JPS6116580A - Optical detection semiconductor device - Google Patents

Optical detection semiconductor device

Info

Publication number
JPS6116580A
JPS6116580A JP59138326A JP13832684A JPS6116580A JP S6116580 A JPS6116580 A JP S6116580A JP 59138326 A JP59138326 A JP 59138326A JP 13832684 A JP13832684 A JP 13832684A JP S6116580 A JPS6116580 A JP S6116580A
Authority
JP
Japan
Prior art keywords
semiconductor region
impurity concentration
semiconductor
junction
type conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138326A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamamoto
一彦 山本
Masayuki Yamaguchi
正之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP59138326A priority Critical patent/JPS6116580A/en
Publication of JPS6116580A publication Critical patent/JPS6116580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a device, cost thereof is low and which has excellent mass productivity, by constituting a shallow P-N junction and a deep P-N junction to a semiconductor chip in the depth direction and acquiring photocurrents corresponding to each wavelength region. CONSTITUTION:A P type conductive epitaxial-growth first semiconductor region 7 having impurity concentration of 1X10<14>cm<-3> or less, an N type conductive second semiconductor region 8, to which phosphorus ions are implanted and impurity concentration thereof is brought to 1-5X10<15>cm-3 and diffusion depth thereof to 8-12mum through thermal diffusion, and a P type conductive third surface semiconductor region 9 having impurity concentration larger than a P type conductive semiconductor substrate 6 are formed onto the semiconductor substrate 6 having high impurity concentration. According to such constitution, a deep P-N junction by the first semiconductor region 7 and the second semiconductor region 8 is shaped in the depth direction and a shallow P-N junction by the third semiconductor region 9 and the second semiconductor region 8 is shaped similarly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、照射光の波長の検出、色調の判別を行なうこ
との可能な光検知半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photodetecting semiconductor device capable of detecting the wavelength of irradiated light and determining the color tone.

従来例の構成とその問題点 近年、色の判別、色調の検出、照射光の色温度の測定等
に、半導体装置が使用されている。これらは、検出物体
のもつ色に関する情報すなわち、波長や光強度を電気信
号に変換する光検出装置が用いられている。今日、その
利用分野として最もひるが9つつめるものに、ビデオカ
メラのホワイトバランス用の光検出装置がある。
2. Description of the Related Art Structures of Conventional Examples and Their Problems In recent years, semiconductor devices have been used for color discrimination, color tone detection, measurement of color temperature of irradiated light, and the like. These devices use a photodetector that converts information about the color of the object to be detected, such as wavelength and light intensity, into electrical signals. Today, one of the most important fields of use is light detection devices for white balance in video cameras.

従来、物体からの反射光、光源自体の色、光源の色温度
などを識別するためには、光学的フィルタ、プリズムあ
るいは、回折格子等を用いた比較的高価な装置が必要で
、装置の小型化が困難でめった。また、小型化に対応し
たものとして第1図に示すようなアモルファスシリコン
光検出装置が提案されている。透明ガラス板2上に透明
電極3を蒸着し、アモルファスシリコン4を形成した後
、コンタクト電極5を形成する。ガラス板の反対側に青
色を透過する光学フィルタ1a、緑色、赤色を透過する
フィルタ1b、1Cをそれぞれ形成し、光電変換素子と
して一体的に構成したものである。
Conventionally, in order to identify the reflected light from an object, the color of the light source itself, the color temperature of the light source, etc., relatively expensive equipment using optical filters, prisms, or diffraction gratings was required, and the equipment was small and It is difficult and rare to convert. Furthermore, an amorphous silicon photodetector as shown in FIG. 1 has been proposed as a device compatible with miniaturization. After a transparent electrode 3 is deposited on a transparent glass plate 2 and amorphous silicon 4 is formed, a contact electrode 5 is formed. An optical filter 1a that transmits blue light, and filters 1b and 1C that transmit green and red light are formed on the opposite side of the glass plate, and are integrally constructed as a photoelectric conversion element.

