振動方向に設定したときの出射光に
おける、試料面に平行な振動成分であるS偏光成分と光
の進行方向およびS偏光成分に直交するP偏光成分との
位相差が予め設定された所定範囲以内であるかを確認
し、 S偏光成分とP偏光成分の位相差が前記所定範囲内であ
ることが確認された場合には、偏光子を前記第1の振動
方向に設定して測定を行ない、 S偏光成分とP偏光成分の位相差が前記所定範囲内にな
いことが確認された場合には、偏光子を前記第1の振動
方向よりもS偏光成分に対するP偏光成分の割合が大き
くなる第2の振動方向に設定して測定を行なうことを特
徴とする偏光測定方法。
1. A light linearly polarized by a polarizer is incident on a sample surface, and a change in the polarization state of the emitted light is used to determine the refractive index, absorptivity, birefringence, and film of the sample or a film attached to the sample surface. In the polarization analysis method for identifying the thickness and the like, in the emitted light when the polarizer is set in the first vibration direction, the S-polarized component, which is a vibration component parallel to the sample surface, the traveling direction of the light, and the S-polarized component Check whether the phase difference between the orthogonal P-polarized component is within a predetermined range set in advance, and if it is confirmed that the phase difference between the S-polarized component and the P-polarized component is within the predetermined range, The polarizer is set in the first vibration direction and measurement is performed. If it is confirmed that the phase difference between the S-polarized component and the P-polarized component is not within the predetermined range, the polarizer is set to the first vibration direction. P-polarized component for S-polarized component rather than vibration direction A polarization measurement method, wherein the measurement is performed with the ratio set to the second vibration direction in which the ratio increases.
【請求項2】 偏光子により直線偏光化された光を試料
表面に入射させ、その出射光の偏光状態の変化から試料
または試料表面に付着した膜の屈折率、吸収率、複屈折
性および膜厚等を同定する偏光解析方法において、 前記偏光子を第1の振動方向に設定したときの出射光に
おける、試料面に平行な振動成分であるS偏光成分と光
の進行方向およびS偏光成分に直交するP偏光成分との
振幅反射率比が予め定められた閾値以上であるかを確認
し、 S偏光成分とP偏光成分の振幅反射率比が閾値以上であ
ることが確認された場合には、偏光子を前記第1の振動
方向に設定して測定を行ない、 S偏光成分とP偏光成分の振幅反射率比が閾値よりも小
さなことが確認された場合には、偏光子を前記第1の振
動方向よりもS偏光成分に対するP偏光成分の割合が大
きくなる第2の振動方向に設定して測定を行なうことを
特徴とする偏光測定方法。
2. A light linearly polarized by a polarizer is incident on a sample surface, and a change in the polarization state of the emitted light causes a change in the refractive index, absorptivity, birefringence, and film of the sample or a film attached to the sample surface. In the polarization analysis method for identifying the thickness and the like, in the emitted light when the polarizer is set in the first vibration direction, the S-polarized component, which is a vibration component parallel to the sample surface, the traveling direction of the light, and the S-polarized component Check whether the amplitude reflectance ratio of the orthogonal P-polarized component is equal to or greater than a predetermined threshold, and if the amplitude reflectance ratio of the S-polarized component and the P-polarized component is equal to or greater than the threshold, When the polarizer is set in the first vibration direction and measurement is performed, and when it is confirmed that the amplitude reflectance ratio between the S-polarized component and the P-polarized component is smaller than a threshold value, the polarizer is set to the first vibration direction. P-polarized light component for S-polarized light component rather than vibration direction A polarization measurement method, wherein the measurement is performed by setting the second vibration direction in which the ratio of the minute increases.
【請求項3】 偏光子により直線偏光化された光を試料
表面に入射させ、その出射光を測定して偏光状態の変化
から試料または試料表面に付着した膜の屈折率、吸収
率、複屈折性および膜厚等を同定する偏光解析装置にお
いて、 予め設定される位相差を記憶する記憶手段を備え、 前記偏光子を含む光学系の制御を行なうとともにその測
定結果から偏光解析を行ない、前記偏光子を第1の振動
方向に設定したときの出射光における、試料面に平行な
振動成分であるS偏光成分と光の進行方向およびS偏光
成分に直交するP偏光成分との位相差が前記記憶手段に
記憶される前記位相さに対して所定範囲以内であるかを
確認し、S偏光成分とP偏光成分の位相差が所定範囲以
内であることが確認された場合には、偏光子を前記第1
の振動方向に設定して測定を行ない、S偏光成分とP偏
光成分の位相差が前記位相差に対して所定範囲にないこ
とが確認された場合には、偏光子を前記第1の振動方向
よりもS偏光成分に対するP偏光成分の割合が大きくな
る第2の振動方向に設定して測定を行なう偏光制御演算
部を有することを特徴とする偏光解析装置。
3. A light linearly polarized by a polarizer is made incident on a sample surface, the emitted light is measured, and a change in polarization state indicates a refractive index, an absorptivity, and a birefringence of the sample or a film attached to the sample surface. A polarization analyzer for identifying properties, film thicknesses, etc., comprising storage means for storing a preset phase difference, controlling an optical system including the polarizer, and performing an ellipsometry from a measurement result thereof; The phase difference between the S-polarized component, which is a vibration component parallel to the sample surface, and the P-polarized component that is orthogonal to the S-polarized component and the traveling direction of the light in the emitted light when the element is set in the first vibration direction is stored in the memory. Check whether the phase stored in the means is within a predetermined range, and if it is confirmed that the phase difference between the S-polarized component and the P-polarized component is within a predetermined range, the polarizer is set to the First
When the phase difference between the S-polarized light component and the P-polarized light component is not within a predetermined range with respect to the phase difference, the polarizer is set in the first vibration direction. A polarization analyzer comprising: a polarization control operation unit that performs measurement by setting the ratio in the second vibration direction in which the ratio of the P-polarized component to the S-polarized component is larger than that of the S-polarized component.
【請求項4】 偏光子により直線偏光化された光を試料
表面に入射させ、その出射光を測定して偏光状態の変化
から試料または試料表面に付着した膜の屈折率、吸収
率、複屈折性および膜厚等を同定する偏光解析装置にお
いて、 前記偏光子を含む光学系の制御を行なうとともにその測
定結果から偏光解析を行ない、前記偏光子を第1の振動
方向に設定したときの出射光における、試料面に平行な
振動成分であるS偏光成分と光の進行方向およびS偏光
成分に直交するP偏光成分との振幅反射率比が予め定め
られた閾値以上であるかを確認し、S偏光成分とP偏光
成分の振幅反射率比が閾値以上であることが確認された
場合には、偏光子を前記第1の振動方向に設定して測定
を行ない、S偏光成分とP偏光成分の振幅反射率比が閾
値よりも小さなことが確認された場合には、偏光子を前
記第1の振動方向よりもS偏光成分に対するP偏光成分
の割合が大きくなる第2の振動方向に設定して測定を行
なう偏光制御演算部を有することを特徴とする偏光解析
装置。
4. A light linearly polarized by a polarizer is made incident on a sample surface, and the emitted light is measured. The change in polarization state indicates a refractive index, an absorptivity, and a birefringence of the sample or a film attached to the sample surface. In a polarization analyzer for identifying properties, film thicknesses, and the like, an output light when the optical system including the polarizer is controlled and polarization analysis is performed based on the measurement result, and the polarizer is set in the first vibration direction. It is checked whether the amplitude reflectance ratio between the S-polarized component, which is a vibration component parallel to the sample surface, and the P-polarized component, which is orthogonal to the traveling direction of light and the S-polarized component, is equal to or greater than a predetermined threshold. When it is confirmed that the amplitude reflectance ratio of the polarization component and the P polarization component is equal to or larger than the threshold, the polarizer is set in the first vibration direction and measurement is performed, and the S polarization component and the P polarization component are measured. Amplitude reflectance ratio is smaller than threshold If it is confirmed that the polarization control operation unit is used, the polarizer is set in the second vibration direction in which the ratio of the P-polarized component to the S-polarized component is larger than the first vibration direction, and the measurement is performed. An ellipsometer, characterized in that:
JP29853096A 1996-11-11 1996-11-11 Polarization analysis method and polarization analyzer Expired - Lifetime JP2917938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29853096A JP2917938B2 (en) 1996-11-11 1996-11-11 Polarization analysis method and polarization analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29853096A JP2917938B2 (en) 1996-11-11 1996-11-11 Polarization analysis method and polarization analyzer

