JPS617332A - Production of high molecular weight polyarylene sulfide - Google Patents

Production of high molecular weight polyarylene sulfide

Info

Publication number
JPS617332A
JPS617332A JP59126725A JP12672584A JPS617332A JP S617332 A JPS617332 A JP S617332A JP 59126725 A JP59126725 A JP 59126725A JP 12672584 A JP12672584 A JP 12672584A JP S617332 A JPS617332 A JP S617332A
Authority
JP
Japan
Prior art keywords
polymerization
water
melt viscosity
sulfide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59126725A
Other languages
Japanese (ja)
Other versions
JPS6333775B2 (en
Inventor
Hiroshi Iizuka
洋 飯塚
Takao Iwasaki
隆夫 岩崎
Takayuki Katsuto
甲藤 卓之
Yoshiya Shiiki
椎木 善彌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59126725A priority Critical patent/JPS617332A/en
Priority to US06/746,252 priority patent/US4645826A/en
Priority to DE8585107575T priority patent/DE3584692D1/en
Priority to CA000484413A priority patent/CA1236642A/en
Priority to EP85107575A priority patent/EP0166368B1/en
Publication of JPS617332A publication Critical patent/JPS617332A/en
Publication of JPS6333775B2 publication Critical patent/JPS6333775B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain a polyarylene sulfide having high molecular weight, economically, by reacting an alkali metal sulfide with a dihalo-aromatic compound in two steps, and drastically changing the amount of existing water and the polymerization temperature between the former polymerization stage and the latter polymerization stage. CONSTITUTION:1mol of an alkali metal sulfide (e.g. lithium sulfide) and 0.9- 1.1mol of a dihaloaromatic compound (e.g. p-dichlorobenzene) are polymerized in an organic amide solvent (e.g. N-methylpyrrolidone) in the presence of 0.5- 2.4mol of water at 180-235 deg.C until the conversion of the dihaloaromatic compound reaches 50-98mol%. A polyarylene sulfide having a melt-viscosity of 5- 300 poise can be produced by this process. Water is added to the polymerization slurry to attain a water-content of 2.5-7mol per 1mol of the alikali metal sulfide, and the polymerization is continued by raising the temperature of the system to 245-290 deg.C to obtain a polyarylene sulfide having a melt-viscosity of >=1,000 poise.

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は、高分子量のポリアリーレンスルフィド(以下
、PASという)を製造する方法に関する。さらに具体
的には、本発明は、アルカリ金属硫化物とシバa芳香族
化合物との反応の実施の仕方に主要な特徴を有するPA
Sの製造法に関する。
BACKGROUND OF THE INVENTION Technical Field The present invention relates to a method for producing high molecular weight polyarylene sulfide (hereinafter referred to as PAS). More specifically, the present invention provides PAs having a key feature in the manner in which the reaction between an alkali metal sulfide and a Ciba aromatic compound is carried out.
This invention relates to a method for producing S.

近年、電子機器部材、自動車部品などとしてますます高
い耐熱性の熱可塑性樹脂が要求されてきている。
In recent years, there has been an increasing demand for thermoplastic resins with higher heat resistance for use in electronic equipment components, automobile parts, and the like.

PASもその要求に応え得る樹脂としての性質を有して
いるが、このボリフェニVンスルフィドに代表されるP
ASは分子量の充分高いものが得られ難いという事情が
あるために、フィルム、シ−ト、繊維などに成形加工す
るのが極めて難かしいということやその成形物が極めて
脆弱であるという大きな問題点があった。
PAS also has properties as a resin that can meet these demands, but
Since it is difficult to obtain AS with a sufficiently high molecular weight, it is extremely difficult to mold it into films, sheets, fibers, etc., and the molded products are extremely brittle, which is a major problem. was there.

本発明はこれらの問題点を解決すべく顕著に高分子量の
PASを安価に製造する方法を提供するものである。
The present invention aims to solve these problems by providing a method for producing PAS with a significantly high molecular weight at low cost.

従来技術 PASの代表的な製造方法としては、N−メチルピロリ
ドン等の有機アミド溶媒中でジハロ芳香族化合物と硫化
ナトリウムとを反応させる方法が特公昭ti−s−33
te号公報に開示されている。しかし、この方法で製造
されたPASは分子量および溶融粘度が低くて、フィル
ム、シート、繊維などには成形加工することが困難であ
った。
Conventional technology A typical method for producing PAS is a method in which a dihaloaromatic compound and sodium sulfide are reacted in an organic amide solvent such as N-methylpyrrolidone.
It is disclosed in the TE publication. However, PAS produced by this method has a low molecular weight and low melt viscosity, making it difficult to mold it into films, sheets, fibers, and the like.

このようなところから、高重合度のPASを得るために
、上記の方法を改善した方法が種々提案されている。最
も代表的な特公昭!;2− /ココp。
From this point of view, in order to obtain PAS with a high degree of polymerization, various methods have been proposed that are improved from the above methods. The most representative Tokko Akira! ;2-/cocop.

号公報記載のものでは、上記反応系に重合助剤としてア
ルカリ金属カルボン酸塩を用いている。この方法によれ
ば重合助剤の添加量がアルカリ金属硫化物に対して等モ
ル程度必要とされておシ、さらによシ高重合度のPAS
を得るためには種々の重合助剤のうちでも高価な酢酸リ
チウムや安息香酸ナトリウムを多量に使用することが必
要であシ、従って結果的にPASの製造コストが増大し
て工業的に不利となると思われる。また、この方法では
、重合反応後のPAS回収時の処理排水に多量の有機酸
等が混入することになって公害上の問題を生ずるおそれ
があシ、これを防止するためには多大の費用を必要とす
ることなど、経済的見地から大きな問題があると思われ
る。
In the method described in the above publication, an alkali metal carboxylate is used as a polymerization aid in the reaction system. According to this method, the amount of polymerization aid added is required to be approximately equimolar to the alkali metal sulfide.
In order to obtain PAS, it is necessary to use large amounts of expensive lithium acetate and sodium benzoate among various polymerization aids, which results in an increase in the production cost of PAS, which is industrially disadvantageous. It seems that it will be. In addition, with this method, there is a risk that a large amount of organic acids, etc. will be mixed into the treated wastewater when PAS is recovered after the polymerization reaction, causing a pollution problem, and it will cost a lot of money to prevent this. There seems to be a major problem from an economic standpoint, such as the need for

単に溶融粘度ないし分子量が高ければよいのであれば、
PARを軽度に酸化して架橋構造を導入する方法が利用
できよう。しかし、この方法で得られる高分子量PAS
は線状性がないので、曳糸性および製膜性が不良である
If the melt viscosity or molecular weight is simply high, then
A method of introducing a crosslinked structure by mildly oxidizing PAR may be used. However, the high molecular weight PAS obtained by this method
Since there is no linearity, the stringability and film forming properties are poor.

発明の概要 要旨 本発明者らは上記の点に鑑み、溶融粘度が高くてしかも
線状のPARを、アルカリ金属カルボン酸塩等の重合助
剤を使用することなしに、安価に製造する方法を見出す
べくアルカリ金属硫化物とジハロ芳香族化合物との単純
重合系での重合メカニズムを詳細に検討した結果、重合
の諸条件中で特に共存水の量と重合温度とを重合前段と
重合後段で顕著に異ならせることによって、助剤を用い
ることなしに著しく高分子量のPASを製造することが
できることを思いかけずに見出して本発明に到達した。
SUMMARY OF THE INVENTION In view of the above points, the present inventors have developed a method for manufacturing linear PAR with high melt viscosity at low cost without using a polymerization aid such as an alkali metal carboxylate. As a result of a detailed study of the polymerization mechanism in a simple polymerization system of an alkali metal sulfide and a dihaloaromatic compound, we found that among the various polymerization conditions, the amount of coexisting water and the polymerization temperature are particularly significant in the pre-polymerization stage and the post-polymerization stage. The present invention was achieved by unexpectedly discovering that it is possible to produce PAS with a significantly high molecular weight without using any auxiliaries by varying the .

すなわち、本発明による溶融粘度がtoooボイズ以上
のポリアリーレンスルフィドの製造性は、有機アミド溶
媒中でアルカリ金属硫化物とジハロ芳香族化合物とを反
応させてポリアリーレンスルフィドを得る方法において
、この反応を少なくとも下記の二段階で行なうこと、を
特徴とするものである。
That is, the productivity of polyarylene sulfide having a melt viscosity of too boys or more according to the present invention is achieved by reacting an alkali metal sulfide and a dihaloaromatic compound in an organic amide solvent to obtain a polyarylene sulfide. The method is characterized in that it is carried out in at least the following two steps.

(1)  アルカリ金属硫化物lそル当po、z−2.
参モルの水が存在する状態で、/II〜コJj’Cの温
度で反応を行なって、溶融粘度!〜300ボイズのポリ
アリーレンスルフィドをジハロ芳香族化合物の転化率S
O〜りjモルチで生成させる工程、(2)アルカリ金属
硫化物1モル当シコ、!〜7.0そルの水が存在する状
態となるように水を添加すると共に2pt−コタ0℃の
温度に昇温して、上記の反応を継続する工程。
(1) Alkali metal sulfide, z-2.
The reaction is carried out in the presence of about mol of water at a temperature of /II to Jj'C, and the melt viscosity is ! Conversion rate S of polyarylene sulfide with ~300 voids to dihaloaromatic compound
A step of producing it with O~rij morch, (2) 1 mole of alkali metal sulfide,! Adding water so that ~7.0 liters of water is present, raising the temperature to 2 pt-0°C, and continuing the above reaction.