しかしながらこの装置においてに、各波長に対応する受
光面積が小さくなり、光感度が低下するととや、組み立
て工程において、リードフレームを用いること、さらに
、三色のフィルタを用いることなどから、組み立て上の
困難さや、安価に量産ができないなどの欠点を有してい
る。
However, in this device, the light-receiving area corresponding to each wavelength becomes smaller and the photosensitivity decreases, and the assembly process requires lead frames and three-color filters. It has drawbacks such as difficulty and the inability to mass-produce it at low cost.

発明の目的 本発明に上記欠点を除去し、従来のシリコンプロセスに
より容易に作製でき、シリコンの光吸収特性を積極的に
利用し、安価で量産性にすぐれた光検知半導体装置を提
供するものである。
OBJECT OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned drawbacks, to provide a photodetecting semiconductor device that can be easily manufactured by a conventional silicon process, actively utilizes the light absorption characteristics of silicon, and is inexpensive and easy to mass produce. be.

発明の構成 本発明は、高濃度の不純物濃度を有するP形導電形の半
導体基板上に1 X 1014cnl”−3以下の不純
物濃度を有するP形導電形のエピタキシャル成長による
第1の半導体領域と、リンイオンをイオン注入したのち
熱拡散によシネ細物濃度が1〜5×1015ff”−’
で、拡散深さが8〜12μmでβるN地導電形の第2の
半導体領域と、第2の半導体領域上に前記半導体基板よ
りも大きい不純物濃度を有するP形導電形の第3の表面
半導体領域とより成る光検知半導体装置でアシ、浅いP
N接合と深いPN接合とを深さ方向に1つの半導体チ、
ツブに構成し、それぞれの波長領域に対応した光電流を
得るものである。これにより、広範囲の波長域に感度を
もつ光検出半導体装置が得られる。
Structure of the Invention The present invention provides a first semiconductor region formed by epitaxial growth of a P-type conductivity type having an impurity concentration of 1 x 1014cnl''-3 or less on a P-type conductivity type semiconductor substrate having a high impurity concentration, After ion implantation, the concentration of cine fines increases from 1 to 5 x 1015ff"-' by thermal diffusion.
a second semiconductor region of N-type conductivity type with a diffusion depth of 8 to 12 μm and a third surface of P-type conductivity type having an impurity concentration higher than that of the semiconductor substrate on the second semiconductor region; A light sensing semiconductor device consisting of a semiconductor region has a reed and a shallow P.
N junction and deep PN junction in one semiconductor chip in the depth direction,
It is structured in a block to obtain photocurrent corresponding to each wavelength region. As a result, a photodetecting semiconductor device having sensitivity over a wide range of wavelengths can be obtained.

実施例の説明 以下本発明の一実施例を添付図面によシ説明する。第2
図は本発明の実施例を示す半導体装置の断面図である。
DESCRIPTION OF THE EMBODIMENTS An embodiment of the present invention will now be described with reference to the accompanying drawings. Second
The figure is a sectional view of a semiconductor device showing an embodiment of the present invention.

不純物濃度の高いP形導電形の半導体基板6に0.5〜
I X j O” ffi””の不純物濃度を有するP
形導電形の第1の半導体領域7を4゜〜50μmto厚
みでエピタキシャル成長させる。
0.5 to P type conductivity type semiconductor substrate 6 with high impurity concentration.
P with an impurity concentration of I X j O"ffi""
A first semiconductor region 7 of the same conductivity type is epitaxially grown to a thickness of 4° to 50 μm.