Publications (2)

Publication Number Publication Date
JPH10142060A JPH10142060A (en) 1998-05-29
JP2917938B2 true JP2917938B2 (en) 1999-07-12

Family

ID=17860928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29853096A Expired - Lifetime JP2917938B2 (en) 1996-11-11 1996-11-11 Polarization analysis method and polarization analyzer

Country Status (1)

Country Link
JP (1) JP2917938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550381B2 (en) 2001-06-27 2004-08-04 松下電器産業株式会社 Polarization analyzer and polarization analysis method
US7522263B2 (en) * 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method
JP6087751B2 (en) * 2013-07-05 2017-03-01 株式会社モリテックス Optical anisotropy parameter measuring device, measuring method and measuring program

Also Published As

Publication number Publication date
JPH10142060A (en) 1998-05-29

Similar Documents

Publication Publication Date Title
EP0278577B1 (en) A process for determining thicknesses of layers, application thereof in determining certain interactions and a means for carrying out this process
Cuypers et al. Ellipsometry as a tool to study protein films at liquid-solid interfaces
US3985447A (en) Measurement of thin films by polarized light
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
JP3447654B2 (en) Anisotropic thin film evaluation method and evaluation device
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
US5532488A (en) Apparatus and method for evaluating orientation film
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
JPH11160198A (en) Liquid crystal initial alignment angle measuring method and device thereof
JP2917938B2 (en) Polarization analysis method and polarization analyzer
KR20010107968A (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
JP3535786B2 (en) Liquid crystal display element evaluation method and evaluation device
JP3520379B2 (en) Optical constant measuring method and device
JPH11160199A (en) Liquid crystal initial alignment angle measuring method and device thereof
CN109115695B (en) Method for extracting optical constants and Euler angles of anisotropic body materials
JP2970585B2 (en) Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus
CN113358604B (en) Oblique incidence type spectral reflection differential measurement device and method
JPS6231289B2 (en)
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
Sassella et al. Generalized anisotropic ellipsometry applied to an organic single crystal: Potassium acid phthalate
JPH07151674A (en) Quenching polarization measuring apparatus
JP3338157B2 (en) Alignment film evaluation system