効果 本発明では、前段重合後に水を追加すると共に、温度を
上昇させて所定の含水量と温度で後段重合を行なうこと
によシ、前段重合をそのまま継続したのでは到底得られ
ない1000ボイズ以上の高い溶融粘度を有するPAS
を得ることに成功したものである。この方法は、特別の
助剤を必要としない極めて簡素なものであるため、助剤
の使用に基く前記の諸問題は画然に存在せず、経済−に
も優れている。得られるPARが高溶融粘度でかつ線状
であるため、一般成型品は勿論のこと、すぐれた繊維フ
ィルムを得ることができる。
Effects In the present invention, water is added after the first stage polymerization, and the temperature is raised to perform the second stage polymerization at a predetermined water content and temperature. PAS with high melt viscosity of
It was successfully obtained. Since this method is extremely simple and does not require any special auxiliary agents, the above-mentioned problems caused by the use of auxiliary agents do not exist, and it is also economical. Since the obtained PAR has a high melt viscosity and is linear, not only general molded products but also excellent fiber films can be obtained.

更に1本発明によれば、重合終了後PASは顆粒状で得
られるため、分離、洗滌等の後処理も容易であると共に
樹脂材料としてベレット化工程度が不要であるという利
点も得られる。すなわち、本発明のもう一つの特徴とも
言うべきことは、パール状のPARが得られることであ
る0本発明の方法でも攪拌条件などが適切でないと非球
状のものが得られることもあるが、多くの場合は得られ
るPASは非常に粒径のそろつた真球に近い′り一ル状
のものである。パール状PASの形成される状態を調べ
てみると、驚ろくべきことに、後段重合終了後に反応系
を冷却する過程で造粒されるのではなく、後段重合の比
較的初期に溶融したPASがパール状に造粒され、この
粒子内で反応が進んで溶融粘度が上るにつれて、粒子同
志が融着しない程度にまで硬化してくることがわかった
。このような知見は、従来未知であったと思料されるも
のである。
Furthermore, according to the present invention, since the PAS is obtained in the form of granules after polymerization, post-treatments such as separation and washing are easy, and there is also the advantage that a pelletizing step is not necessary as a resin material. That is, another feature of the present invention is that pearl-like PARs can be obtained. Even with the method of the present invention, non-spherical PARs may be obtained if the stirring conditions are not appropriate. In many cases, the obtained PAS is a linear shape that is close to a perfect sphere and has a very uniform particle size. When we investigated the state in which pearl-like PAS was formed, we surprisingly found that PAS was not granulated during the process of cooling the reaction system after the completion of the post-polymerization, but rather that the PAS was molten at a relatively early stage of the post-polymerization. It was found that the particles were granulated into pearls, and as the reaction progressed within the particles and the melt viscosity increased, the particles hardened to the extent that they did not fuse together. Such knowledge is thought to have been previously unknown.

これまで、PARの重合においては、重合系中に水が多
量に存在すると加水分解岬の望ましくない反応が起ると
されておシ、系中の共存水量を減らすことに努力が払わ
れてきた。通常は、高溶融粘度のPARを得るためには
、アルカリ金属硫化物1モル当り共存水1モル〜λモル
におさえられていた。本発明の方法のように、重合途中
で生成PASの溶融粘度が極めて低い段階で多量の水を
添加し、且つ重合温度を高めて更に重合を継続させる方
法は未だかつて提案されていなかった。共存水に対する
当業者らのこれまでの考え方からすれば、本発明の方法
はまさに画期的なものと言うことができる。
Until now, in the polymerization of PAR, it has been believed that the presence of a large amount of water in the polymerization system causes undesirable hydrolysis reactions, and efforts have been made to reduce the amount of coexisting water in the system. . Usually, in order to obtain a PAR with a high melt viscosity, the amount of coexisting water is limited to 1 mol to λ mol per 1 mol of alkali metal sulfide. As in the method of the present invention, a method in which a large amount of water is added during polymerization at a stage when the melt viscosity of the produced PAS is extremely low, and the polymerization temperature is raised to further continue the polymerization has never been proposed. Considering the conventional thinking of those skilled in the art regarding coexisting water, the method of the present invention can be said to be truly revolutionary.

本発明によるPASの製造法は、アルカリ金属硫化物と
ジハロ芳香族化合物との反応を特定の条件の下で実施す
ることからなるものである。
The method for producing PAS according to the invention consists in carrying out the reaction of an alkali metal sulfide with a dihaloaromatic compound under specific conditions.

アルカリ金属硫化物 本発明で用いられるアルカリ金属硫化物には、硫化リチ
ウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム
、硫化セシウムおよびこれらの混合物が包含される。こ
れらのアルカリ金属硫化物は、水和物または水性混合物
として、あるいは無水の形で、用いることができる。
Alkali Metal Sulfides The alkali metal sulfides used in the present invention include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. These alkali metal sulfides can be used as hydrates or aqueous mixtures or in anhydrous form.

これらのアルカリ金属硫化物の中では、硫化ナトリウム
が最も安価であって工業的には好ましい。
Among these alkali metal sulfides, sodium sulfide is the cheapest and is industrially preferred.

なお、アルカリ金属硫化物中に微量存在することあるべ
きアルカリ金属型硫化物やアルカリ金属チオ硫酸塩と反
応させるために、少量のアルカリ金属水酸化物を併用し
てこれら不純物を除去ないし硫化物への変換を計ること
ができる。
In addition, in order to react with alkali metal type sulfides and alkali metal thiosulfates, which should exist in trace amounts in alkali metal sulfides, a small amount of alkali metal hydroxide is used in combination to remove these impurities or convert them into sulfides. It is possible to measure the conversion of

ジハロ芳香族化合物 本発明で使用されるジハロ芳香族化合物としては1例え
ば特開昭39−222.2A号公報に記載されているよ
うなジハロ芳香族化合物があり得る。
Dihaloaromatic compound The dihaloaromatic compound used in the present invention may include, for example, a dihaloaromatic compound as described in JP-A-39-222.2A.

特に、 P−シクロルペンゼ/、m−ジクロルベンゼン
、コ、!−ジクaルトルエン、p−ジブロムベンゼン、
/、4!−ジクミルナフタリン、l−メトキシーコ、!
−ジクロルベンゼン、参、参′−ジクロルビフェニル、
3.j−ジクロル安息香11、p、p’−ジクロルジフ
ェニルエーテル、J、J’−ジクロルジフェニルスフ!
/7p7、J、J’−ジクロルジフェニルスルフオキシ
ドs J、 s’−シpロルジフェニルなどが好ましい
。なかでも、p−ジクロルベンゼンに代表されるパラジ
ハロペンゼ/を主成分とするものが好ましい。
In particular, P-cyclopenze/, m-dichlorobenzene,! - dikaltoluene, p-dibromobenzene,
/, 4! -Dicumylnaphthalene, l-methoxyco,!
-dichlorobenzene, dichlorobenzene, dichlorobiphenyl,
3. j-dichlorobenzoin 11, p,p'-dichlordiphenyl ether, J,J'-dichlordiphenyl sulfate!
/7p7, J, J'-dichlorodiphenyl sulfoxide s J, s'-dichlorodiphenyl and the like are preferred. Among these, those containing paradihalopense/, typified by p-dichlorobenzene, as a main component are preferred.

ジハロ芳香族化合物の適当な選択組合せによって2種以
上の異なる反応単位を含む共重合体を得ることができる
。例えば、p−ジクロルベンゼンとm−ジクミルベンゼ
ン若しくはPIp’−ジクロルジフェニルスルフォンと
を組合せて使用すれば、物を得ることができる。
By appropriately selecting combinations of dihaloaromatic compounds, copolymers containing two or more different reactive units can be obtained. For example, products can be obtained by using a combination of p-dichlorobenzene and m-dicumylbenzene or PIp'-dichlorodiphenylsulfone.

なお、本発明によるPARは上記ジハロ芳香族化合物の
重合体であるが、生成重合体の末端を形成させあるいは
重合反応ないし分子量を調節するためにモノハロ化合物
(必ずしも芳香族化合物でなくてもよい)を併用するこ
とも、分岐または架橋重合体を形成させるためにトリハ
ロ以上のポリハロ化合物(必ずしも芳香族化合物でなく
てもよい)を併用することも、可能である。これらのモ
ノハロまたはポリハロ化合物が芳香族化合物である場合
の具体例は、上記具体例のモノ1〜口またはポリハロ誘
導体として当業者にとって自明であろう。へ体的には、
たとえば、ジクロルベンゼンに若干量のトリクロルベン
ゼンを組合せて使用すれば、分枝をもったフェニレンス
ルフィド重合体ヲ得ることができる。もっとも、繊維、
フィルム等を得るには、PASは実質的に線状であるこ
とが好ましく、分枝の程度は少ないことが好ましい。
The PAR according to the present invention is a polymer of the above-mentioned dihaloaromatic compound, but a monohalo compound (not necessarily an aromatic compound) may be used to form the terminal end of the resulting polymer or to control the polymerization reaction or molecular weight. It is also possible to use together a polyhalo compound (not necessarily an aromatic compound) having more than trihalo in order to form a branched or crosslinked polymer. Specific examples when these monohalo or polyhalo compounds are aromatic compounds will be obvious to those skilled in the art as mono- or polyhalo derivatives of the above specific examples. Physically,
For example, by using dichlorobenzene in combination with a small amount of trichlorobenzene, a branched phenylene sulfide polymer can be obtained. However, fiber
In order to obtain a film or the like, the PAS is preferably substantially linear and preferably has a low degree of branching.