次に前記半導体基板6と第1の半導体領域子とのほぼ中
間の不純物濃度である1〜5×10 α程度で、厚み8
〜12μmになるようにN形導電形の第2の半導体領域
8を形成する。第2の半導体領域に、イオン注入法によ
り、リンイオンを注入した後、熱拡散によや上記の条件
の得られるように形成する。本実施例においてに、注入
加速エネルギー100に6V、拡散条件[1180℃、
16時間である。さらに前記第2の半導体領域8上に前
記半導体基板6の不純物濃度以上の不純物濃度を有する
P形導電形の第3の表面半導体領域9をボロンを熱拡散
させ形成する。なお、第2のN形導電形の半導体領域8
と良好なオーミックコンタクトを得るために、第2の半
導体領域80チップ表面領域に第3の半導体領域9とほ
ぼ等しい不純物濃度でもってリンを熱拡散させたN形導
電形の半導体領域10を形成しである。かかる構成によ
り、第1の半導体領域7と第2の半導体領域8とにより
、深いPN接合、第3の半導体領域9と第2の半導体領
域8により浅いPN接合が深さ方向に形成される。第3
図は上記2つのPN接合によるホトダイオードをP D
、 、 P D2 とした場合の等価回路である。PD
l[浅いPN接合によるホトダイオード、PD2ニ深い
PN接合によるホトダイオードでわる。
Next, the impurity concentration is about 1 to 5×10 α, which is approximately the middle level between the semiconductor substrate 6 and the first semiconductor region element, and the thickness is 8.
The second semiconductor region 8 of N type conductivity is formed to have a thickness of 12 μm. After phosphorus ions are implanted into the second semiconductor region by an ion implantation method, the second semiconductor region is formed by thermal diffusion so as to obtain the above conditions. In this example, the implantation acceleration energy was 100 to 6 V, and the diffusion conditions were [1180°C,
It is 16 hours. Furthermore, a third surface semiconductor region 9 of P-type conductivity type having an impurity concentration higher than that of the semiconductor substrate 6 is formed on the second semiconductor region 8 by thermally diffusing boron. Note that the second N-type conductivity type semiconductor region 8
In order to obtain good ohmic contact with the second semiconductor region 80, an N-type conductivity type semiconductor region 10 in which phosphorus is thermally diffused is formed in the chip surface region of the second semiconductor region 80 with an impurity concentration approximately equal to that of the third semiconductor region 9. It is. With this configuration, a deep PN junction is formed by the first semiconductor region 7 and the second semiconductor region 8, and a shallow PN junction is formed by the third semiconductor region 9 and the second semiconductor region 8 in the depth direction. Third
The figure shows the photodiode with the above two PN junctions.
, , P D2 is an equivalent circuit. P.D.
l[A photodiode with a shallow PN junction, PD2 is a photodiode with a deep PN junction.

以上の構成による本発明の半導体装置を用いることによ
り、短波長の光成分をP Dlによシ、長波長の光成分
をFD2により光電流として得ることができる。
By using the semiconductor device of the present invention having the above configuration, a short wavelength light component can be obtained by the PDl, and a long wavelength light component can be obtained as a photocurrent by the FD2.

第4図&は本発明の実施例によるところの半導体装置の
相対分光感度特性を示す。浅いPN接合のFD、の相対
分光感度は短波長側に、深いPN接合のFD2の相対分
光感度は長波長側にそれぞれ高い感度を示す。FD2に
対しては、PDlの厚み分が光学的なフィルタとして働
いておシ、光吸収特性を積極的に利用した構造となって
いる。第4図すは、FD2の出力電流I FD2 をp
nlの出力電流IPDjで割り算をし、対数をとった値
の波長特性である。
FIG. 4 & shows relative spectral sensitivity characteristics of a semiconductor device according to an embodiment of the present invention. The relative spectral sensitivity of the shallow PN junction FD is high on the short wavelength side, and the relative spectral sensitivity of the deep PN junction FD2 is high on the long wavelength side. For FD2, the thickness of PDl acts as an optical filter, and the structure actively utilizes the light absorption characteristics. Figure 4 shows the output current I FD2 of FD2 as p
This is the wavelength characteristic of the value obtained by dividing by the output current IPDj of nl and taking the logarithm.

このように波長に対しよい直線性が得られ、任意の入射
光に対し、対数値を検出することで、その入射光の波長
が容易に得られる。
In this way, good linearity with respect to wavelength is obtained, and by detecting the logarithmic value of any incident light, the wavelength of that incident light can be easily obtained.