重合溶媒 本発明の重合反応において使用する有機アミド溶媒とし
ては、N−メチルピロリドン(NMP)、N−エチルピ
ロリドン、N、N−ジメチルホルムアミド、N、N−ジ
メチルアセトアミド、N−メチルカプロラクタム、テト
ラメチル尿素、ヘキサメチルりん酸トリアミド等及びこ
れらの混合物をあげることができる。これらのうちでは
、N−メチルピロリドンが特に好ましい。重合溶媒とし
ての有機アミドは、非プロトン化合物であることが望ま
しい。
Polymerization Solvent The organic amide solvent used in the polymerization reaction of the present invention includes N-methylpyrrolidone (NMP), N-ethylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylcaprolactam, and tetramethyl. Mention may be made of urea, hexamethyl phosphate triamide, etc., and mixtures thereof. Among these, N-methylpyrrolidone is particularly preferred. The organic amide used as the polymerization solvent is preferably an aprotic compound.

有機アミド溶媒の使用量は、アルカリ金属硫化物1モル
あたりQ、コ〜jリットルの範囲が好ましいj 重合 (1)定義 本発明による重合は、重合反応系に存在する水の量およ
び反応温度に関して異なる少なくとも二段階で行なわれ
る。ここで、「少なくとも二段階」ということは、この
二段階の組合せに基因する本発明の効果が実現される限
シ、これらの二工程の前、後または中間に補助的な工程
を附加してもよいことを意味するものである。
The amount of the organic amide solvent to be used is preferably in the range of Q, co to J liters per mole of alkali metal sulfide. It is carried out in at least two different stages. Here, "at least two steps" means that an auxiliary step may be added before, after, or in the middle of these two steps, as long as the effect of the present invention based on the combination of these two steps is achieved. It also means something good.

(2)前段重合 さて、本発明での第一の工程では、換言すれば前段重合
では、アルカリ金属硫化物1モル当シ、0.2モル〜λ
、μモルの水を含む重合反応系で、iro℃〜23! 
”Cの温度で、重合反応系中のジハロ芳香族化合物の転
化率がSOモルチ〜りtモルチになるまで重合を行なつ
て、溶融粘度!〜300ボイズのPASを得る(本発明
において溶融粘度は3i。
(2) First-stage polymerization Now, in the first step of the present invention, in other words, in the first-stage polymerization, 0.2 mol to λ per 1 mol of alkali metal sulfide
, a polymerization reaction system containing μmol of water at iro℃~23!
Polymerization is carried out at a temperature of "C" until the conversion rate of the dihaloaromatic compound in the polymerization reaction system becomes SO mole - t mole to obtain a PAS with a melt viscosity of ~300 voids (in the present invention, the melt viscosity is is 3i.

℃で剪断速度200 (秒) で測定したものであるこ
とは前記したところである〕。
℃ and a shear rate of 200 seconds].

実施に際しては、先ず、有機アミド溶媒に、望ましくは
不活性ガス雰囲気下に、常温〜/30℃の範囲でアルカ
リ金属硫化物およびジハロ芳香族化合物を加えて、所定
の温度に昇温して反応させる。
In carrying out the process, first, an alkali metal sulfide and a dihaloaromatic compound are added to an organic amide solvent at a temperature ranging from room temperature to 30°C, preferably under an inert gas atmosphere, and the reaction is carried out by raising the temperature to a predetermined temperature. let

ここで、アルカリ金属硫化物中の含有水量が所定の量よ
シ少ない場合には、必要量を添加補充する。
Here, if the amount of water contained in the alkali metal sulfide is less than the predetermined amount, the necessary amount is added and replenished.

多過ぎる場合には、当業者らにとつて公知の方法、すな
わち、ジハロ芳香族化合物を添加する前に溶媒(および
アルカリ金属硫化物)を730℃から、21O℃程度ま
で昇温しながら常圧下に水の不必要量を系外に追い出す
。この際、水を除去し過ぎた場合には、不足分を添加補
充すればよい。重合系の共存水量は仕込みアルカリ金属
硫化物1モル当シ、0.!モル〜コ、参モルの範囲であ
る。特に、/、0モル〜λ、Oモルの範囲は高分子量の
PASを得やすい。0,1モル未満では生成PASの分
解等望ましくない反応が起るし、一方コ、参モルを超過
する場合にも重合速度が著しく小さくなったシ、系が分
解したシするおそれがあるので、いずれも好ましくない
If the amount is too high, use a method known to those skilled in the art, that is, heat the solvent (and alkali metal sulfide) from 730°C to about 210°C under normal pressure before adding the dihaloaromatic compound. Remove unnecessary amounts of water from the system. At this time, if too much water is removed, the missing amount can be replenished. The amount of coexisting water in the polymerization system is 0.00% per mole of charged alkali metal sulfide. ! The range is from mol to ko, and from mol to mol. In particular, it is easy to obtain a high molecular weight PAS in the range of /, 0 mol to λ, O mol. If it is less than 0.1 mole, undesirable reactions such as decomposition of the produced PAS will occur, while if it exceeds 0.1 mole, the polymerization rate may be significantly reduced or the system may be decomposed. Neither is preferable.

前段重合は、1t−o℃乃至235℃で行なわれる。The first stage polymerization is carried out at a temperature of 1 to 235°C.

温度が低すぎると速度が遅すぎるし、234r ”Cを
こえると生成PAS(および溶媒)が分解を起し易くて
溶融粘度の極めて低いPASLか得られない。
If the temperature is too low, the speed is too slow, and if it exceeds 234r''C, the generated PAS (and solvent) tends to decompose, making it impossible to obtain PASL with extremely low melt viscosity.

ジハロ芳香族化合物の使用量はアルカリ金属硫化物1モ
ル白シO02モル〜/、1モルの範囲が望ましく、特に
Ooりtモルルミ、orモルの範囲が高分子量のPAS
を得るのに好ましい。O,タモル未満または/、1モル
を超過する場合は、加工に適した高粘度のPASを得難
いので好ましくない。
The amount of the dihaloaromatic compound to be used is desirably in the range of 2 to 1 mole per mol of the alkali metal sulfide, and in particular, the range of 0 to 1 mole is particularly suitable for high molecular weight PAS.
preferred for obtaining. If the amount is less than 0.0 mol or/more than 1 mol, it is not preferable because it is difficult to obtain a PAS with a high viscosity suitable for processing.

前段重合の終点、すなわち前段重合から後段重合に切シ
換える時点は、系内のジハロ芳香族化合物の転化率が3
oモルチ〜98モルチに達した時点である。転化率がS
Oモルチ未満では後段重合の際分解等望ましくない反応
が起る。逆に、転化率がりjモルチな超過すると、後′
段重合を行なつても高重合度のPASを得難い。転化率
nモルチ〜り!モル係程度が、室穴に高重合度のPAS
が得られるので好ましい。
At the end point of the first-stage polymerization, that is, at the time of switching from the first-stage polymerization to the second-stage polymerization, the conversion rate of the dihaloaromatic compound in the system is 3.
This is the point when it reaches 98 molti. Conversion rate is S
If the amount is less than 0 molar, undesirable reactions such as decomposition occur during the subsequent polymerization. On the other hand, if the conversion rate exceeds the
Even if stage polymerization is performed, it is difficult to obtain PAS with a high degree of polymerization. Conversion rate n morchiri! PAS with a high degree of polymerization has a molar coefficient in the chamber hole.
This is preferable because it provides the following.

ここで、ジハロ芳香族化合物の転化率は、以下の式で算
出したものである。
Here, the conversion rate of the dihaloaromatic compound is calculated using the following formula.

C) ジハロ芳香族化合物(DMAと略記する)をアル
カリ金属硫化物よシモル比で過剰に添加した場合 (ロ)(イ)以外の場合 前段重合から後段重合への切換え時点で、PASの溶融
粘度は!ポイズ以上かつJOOボイズ以下であるべきで
ある。lOボイズ以上かつ200ボイズ以下であれば、
溶融粘度1000ボイズ以上の高重合度のPASを得る
のによシ適している。jボイズ未満では後段重合時に共
存水量を増すか重合温度を下げる必要があるので、重合
系の分解および反応速度の低下が起ル易い。JOOボ4
ズを超えると、共存水量を減らすか重合温度を上げる必
要があシ、それぞれポリマー収率の低下および重合系の
分解が起るので好ましくない。
C) When a dihaloaromatic compound (abbreviated as DMA) is added in excess at a smol ratio relative to the alkali metal sulfide (b) In cases other than (b), the melt viscosity of PAS changes at the time of switching from the first stage polymerization to the second stage polymerization. teeth! It should be more than poise and less than JOO boise. If it is more than lO bois and less than 200 bois,
It is suitable for obtaining PAS with a high degree of polymerization and a melt viscosity of 1000 voids or more. If it is less than j voids, it is necessary to increase the amount of coexisting water or lower the polymerization temperature during the subsequent polymerization, which tends to cause decomposition of the polymerization system and a decrease in the reaction rate. JOO Bo 4
If the amount exceeds the above, it is necessary to reduce the amount of coexisting water or raise the polymerization temperature, which is not preferable because the polymer yield decreases and the polymerization system decomposes, respectively.

(3)  後段重合 本発明での第二の重合では、換言すれば後段重合では、
前段重合スラリーに水を添加して重合系中の全水量な仕
込アルカリ金属硫化物1モル当シ−2,5モル〜7.0
モルにし、コ≠!℃〜コタ0℃に昇温して、重合を継続
する。後段重合によつて溶融粘度1000ポイズ以上の
PASが得られる。
(3) Post-stage polymerization In the second polymerization in the present invention, in other words, in the post-stage polymerization,
Water is added to the first stage polymerization slurry to give a total amount of water in the polymerization system of 2.5 to 7.0 moles per mole of alkali metal sulfide charged.
Make it a mole, Ko≠! The temperature is raised to 0°C to 0°C to continue polymerization. PAS having a melt viscosity of 1000 poise or more can be obtained by the post-polymerization.

系中の全水量が2.3モル未満、または7.0モルを超
過すると、生成PARの溶融粘度が低下する。
When the total amount of water in the system is less than 2.3 moles or more than 7.0 moles, the melt viscosity of the produced PAR decreases.

特に、3.jモル〜!、0モルの範囲で後段重合を行な
うと、高溶融粘度のPASが得られ易いので好ましい。
In particular, 3. jmol~! It is preferable to carry out the post-stage polymerization in the range of 0 mol, since it is easy to obtain PAS with a high melt viscosity.

また、重合温度が、211j ’C未満では低溶融粘度
のPA81.か得られない。一方、コタo”cを越える
と、生成PABや重合溶媒が分解するおそれがある。特
に、210℃〜270℃の範囲が高溶融粘度のPASが
得られ易いので好ましい。
Furthermore, when the polymerization temperature is lower than 211j'C, PA81. or not obtained. On the other hand, if the temperature exceeds o''c, there is a risk that the produced PAB and the polymerization solvent will decompose.In particular, a temperature range of 210°C to 270°C is preferable because PAS with a high melt viscosity can be easily obtained.

本発明での後段重合段階は前段で生成したPASの単な
る分別・造粒の工程ではなく、前段PASに著るしい溶
融粘度の上昇を起させるためのものである。従−て、後
段重合の重合時間はこの点から定まるのであシ、具体的
には0.2−に時間程度ということになる。重合時間が
短かすぎると低溶融粘度のPASLか得られず、逆圧長
すぎても系の分解が起る。好ましい重合時間は/−/、
1時間、特に好ましい重合時間は3〜io時間、である
The latter polymerization step in the present invention is not simply a step of fractionating and granulating the PAS produced in the earlier stage, but is a step for causing the former PAS to significantly increase in melt viscosity. Therefore, the polymerization time of the latter stage polymerization is determined from this point, and specifically, it is about 0.2 hours. If the polymerization time is too short, PASL with a low melt viscosity cannot be obtained, and if the reverse pressure is too long, the system will decompose. The preferred polymerization time is /-/,
1 hour, particularly preferred polymerization time is 3 to io hours.

前段重合から後段重合への切換えは、前段重合で得られ
たスラリーを別の反応容器に移して後段重合条件に服さ
せることによって行なってもよいし、前段重合と後段重
合とを同一の反応容器中で重合条件を変更することによ
つて行なつてもよい。
Switching from the first stage polymerization to the second stage polymerization may be carried out by transferring the slurry obtained in the first stage polymerization to another reaction vessel and subjecting it to the second stage polymerization conditions, or the first stage polymerization and the second stage polymerization may be performed in the same reaction vessel. This may also be carried out by changing the polymerization conditions within the process.

水を添加する時機は、前段重合後で後段重合の温度に昇
温開始前か、昇温途中か、あるいは後段重合の温度に昇
温直後がよい。共存水の少ない状態で後段重合の温度に
長時間保ったのち水を添加したのでは、高溶融粘度のP
ASが得られないので好ましくない。
The timing for adding water is preferably after the first stage polymerization and before the start of raising the temperature to the second stage polymerization temperature, during the temperature rise, or immediately after the temperature rise to the second stage polymerization temperature. If water is added after keeping the post-polymerization temperature for a long time with little coexisting water, P with a high melt viscosity will result.
This is not preferred because AS cannot be obtained.

(4)後処理 本発明の重合方法における後処理は、常法によ−て行な
うことができる。すなわち、後段重合反応の終了後、冷
却した生成物スラリーをそのままあるいは水分などで稀
釈してからr別し、水洗r過を繰シ返して乾燥すること
によjD、PASを得ることができる。
(4) Post-treatment Post-treatment in the polymerization method of the present invention can be carried out by conventional methods. That is, after the completion of the second-stage polymerization reaction, jD and PAS can be obtained by separating the cooled product slurry as it is or diluting it with water or the like, washing with water, filtering, and drying repeatedly.

生成PAS 本発明の方法によシ得られるPAsは、1000ボイズ
以上の高溶融粘度をもちかつ実質的に線状なので、強靭
な耐熱性フィルム、シート、繊維等に極めて容易に成形
加工することができる。さらにまた、このPASは射出
成形、押出成形、回転成形などによって種々のモールド
物に加工することができるが、これは肉厚のものであっ
てもクラックが人シ難い。
Produced PAS The PAs obtained by the method of the present invention have a high melt viscosity of 1000 voids or more and are substantially linear, so they can be extremely easily molded into tough heat-resistant films, sheets, fibers, etc. can. Furthermore, this PAS can be processed into various molded products by injection molding, extrusion molding, rotary molding, etc., but even if it is thick, it is difficult to crack.

更に本発明の重合体にカーボン黒、炭酸カルシウム粉末
、シリカ粉末、酸化チタン粉末等の粉末状充填材、又は
炭素繊維、ガラス繊維、アスベスト、ポリアラミド線維
な′どの繊維状充填剤を充填して使用することができる
Furthermore, the polymer of the present invention may be filled with powder fillers such as carbon black, calcium carbonate powder, silica powder, titanium oxide powder, or fibrous fillers such as carbon fiber, glass fiber, asbestos, and polyaramid fiber. can do.

本発明はまたポリカーボネート、ポリフェニレンオキシ
ド、ポリスルフォン、ポリアリーレン、ポリアセタール
、ポリイミド、ポリアミド、ポリエステル、ボリスチレ
ノ、ABSなどの合成樹脂の一種以上を混合して使用す
ることもできる。
The present invention can also use a mixture of one or more synthetic resins such as polycarbonate, polyphenylene oxide, polysulfone, polyarylene, polyacetal, polyimide, polyamide, polyester, polystyrene, and ABS.

実験例 実施例/ (1)前段重合 吃すットルオートクV−プにN−メチルーーービロリド
ン(以下NMPと略記する)//、OKfとat、O2
重量%のNa2Sを含むNa28 j水塩結晶(長屋ソ
ータ社f11) 47,232Kp(Na、2+8とし
てコj、0モル)を仕込、窒素雰囲気下に約2時間かけ
て攪拌しながら徐々に203℃まで昇温して、水/、1
1!〜、N M P /、24m9および0.itモル
0H28を留出させた。
Experimental Examples/ (1) N-methyl-pyrrolidone (hereinafter abbreviated as NMP) //, OKf, at, O2 in the first stage polymerization tank
47,232 Kp (Na, 2+8 as coj, 0 mol) of Na28j hydrate crystals (Nagaya Sota Co., Ltd. f11) containing % Na2S by weight were charged and gradually heated to 203°C with stirring for about 2 hours under a nitrogen atmosphere. Water/, 1
1! ~, N M P /, 24 m9 and 0. It mole 0H28 was distilled off.

この場合、系中の水の量はNa281モル当シ約/、4
モルになっている。
In this case, the amount of water in the system is about 281 moles of Na/4
It has become a mole.

/JO”C,まで冷却したのち、パラジクロルベンゼン
(以下p−DCBと略記する)J、jり〜(λφ、4I
−λモル)とNMPj、/7Kpとを加えてコ10℃で
io時間重合させて、前段重合パラ!j−(8−/ )
を得た。
/JO”C, and then paradichlorobenzene (hereinafter abbreviated as p-DCB) J,jri~(λφ,4I
-λ mol) and NMPj, /7Kp were added and polymerized at 10°C for io hours to complete the first stage polymerization. j-(8-/)
I got it.

スラリー中の残存p−D’CB量をガスクロマトグラフ
法によって求め、前記の転化率を算出する式(ロ)に従
ってp −DCBの転化率を求めた。転化率は2裏Oモ
ルチであやだ。
The amount of p-D'CB remaining in the slurry was determined by gas chromatography, and the conversion rate of p-DCB was determined according to the formula (b) for calculating the conversion rate. The conversion rate is between 2 and 10%.