発明の効果 本発明によるところの光検知半導体装置は、通常のシリ
コンプロセスにより作成でき、シリコンの光吸収特性を
積極的に利用し、簡単な構造による半導体装置が実現で
きる。この装置は、また、光源の色温度や、色調の検出
が簡単に行なえ、さらVc73クロコンピユータとの組
み合わせで、光源へのフィードバックをかけ、光源の光
量のコントロール用のセンサなどへも利用できる。
Effects of the Invention The photodetecting semiconductor device according to the present invention can be fabricated by a normal silicon process, actively utilizes the light absorption characteristics of silicon, and can realize a semiconductor device with a simple structure. This device can also easily detect the color temperature and tone of the light source, and in combination with a Vc73 black computer, it can be used as a sensor for controlling the amount of light from the light source by applying feedback to the light source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光学フィルタを使用した光検出装置の断
面構造図、第2図は本発明による半導体装置の一実施例
の断面構造図、第3図は本発明の一実施例の等価回路図
、第4図乙に本発明の実施例の分光感度特性図、同すは
本発明の実施例の光電流比の波長特性図である。 1a、1b、1c・・・・・青、緑、赤フィルタ、2・
・・・・・透明ガラス板、3・・・・・透明電極、4 
・・・・アモルファスシリコン、5・・・・コンタクト
電極、6・・・・・P形半導体基板、7・・・・・P形
エピタキシャル成長層、8・・・・・N膨拡散層、9・
・・・・P膨拡散層、10・・・・N型コンタクト拡散
層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
1h1 第3図
FIG. 1 is a cross-sectional structural diagram of a photodetecting device using a conventional optical filter, FIG. 2 is a cross-sectional structural diagram of an embodiment of a semiconductor device according to the present invention, and FIG. 3 is an equivalent circuit diagram of an embodiment of the present invention. Figure 4B is a spectral sensitivity characteristic diagram of an embodiment of the present invention, and the same is a wavelength characteristic diagram of a photocurrent ratio of an embodiment of the present invention. 1a, 1b, 1c... Blue, green, red filter, 2.
...Transparent glass plate, 3 ...Transparent electrode, 4
...Amorphous silicon, 5...Contact electrode, 6...P type semiconductor substrate, 7...P type epitaxial growth layer, 8...N swelling diffusion layer, 9...
...P swelling diffusion layer, 10...N type contact diffusion layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
1h1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 高濃度の不純物濃度を有するP形導電形の半導体基板上
に1×10^1^4cm^−^3以下の不純物濃度を有
するP形導電形のエピタキシャル成長による第1の半導
体領域と、リンイオンをイオン注入したのち熱拡散によ
り不純物濃度が1〜5×10^1^5cm^−^3で、
拡散深さが8〜12μmであるN型導電形の第2の半導
体領域と、第2の半導体領域上に前記半導体基板よりも
大きい不純物濃度を有するP形導電形の第3の表面半導
体領域とより成る光検知半導体装置。
A first semiconductor region is formed by epitaxial growth of a P-type conductivity type having an impurity concentration of 1 x 10^1^4 cm^-^3 or less on a P-type conductivity type semiconductor substrate having a high impurity concentration, and phosphorus ions are ionized. After implantation, the impurity concentration is 1 to 5 x 10^1^5 cm^-^3 due to thermal diffusion,
a second semiconductor region of N-type conductivity type having a diffusion depth of 8 to 12 μm; and a third surface semiconductor region of P-type conductivity type having an impurity concentration higher than that of the semiconductor substrate on the second semiconductor region. A photodetecting semiconductor device consisting of:
JP59138326A 1984-07-03 1984-07-03 Optical detection semiconductor device Pending JPS6116580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138326A JPS6116580A (en) 1984-07-03 1984-07-03 Optical detection semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138326A JPS6116580A (en) 1984-07-03 1984-07-03 Optical detection semiconductor device

Publications (1)

Publication Number Publication Date
JPS6116580A true JPS6116580A (en) 1986-01-24

Family

ID=15219285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138326A Pending JPS6116580A (en) 1984-07-03 1984-07-03 Optical detection semiconductor device

Country Status (1)