スラリー1001をとシ、そのまま吸引r過して液状成
分を除去した。次いで、固形分を約lK9の脱イオン水
中に分散させ、再度吸引r過して、生成PPSを洗浄し
た。この様な操作を3回くシ返したのち、100℃で2
時間乾燥して(空気雰囲気下)、ポリフエニレンスルフ
イド(pps)粉を得た。これを予熱なしに3λO℃で
30秒間溶融プレスして得たプレスシートについて、高
化式フローテスター(高滓製作所製)を用いて310℃
(予熱5分)で溶融粘度を測定した。剪断速度−ZOO
5ac−1に換算してIOjボイズでありた。
Slurry 1001 was filtered and filtered under suction to remove liquid components. The solids were then dispersed in approximately 1K9 of deionized water and filtered again with suction to wash away the PPS produced. After repeating this operation three times, it was heated to 100℃ for two
After drying for hours (under air atmosphere), polyphenylene sulfide (pps) powder was obtained. The pressed sheet obtained by melt pressing this at 3λO℃ for 30 seconds without preheating was heated to 310℃ using a Koka type flow tester (manufactured by Takasu Seisakusho).
(preheated for 5 minutes) to measure the melt viscosity. Shear rate-ZOO
It was IOj boys in terms of 5ac-1.

(2)後段重合 スラリー(19−/)7j’4C11(仕込Na2S 
1モル相当)をlリットルオートクン−プに仕込み、水
jシコI(全水量として先j#cル/Ni281モルに
なる)を添加し、窒素雰囲気下に210℃に昇温して1
0時間重合させた。p −DCBの転化率はブタ60チ
であった。冷却後、孔目寸法約0,1mの篩で−く−ル
状ppsをNMP、PP8オリゴマー等から篩別した。
(2) Post-polymerization slurry (19-/) 7j'4C11 (prepared Na2S
(equivalent to 1 mole) was placed in a 1 liter autoclave, water (total amount of water equals 281 moles of Ni) was added, and the temperature was raised to 210°C under a nitrogen atmosphere to give 1 mol of Ni.
Polymerization was carried out for 0 hours. The conversion rate of p-DCB was 60 cm. After cooling, the pore-like pps was sieved from NMP, PP8 oligomer, etc. using a sieve having a hole size of about 0.1 m.

次いで、脱イオン水でくシ返し洗浄したのち、100℃
で3時間乾燥して、下記のような粒度分布(水篩法によ
る)をもつPPSを得た。
Next, after rinsing with deionized water, heat at 100°C.
After drying for 3 hours, PPS with the following particle size distribution (based on the water sieve method) was obtained.

収率は約評チでありた。ここで言う収率とは、重合上ツ
マ−が全て高重合度のPASに転化したと仮定した量(
理論量)に対する回収されたパール状PASの割合であ
る。
The yield was approx. The yield mentioned here refers to the amount (
This is the ratio of recovered pearl-like PAS to the theoretical amount).

粒径0.31 m以下     0 重量%p  o、
3t〜0.グ2    0.コ 〃I  Q、≠コ〜o
、’yi     i3.z  pl  0.7/〜/
、00     jJ、コ 〃I  1+00〜1.≠
13≠、1 11 1、弘/m以上     O〃 得られたパール状PPSの見掛比重は弘3117diで
あった。また、溶融粘度はzqooボイズであった。
Particle size 0.31 m or less 0 wt% po,
3t~0. G2 0. Ko 〃I Q,≠Ko〜o
,'yi i3. zpl 0.7/~/
, 00 jJ, Ko 〃I 1+00~1. ≠
13≠, 1 11 1, Hiro/m or more O〃 The apparent specific gravity of the obtained pearl-like PPS was Hiro 3117 di. Moreover, the melt viscosity was zqoo voids.

実施例コ〜j 8−/のスラリーを用いて実施例1と同一の操作で重合
時間を/ −/!i時間の範囲で変えて後段重合を行な
った(実施例λ〜り。また、S−/のスラリーを用い、
添加水分の量を変えて共存水量としてH20/N轟2S
モル比3.0−3,0の範囲で後段重合を行なった(実
施例6〜t)。いずれの場合にも、溶融粘度の高いパー
ル状のPPSが得られた。結果は、まとめて表−コに示
す通シである。
Example Co~j Using the slurry of 8-/, the polymerization time was changed to /-/! in the same manner as in Example 1. Post-polymerization was carried out by changing the time within the range of i (Examples λ to 1).Also, using a slurry of S-/,
H20/N Todoroki 2S as coexisting water amount by changing the amount of added water
Post-stage polymerization was carried out at a molar ratio in the range of 3.0-3.0 (Examples 6 to t). In either case, pearl-like PPS with high melt viscosity was obtained. The results are summarized in Table C.

実施例り〜19 実施例1の前段重合とほぼ同様の方法によシ、モル比(
p−DCB/Na28モル比)、共存水量(120/N
峠Sモル比)、仕込濃度(NMP/Kp中のNa2Sモ
ル数)、重合温度、重合時間を変えて。
Example 19 The molar ratio (
p-DCB/Na28 molar ratio), amount of coexisting water (120/N
(S mole ratio), charging concentration (number of moles of Na2S in NMP/Kp), polymerization temperature, and polymerization time.

各種前段スラリー(S−λ〜7.5−10〜/4A)を
得た。それぞれについて転化率および生成PPSの溶融
粘度を求めた。重合条件、結果は、表−1に示した通り
である。
Various pre-stage slurries (S-λ~7.5-10~/4A) were obtained. The conversion rate and melt viscosity of the produced PPS were determined for each. The polymerization conditions and results are as shown in Table 1.

次に、これらのスラリーを用い、後段重合条件を表−2
に示すように変えて、後段重合を行なった。結果は、表
−2に示す通シであった。いずれの場合にも、高溶融粘
度でほとんどの場合−々−ル状の粒子を得ることができ
た。
Next, using these slurries, the post-polymerization conditions are shown in Table 2.
The second stage polymerization was carried out with the following changes. The results were as shown in Table-2. In all cases, it was possible to obtain particles of high melt viscosity and in most cases a round shape.

比較例1 前段重合スラリー(B −/ ) 71≠ttt!ti
リツトルオートクレーブに仕込み、水は添加せずに、窒
素雰囲気下に2!O℃で10時間後段重合を行なつた。
Comparative Example 1 First-stage polymerization slurry (B −/ ) 71≠ttt! Ti
Place in a little autoclave and place under nitrogen atmosphere without adding water! Post-polymerization was carried out at 0° C. for 10 hours.

冷却後、吸引r過してppsをNMPから分、離した。After cooling, the pps was separated from the NMP by suction filtration.

次いで、このPPSを脱イオン水でくシ返し洗浄したの
ち、100℃で!時間乾燥して、微粉状のポリマーを得
たう収率りtチ、溶融粘度10ボイズ、見掛比重はl−
M/diであった(結果を表コにまとめである)。
Next, this PPS was washed repeatedly with deionized water, and then heated at 100℃! After drying for a few hours, a fine powder polymer was obtained with a yield of t, a melt viscosity of 10 voids, and an apparent specific gravity of l-
M/di (the results are summarized in Table 1).

比較例コ 前段重合スラリー(S−i)yz4!iを7リツトルオ
ートクレープに仕込み、水を//!0.2 JiF添加
しく全水量r、oモル)、窒素雰囲気下に、2jj ’
Cで10時間後段重合を行なった。
Comparative example first stage polymerization slurry (S-i)yz4! Put i into a 7 liter autoclave and add water//! 0.2 JiF (total amount of water r, o mol) added, under nitrogen atmosphere, 2jj'
Post-polymerization was carried out at C for 10 hours.

冷却後、比較例1と同様にしてppsを回収した。細か
い砂状のポリマーが得られた。収率り7チ、溶融粘度は
≠10ボイズであシ、後段重合で水が多すぎると溶融粘
度が高くならないことが判る(結果を表2に示しである
)。
After cooling, pps was collected in the same manner as in Comparative Example 1. A fine sandy polymer was obtained. The yield was 7 cm, and the melt viscosity was ≠10 voids, indicating that the melt viscosity did not increase if too much water was added in the post-polymerization (the results are shown in Table 2).

比較例3 共存水の量をNa2S 1モル当シコ、jモルとした。Comparative example 3 The amount of coexisting water was defined as j moles per mole of Na2S.

以外は、実施例1とほとんど同じ手順で−io℃で10
時間重合を行なって、前段重合スラV−<5−t)を得
た。転化率ry、rts、前段PPSの溶融粘度はjボ
イズ以下であった(結果を表1にまとめである)。
Except for this, the procedure was almost the same as in Example 1, and the temperature was 10°C at -io°C.
Polymerization was carried out for a period of time to obtain a pre-polymerized slurry (V-<5-t). The conversion rate ry, rts, and melt viscosity of the first-stage PPS were below jboise (the results are summarized in Table 1).

このスラリー770gをlリットルオートクン −プに
仕込み、水3611を追加して、窒素雰囲気下に220
℃で10時間後段重合を行なって、顆粒状のPpsを得
た。収率7♂チ、ppsの溶融粘度はIIJOポイズで
あつた。前段重合の水量が少なすぎると溶融粘度が高く
ならず、また後段重合後のスラリーは悪臭がして分解ぎ
みであった(結果を表λにまとめである)。
Pour 770 g of this slurry into a 1 liter auto pump, add 3611 g of water, and heat it under nitrogen atmosphere for 220 g.
Post-polymerization was carried out at °C for 10 hours to obtain granular Pps. The yield was 7♂H, and the melt viscosity of pps was IIJO poise. If the amount of water in the first stage polymerization was too small, the melt viscosity could not be increased, and the slurry after the second stage polymerization had a bad odor and was on the verge of decomposition (the results are summarized in Table λ).

比較例≠ 辺リットルオートクレーブにNMP/シoKP、pt、
oコ重量%のNa28を含むNa28 J水塩結晶4A
、07 Q (Na28として、2屹0毛ル)、p−D
CB!、701〜(21,20モル)を仕込み、水抜き
せずに窒素雰囲気下に210℃でに時間反応させて、前
段重合スラ9−(S−タ)を得た。転化率は、rj、O
チ、前段で得られたppsの溶融粘度はjポイズ以下で
あった(結果を表7にまとめである)。
Comparative example ≠ NMP/SioKP, pt, in side liter autoclave
Na28 J water salt crystal 4A containing o% by weight of Na28
, 07 Q (as Na28, 2 tons 0 hairs), p-D
CB! , 701-(21.20 mol) were charged and reacted at 210° C. for a period of time in a nitrogen atmosphere without draining water to obtain a pre-polymerization slurry 9-(S-ta). The conversion rate is rj, O
H. The melt viscosity of the pps obtained in the first stage was less than j poise (the results are summarized in Table 7).

このスラリー(S−タ)ffJllをlリットルオート
クン−プに仕込み、窒素雰囲気下に、2!0℃で10時
間後段重合を行なったところ、分解が起って、重合は進
行しなかった。少量得られた顆粒状PPSの溶融粘度は
、Jボイズ以下であった(結果を表コにまとめである゛
)。
When this slurry (S-ta) ffJll was charged into a 1 liter autoclave and post-polymerization was carried out at 2!0° C. for 10 hours in a nitrogen atmosphere, decomposition occurred and the polymerization did not proceed. The melt viscosity of the granular PPS obtained in a small amount was below J-Boise (the results are summarized in Table 1).

比較例! 比較例≠で得た前段重合スラ!J−(8−5’)rsa
 、9を7リツトルオートクレープに仕込み、水は添加
せずに、窒素雰囲気下に、210℃で更に30時間重合
を行ない、結局、Na281モル当シ約z、iモルの共
存水の存在下に、210℃で通算3o時間重合を行なっ
たところ、反応液は悪臭がして分解していた。少量回収
されたPPSの溶融粘度は、9ボイズ以下であった。
Comparative example! First-stage polymerization slurry obtained in Comparative Example≠! J-(8-5')rsa
. When polymerization was carried out at 210° C. for a total of 3 hours, the reaction solution gave off a bad odor and was decomposed. The melt viscosity of the small amount of PPS recovered was 9 voids or less.

比較例6 前段重合スラリー(,5−t)rりざ11 (Na2S
仕込量12λモル相当)をlリットルオートクレーブに
仕込み、窒素雰囲気下に2!tO℃に昇温して!時間重
合を行なって、反応を完結させた。冷却後、00.9を
サンプリングし、転化率を算出する式(イ)に従−て転
化率および生成ppsの溶融粘度を求めた。
Comparative Example 6 First-stage polymerization slurry (,5-t) r Riza 11 (Na2S
Charged amount (equivalent to 12λ moles) was charged into a 1 liter autoclave and placed in a nitrogen atmosphere for 2 hours. Raise the temperature to tO℃! Polymerization was carried out for a period of time to complete the reaction. After cooling, 00.9 was sampled, and the conversion rate and the melt viscosity of the pps produced were determined according to the formula (a) for calculating the conversion rate.

転化率タタ、2モルチ ppsの溶融粘度r、2ボイズ 次いで、残シのスラリーに水j7.tliを添加しく全
量で先jモル)、窒素雰囲気下に、2.70℃に再昇温
して、 io時間反応させて、砂状ないし顆粒状のpp
sを得た。収率65チ、見掛比重3/I/dl、溶融粘
度り00ボイズであつた。粒度分布は、次に示す通シで
あった。
Conversion rate tata, melt viscosity r of 2 mol pps, 2 voids, then water j7. tli (total amount of J mol) was heated again to 2.70°C under a nitrogen atmosphere, and reacted for io hours to form sandy or granular pp.
I got s. The yield was 65 cm, the apparent specific gravity was 3/I/dl, and the melt viscosity was 00 voids. The particle size distribution was as shown below.

粒径0.IOr tx以下    O重量価y  o、
ioz〜Q、3!    コ≠、3 11 0.3!r
〜O0≠コ    12.7 1#0.グ+2−0.7
1     ≠3.!〃粒径0.71〜/、00   
 10J重量%1 1.DO〜1.≠/       
 j、0   /’1  /、l11w5以上    
 3#7〃前段重合で転化率が余りに大となると、本発
明の条件4で後段重合しても溶融粘度は大とならない。
Particle size 0. IOr tx or less O weight value y o,
ioz~Q, 3! Ko≠, 3 11 0.3! r
~O0≠ko 12.7 1#0. g+2-0.7
1 ≠ 3. ! 〃Particle size 0.71~/,00
10J weight%1 1. DO~1. ≠/
j, 0 /'1 /, l11w5 or more
3#7 If the conversion rate becomes too high in the first stage polymerization, the melt viscosity will not increase even if the second stage polymerization is performed under condition 4 of the present invention.

実施例m 10リツトルオートクレーブにNMP弘hoopと、l
/−ぶ、0ノ重量%のNa2Sを含むN轟2S!水塩結
晶ltりJ、9(Na2Sとしてioモル)とを仕込み
、窒素雰囲気下に徐々に202℃まで昇温しながら水6
11311、NMPII/71および0.J/ モkf
) H2Oを留出させた。この場合、系中の水の量はN
a281モル当シ約1.33モルである。iso℃まで
冷却後、p−DCB/≠321 (p−DCB/N息2
Sモル比1,0///、OO)とNMP76コIとを加
え、210℃で10時間重合を行なって、前段重合スラ
リーな得た。これを少量サンプリングして調べたところ
、転化率はりJ、3%、生成PPSの溶融粘度は約10
0ボイズであった。
Example m In a 10 liter autoclave, add NMP Hiro hoop and l
/-bu, N Todoroki 2S containing 0% by weight of Na2S! Water salt crystals were charged with J,9 (io mol as Na2S), and while gradually heating up to 202°C in a nitrogen atmosphere, water was added with 6
11311, NMPII/71 and 0. J/ Mokf
) H2O was distilled off. In this case, the amount of water in the system is N
It is about 1.33 mol per 281 mol of a. After cooling to iso℃, p-DCB/≠321 (p-DCB/N breath 2
S molar ratio 1,0///, OO) and NMP76 were added, and polymerization was carried out at 210° C. for 10 hours to obtain a pre-polymerization slurry. When a small amount of this was sampled and investigated, the conversion rate was 3%, and the melt viscosity of the PPS produced was approximately 10.
There was 0 voice.

次いで、この前段重合スラリーを冷却せずK、水ψAn
を窒素で圧入しく全水量として、Na281モル当り6
0モルになる)、80℃に昇温して10時間後段重合を
行なつた。p −DCBの転化率はりZ≠係であった。
Next, this first-stage polymerization slurry was heated with K and water ψAn without being cooled.
is injected with nitrogen and the total amount of water is 6 per mole of Na28.
0 mol), the temperature was raised to 80° C., and post-polymerization was carried out for 10 hours. The conversion rate of p-DCB was Z≠.

以下、実施例1と同様に−く一ル状のPPSを回収した
。ポリマー収率Irtチ、溶融粘度74!00ボイズで
あった。
Thereafter, a pellet-shaped PPS was collected in the same manner as in Example 1. The polymer yield was IRt1, and the melt viscosity was 74!00 voids.

比較例7 前段重合スラリー(S−/ ) yz4Liをlリット
ルオートクン−プに仕込み、水は添加せずに(全水量は
Na2B 1モル当#)1.6モル)、窒素雰囲気下に
2jO”C,に昇温して1時間重合を継続して、反応を
完結させた。次いで、冷却せずに、水!2.211を窒
素ガスで圧入した。温度は一旦約220℃まで低下した
が、更に加熱して80℃まで回復したところで、ただち
に加熱を中止した。実施例1と同様の操作で回収を行な
って、顆粒状(非球状)のppsを得た。p −DCB
の転化率りP、J%、収率70’%、PP8の溶融粘度
240ボイズであった。なお、得られたppsの粒度分
布は、比較例乙のものに類似していた。
Comparative Example 7 First-stage polymerization slurry (S-/) yz4Li was charged into a 1 liter autoclave, and 2jO'' was added in a nitrogen atmosphere without adding water (total water amount was 1.6 mol per 1 mol of Na2B). C., and polymerization was continued for 1 hour to complete the reaction.Next, without cooling, water !2.211 was pressurized with nitrogen gas.The temperature was once lowered to about 220°C, but After further heating and the temperature recovered to 80°C, the heating was immediately stopped. Recovery was carried out in the same manner as in Example 1 to obtain granular (non-spherical) pps.p-DCB
The conversion rate was P, J%, the yield was 70'%, and the melt viscosity of PP8 was 240 boids. The particle size distribution of the obtained pps was similar to that of Comparative Example B.