Country Link
JP (1) JPS6116580A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162887A (en) * 1988-10-31 1992-11-10 Texas Instruments Incorporated Buried junction photodiode
US5177581A (en) * 1990-11-14 1993-01-05 Sharp Kabushiki Kaisha Light receiving PN junction semiconductor device with silicon nitride film
US6833873B1 (en) 1999-06-30 2004-12-21 Canon Kabushiki Kaisha Image pickup apparatus
US6859229B1 (en) 1999-06-30 2005-02-22 Canon Kabushiki Kaisha Image pickup apparatus
US6882368B1 (en) 1999-06-30 2005-04-19 Canon Kabushiki Kaisha Image pickup apparatus
US6885404B1 (en) 1999-06-30 2005-04-26 Canon Kabushiki Kaisha Image pickup apparatus
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
US6980248B1 (en) 1999-06-30 2005-12-27 Canon Kabushiki Kaisha Image pickup apparatus
ITMI20082363A1 (en) * 2008-12-31 2010-07-01 St Microelectronics Srl SENSOR INCLUDING AT LEAST ONE DOUBLE-JOINT VERTICAL PHOTODIOD INTEGRATED ON A SEMICONDUCTIVE SUBSTRATE AND ITS INTEGRATION PROCESS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516494A (en) * 1978-07-24 1980-02-05 Sharp Corp Optical semiconductor device
JPS57164585A (en) * 1981-04-02 1982-10-09 Toshiba Corp Photosemiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516494A (en) * 1978-07-24 1980-02-05 Sharp Corp Optical semiconductor device
JPS57164585A (en) * 1981-04-02 1982-10-09 Toshiba Corp Photosemiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162887A (en) * 1988-10-31 1992-11-10 Texas Instruments Incorporated Buried junction photodiode
US5177581A (en) * 1990-11-14 1993-01-05 Sharp Kabushiki Kaisha Light receiving PN junction semiconductor device with silicon nitride film
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
US7235831B2 (en) 1999-02-25 2007-06-26 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
US6833873B1 (en) 1999-06-30 2004-12-21 Canon Kabushiki Kaisha Image pickup apparatus
US6859229B1 (en) 1999-06-30 2005-02-22 Canon Kabushiki Kaisha Image pickup apparatus
US6882368B1 (en) 1999-06-30 2005-04-19 Canon Kabushiki Kaisha Image pickup apparatus
US6885404B1 (en) 1999-06-30 2005-04-26 Canon Kabushiki Kaisha Image pickup apparatus
US6980248B1 (en) 1999-06-30 2005-12-27 Canon Kabushiki Kaisha Image pickup apparatus
ITMI20082363A1 (en) * 2008-12-31 2010-07-01 St Microelectronics Srl SENSOR INCLUDING AT LEAST ONE DOUBLE-JOINT VERTICAL PHOTODIOD INTEGRATED ON A SEMICONDUCTIVE SUBSTRATE AND ITS INTEGRATION PROCESS

Similar Documents

Publication Publication Date Title
CA1138081A (en) Multi-spectrum photodiode devices
US5162887A (en) Buried junction photodiode
US4160985A (en) Photosensing arrays with improved spatial resolution
EP0068652B1 (en) Photo diodes
CA1132693A (en) Demultiplexing photodetector
JPH027417B2 (en)
JPH04234170A (en) Infrared detection device responsive to plurality of wavelengths
US4965212A (en) Optical sensor
KR20080064761A (en) Semiconductor device
US5300777A (en) Two color infrared detector and method
JPS6116580A (en) Optical detection semiconductor device
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
JPS61139061A (en) Semiconductor photodetector
JPS646547B2 (en)
Chouikha et al. Colour detection using buried triple pn junction structure implemented in BiCMOS process
Wolffenbuttel Color filters integrated with the detector in silicon
Kwa et al. Backside-illuminated silicon photodiode array for an integrated spectrometer
JPH03202732A (en) Color sensor
JPH01292220A (en) Semiconductor light detector
JPH0653537A (en) Semiconductor light receiving element
GB2206447A (en) Lensed photodetector
JPS6177375A (en) Color sensor
JPH07105522B2 (en) Semiconductor device
JPS5936437B2 (en) Semiconductor photodetector
JPH0472664A (en) Solid-state image sensing device