比較例t Na2B 1モル当1)/、4モルのH2Oを含む条件
で210℃/10時間の重合を行なって得たスラリー(
S−/)7!4!11をlリットルオートクレーブに仕
込み、水142g(全水量としてNa281モル当シク
、!モルになる)を添加し、窒素雰囲気下に室温から、
210℃まで約1時間かけて昇温した。−210’Cに
到達後、ただちに冷却した。p −DCBの転化率はy
yr4であった。以下、実施例1と同様に後処理を行な
った。顆粒状(非球状)のppsが得られた。ポリマー
収率は約A#i溶融粘度はgo。
Comparative Example t Slurry obtained by polymerization at 210°C/10 hours under conditions containing 1)/1 mole of Na2B/1 mole of H2O (
S-/) 7!4!11 was placed in a liter autoclave, 142 g of water (total amount of water equal to 281 mol of Na, ! mol) was added, and the mixture was heated from room temperature under a nitrogen atmosphere.
The temperature was raised to 210°C over about 1 hour. After reaching -210'C, it was immediately cooled. The conversion rate of p-DCB is y
It was yr4. Thereafter, post-treatment was performed in the same manner as in Example 1. Granular (non-spherical) pps were obtained. Polymer yield is approximately A#i. Melt viscosity is go.

ボイズであった。It was Boyz.

実施例2ノ 実施例1と全く同じ条件で前段重合を行ない、−2jO
℃で10時間後段重合を行なった。次いで、攪拌を止め
たまま、2jO℃に30分間保ったのち、攪拌を止めた
状態で約2時間かけて室温まで冷却した。
Example 2 The first stage polymerization was carried out under exactly the same conditions as in Example 1, and -2jO
Post-polymerization was carried out at °C for 10 hours. Next, the mixture was kept at 2JO<0>C for 30 minutes while stirring was stopped, and then cooled to room temperature over about 2 hours while stirring was stopped.

以下、実施例1と全く同様の後処理を行なって、はぼパ
ール状のPPSを得た。収率r3チ、溶溶融度よ弘00
ボイズであった。
Thereafter, the same post-treatment as in Example 1 was carried out to obtain pearl-like PPS. Yield r3chi, melting degree 000
It was Boyz.

得られたPP80粒度分布は実施例1とほぼ同じであシ
、個々の粒子は偏平になつたシ融着したシしていなかっ
た。従って、パール状の粒子は後段重合後の冷却の過程
でできてくるのではなく、後段重合中に形成されて、徐
々に融着しない程度に硬化していくものと考えられる。
The particle size distribution of the obtained PP80 was almost the same as in Example 1, and the individual particles were not flattened or fused together. Therefore, it is considered that the pearl-like particles are not formed during the cooling process after the post-polymerization, but are formed during the post-polymerization and gradually harden to the extent that they do not fuse.

手続補正側 昭和59年7月23日procedural amendment side July 23, 1980

Claims (1)

【特許請求の範囲】 有機アミド溶媒中でアルカリ金属硫化物とジハロ芳香族
化合物とを反応させてポリアリーレンスルフィドを得る
方法において、この反応を少なくとも下記の二段階で行
なうことを特徴とする、溶融粘度が1000ボイズ以上
のポリアリーレンスルフィドの製造法(ただし、本発明
において溶融粘度は310℃で剪断速度200(秒)^
−1で測定したものである)。 (1)アルカリ金属硫化物1モル当り0.5〜2.4モ
ルの水が存在する状態で、180〜235℃の温度で反
応を行なって、溶融粘度5〜300ボイズのポリアリー
レンスルフィドをジハロ芳香族化合物の転化率50〜9
8モル%で生成させる工程、(2)アルカリ金属硫化物
1モル当り2.5〜7.0モルの水が存在する状態とな
るように水を添加すると共に245〜290℃の温度に
昇温して、上記の反応を継続する工程。
[Claims] A method for obtaining polyarylene sulfide by reacting an alkali metal sulfide and a dihaloaromatic compound in an organic amide solvent, characterized in that the reaction is carried out in at least the following two steps: A method for producing polyarylene sulfide having a viscosity of 1000 voids or more (however, in the present invention, the melt viscosity is 310°C and the shear rate is 200 (seconds)^
-1). (1) In the presence of 0.5 to 2.4 moles of water per mole of alkali metal sulfide, a reaction is carried out at a temperature of 180 to 235°C to convert polyarylene sulfide with a melt viscosity of 5 to 300 voids into dihalogen. Conversion rate of aromatic compounds 50-9
(2) adding water so that 2.5 to 7.0 mol of water exists per 1 mol of alkali metal sulfide and raising the temperature to 245 to 290°C; and continuing the above reaction.
JP59126725A 1984-06-20 1984-06-20 Production of high molecular weight polyarylene sulfide Granted JPS617332A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59126725A JPS617332A (en) 1984-06-20 1984-06-20 Production of high molecular weight polyarylene sulfide
US06/746,252 US4645826A (en) 1984-06-20 1985-06-18 Process for production of high to ultra-high molecular weight linear polyarylenesulfides
DE8585107575T DE3584692D1 (en) 1984-06-20 1985-06-19 METHOD FOR PRODUCING LINEAR POLY (ARYLENE SULFIDES) WITH HIGH TO ULTRA-HIGH MOLECULAR WEIGHT.
CA000484413A CA1236642A (en) 1984-06-20 1985-06-19 Process for production of high to ultra-high molecular weight linear polyarylenesulfides
EP85107575A EP0166368B1 (en) 1984-06-20 1985-06-19 Process for production of high to ultra-high molecular weight linear polyarylenesulfides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126725A JPS617332A (en) 1984-06-20 1984-06-20 Production of high molecular weight polyarylene sulfide

Publications (2)

Publication Number Publication Date
JPS617332A true JPS617332A (en) 1986-01-14
JPS6333775B2 JPS6333775B2 (en) 1988-07-06

Family

ID=14942324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126725A Granted JPS617332A (en) 1984-06-20 1984-06-20 Production of high molecular weight polyarylene sulfide

Country Status (1)

Country Link
JP (1) JPS617332A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176529A (en) * 1984-09-21 1986-04-19 Toyo Soda Mfg Co Ltd Granular polyarylene sulfide and its production
JPS62232437A (en) * 1986-04-02 1987-10-12 Toto Kasei Kk Production of polyphenylene sulfide resin
JPS62240359A (en) * 1986-03-11 1987-10-21 Kureha Chem Ind Co Ltd Polyarylene thioether composition
JPS6339926A (en) * 1986-08-04 1988-02-20 Kureha Chem Ind Co Ltd Production of polyarylene sulfide
JPS63137822A (en) * 1986-11-29 1988-06-09 Kureha Chem Ind Co Ltd Extrusion molding method for polyphenylene sulfide
JPS63305131A (en) * 1987-06-06 1988-12-13 Idemitsu Petrochem Co Ltd Production of arylene sulfide copolymer
WO1988009881A1 (en) * 1987-06-04 1988-12-15 Nippon Seiko Kabushiki Kaisha Plastic retainer for bearing
DE3890466T1 (en) * 1987-06-04 1989-05-24 Nippon Seiko Kk PLASTIC HOLDER FOR A WAREHOUSE
US4840986A (en) * 1987-03-06 1989-06-20 Tosoh Corporation And Toso Susteel Co., Ltd. Process for producing a polyarylene sulfide
JPH01299826A (en) * 1988-05-26 1989-12-04 Kureha Chem Ind Co Ltd Production of crosslinked polyarylene sulfide polymer
US4894419A (en) * 1987-05-15 1990-01-16 Kureha Kagaku Kogyo K.K. Biaxially-stretched film made of poly(arylene sulfide) resin composition and production process thereof
US4910294A (en) * 1988-06-20 1990-03-20 Idemitsu Petrochemical Company Limited Two-stage process for production of polyarylene sulfides with lithium compound
US4976825A (en) * 1986-04-28 1990-12-11 Kureha Kagaku Kogyo Kabushiki Kaisha Process for recovering N-methylpyrrolidone by plural distillations
US4976908A (en) * 1987-12-28 1990-12-11 Kureha Kagaku Kogyo K. K. Poly(arylene sulfide) sheet production process
JPH0350237A (en) * 1989-07-17 1991-03-04 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
US5013823A (en) * 1988-12-02 1991-05-07 Kureha Kagaku Kogyo K.K. Poly(arylene sulfide) sheet and production process thereof
US5126430A (en) * 1988-08-04 1992-06-30 Idemitsu Petrochemical Company Limited Process for preparing polyarylene sulfides with metal salt of hydroxycarboxylic acid
US5194580A (en) * 1988-08-05 1993-03-16 Idemitsu Petrochemical Co., Ltd. Process for preparing polyarylene sulfides under reduced pressure
US5223557A (en) * 1989-12-28 1993-06-29 Kureha Kagaku Kogyo K.K. Electronic device sealing resin compositions and sealed electronic devices
US5360890A (en) * 1991-08-14 1994-11-01 Tosoh Corporation Refining of polyarylene sulfides
EP0598449A3 (en) * 1992-11-12 1994-12-21 Tonen Sekiyukagaku Kk Process for controlling a particle size of polyarylene sulfide and polyarylene sulfide thus produced.
JPH07312325A (en) * 1995-05-12 1995-11-28 Kureha Chem Ind Co Ltd Capacitor
US5590225A (en) * 1987-06-04 1996-12-31 Nippon Seiko Kabushiki Kaisha Plastic holder for bearing
US5777069A (en) * 1994-02-07 1998-07-07 Tonen Chemical Corporation Method of maufacturing a tubular extrusion molding product comprising a high molecular weight polyarylene sulfide
EP0839851A3 (en) * 1996-10-31 2001-08-29 Tonen Chemical Corporation Process for the preparation of polyarylene sulfide
JP2007284700A (en) * 2007-08-09 2007-11-01 Kureha Corp Method for stabilizing color tone of polyarylenesulfide resin molding and method for producing polyarylenesulfide resin composition
WO2007129721A1 (en) 2006-05-10 2007-11-15 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film
WO2008123183A1 (en) 2007-03-23 2008-10-16 Toray Industries, Inc. Polyphenylene sulfide resin composition
WO2008139989A1 (en) 2007-05-09 2008-11-20 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and process for producing the same
US7504476B2 (en) 2003-01-21 2009-03-17 Kureha Corporation Poly(arylene sulfide) and production process thereof
US7632915B2 (en) 2002-12-27 2009-12-15 Kureha Corporation Production process and washing method of poly(arylene sulfide), and purification process of organic solvent used in washing
JP2011149014A (en) * 2009-12-22 2011-08-04 Toray Ind Inc Method for producing cyclic polyarylene sulfide
WO2012165140A1 (en) 2011-05-31 2012-12-06 東レ株式会社 Process for producing polymer alloy, polymer alloy, and molded article
US8357761B2 (en) 2008-12-10 2013-01-22 Konica Minolta Business Technologies, Inc. Polymer composition, transferring belt for electrophotography, image-forming apparatus and method for producing polymer composition
US9422402B2 (en) 2014-09-05 2016-08-23 Kureha Corporation Method of producing polyarylene sulfide and polyarylene sulfide
WO2016199894A1 (en) * 2015-06-12 2016-12-15 株式会社クレハ Method for producing granular polyarylene sulfide, and granular polyarylene sulfide
US9862804B2 (en) 2014-02-25 2018-01-09 Toray Industries, Inc. Polyarylene sulfide resin powder/grain composition and method of producing same
WO2018043025A1 (en) 2016-08-31 2018-03-08 東レ株式会社 Resin composition and molded article thereof
WO2018074353A1 (en) 2016-10-21 2018-04-26 東レ株式会社 Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
US10010857B2 (en) 2014-09-22 2018-07-03 Kureha Corporation Polyarylene sulfide production device provided with supply tube
WO2019049816A1 (en) 2017-09-05 2019-03-14 東レ株式会社 Moldings of fiber-reinforced thermoplastic resin
WO2019146633A1 (en) 2018-01-26 2019-08-01 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
US10385174B2 (en) 2014-08-06 2019-08-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin molding material, and fiber reinforced thermoplastic resin molded article
US10391676B2 (en) 2014-02-03 2019-08-27 Toray Industries, Inc. Fiber-reinforced multilayered pellet, molded article molded therefrom, and method of producing fiber-reinforced multilayered pellet
US11008426B2 (en) 2016-01-20 2021-05-18 Toray Industries, Inc. Polyarylene sulfide resin particulate and method of producing same
WO2021106714A1 (en) 2019-11-25 2021-06-03 東レ株式会社 Fiber-reinforced thermoplastic resin molded article
US11529769B2 (en) 2017-08-08 2022-12-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
WO2023013626A1 (en) 2021-08-03 2023-02-09 東レ株式会社 Inorganic filling material and inorganic filling material-reinforced thermoplastic resin
WO2023058448A1 (en) 2021-10-07 2023-04-13 東レ株式会社 Fiber-reinforced thermoplastic resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314645A1 (en) 2008-08-11 2011-04-27 Mitsubishi Gas Chemical Company, Inc. Resin composition
CN102428122B (en) 2009-05-18 2013-08-21 株式会社吴羽 Polyarylene sulfide and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325880A (en) * 1976-08-24 1978-03-10 Alps Electric Co Ltd Rotary pulse switch
US4127713A (en) * 1977-11-14 1978-11-28 Phillips Petroleum Company Aromatic sulfide/sulfone polymer production
JPS57334A (en) * 1980-05-31 1982-01-05 Mitsubishi Heavy Ind Ltd Fuel controller for diesel engine
JPS572250A (en) * 1980-05-06 1982-01-07 Phillips Petroleum Co Alkali metal aminoalkanoate and manufacture of polymer therewith
JPS5922926A (en) * 1982-07-29 1984-02-06 Kureha Chem Ind Co Ltd Preparation of linear aromatic sulfide polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325880A (en) * 1976-08-24 1978-03-10 Alps Electric Co Ltd Rotary pulse switch
US4127713A (en) * 1977-11-14 1978-11-28 Phillips Petroleum Company Aromatic sulfide/sulfone polymer production
JPS572250A (en) * 1980-05-06 1982-01-07 Phillips Petroleum Co Alkali metal aminoalkanoate and manufacture of polymer therewith
JPS57334A (en) * 1980-05-31 1982-01-05 Mitsubishi Heavy Ind Ltd Fuel controller for diesel engine
JPS5922926A (en) * 1982-07-29 1984-02-06 Kureha Chem Ind Co Ltd Preparation of linear aromatic sulfide polymer

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176529A (en) * 1984-09-21 1986-04-19 Toyo Soda Mfg Co Ltd Granular polyarylene sulfide and its production
JPH0433299B2 (en) * 1984-09-21 1992-06-02 Tosoo Kk
JPS62240359A (en) * 1986-03-11 1987-10-21 Kureha Chem Ind Co Ltd Polyarylene thioether composition
JPH0548786B2 (en) * 1986-03-11 1993-07-22 Kureha Chemical Ind Co Ltd
JPS62232437A (en) * 1986-04-02 1987-10-12 Toto Kasei Kk Production of polyphenylene sulfide resin
JPH0534373B2 (en) * 1986-04-02 1993-05-21 Toto Kasei Kk
US4976825A (en) * 1986-04-28 1990-12-11 Kureha Kagaku Kogyo Kabushiki Kaisha Process for recovering N-methylpyrrolidone by plural distillations
JPS6339926A (en) * 1986-08-04 1988-02-20 Kureha Chem Ind Co Ltd Production of polyarylene sulfide
JPS63137822A (en) * 1986-11-29 1988-06-09 Kureha Chem Ind Co Ltd Extrusion molding method for polyphenylene sulfide
US4840986A (en) * 1987-03-06 1989-06-20 Tosoh Corporation And Toso Susteel Co., Ltd. Process for producing a polyarylene sulfide
US5006605A (en) * 1987-05-15 1991-04-09 Kureha Kagaku Kogyo K.K. Biaxially-stretched film made of poly(arylene sulfide) resin composition and production process thereof
US4894419A (en) * 1987-05-15 1990-01-16 Kureha Kagaku Kogyo K.K. Biaxially-stretched film made of poly(arylene sulfide) resin composition and production process thereof
DE3890466T1 (en) * 1987-06-04 1989-05-24 Nippon Seiko Kk PLASTIC HOLDER FOR A WAREHOUSE
US5590225A (en) * 1987-06-04 1996-12-31 Nippon Seiko Kabushiki Kaisha Plastic holder for bearing
GB2217395B (en) * 1987-06-04 1991-10-16 Nippon Seiko Kk Rolling element holder for a rolling bearing or rolling clutch.
WO1988009881A1 (en) * 1987-06-04 1988-12-15 Nippon Seiko Kabushiki Kaisha Plastic retainer for bearing
GB2217395A (en) * 1987-06-04 1989-10-25 Nippon Seiko Kk Plastic retainer for bearing
JPS63305131A (en) * 1987-06-06 1988-12-13 Idemitsu Petrochem Co Ltd Production of arylene sulfide copolymer
US4976908A (en) * 1987-12-28 1990-12-11 Kureha Kagaku Kogyo K. K. Poly(arylene sulfide) sheet production process
US5115092A (en) * 1987-12-28 1992-05-19 Kureha Kagaku Kogyo Poly(arylene sulfide) sheet
JPH01299826A (en) * 1988-05-26 1989-12-04 Kureha Chem Ind Co Ltd Production of crosslinked polyarylene sulfide polymer
US4910294A (en) * 1988-06-20 1990-03-20 Idemitsu Petrochemical Company Limited Two-stage process for production of polyarylene sulfides with lithium compound
US5126430A (en) * 1988-08-04 1992-06-30 Idemitsu Petrochemical Company Limited Process for preparing polyarylene sulfides with metal salt of hydroxycarboxylic acid
US5194580A (en) * 1988-08-05 1993-03-16 Idemitsu Petrochemical Co., Ltd. Process for preparing polyarylene sulfides under reduced pressure
US5013823A (en) * 1988-12-02 1991-05-07 Kureha Kagaku Kogyo K.K. Poly(arylene sulfide) sheet and production process thereof
US5100593A (en) * 1988-12-02 1992-03-31 Kureha Kagaku Kogyo K.K. Poly(arylene sulfide) sheet and production process thereof
JPH0672185B2 (en) * 1989-07-17 1994-09-14 出光石油化学株式会社 Method for producing polyarylene sulfide
JPH0350237A (en) * 1989-07-17 1991-03-04 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
US5223557A (en) * 1989-12-28 1993-06-29 Kureha Kagaku Kogyo K.K. Electronic device sealing resin compositions and sealed electronic devices
US5360890A (en) * 1991-08-14 1994-11-01 Tosoh Corporation Refining of polyarylene sulfides
EP0598449A3 (en) * 1992-11-12 1994-12-21 Tonen Sekiyukagaku Kk Process for controlling a particle size of polyarylene sulfide and polyarylene sulfide thus produced.
US5777069A (en) * 1994-02-07 1998-07-07 Tonen Chemical Corporation Method of maufacturing a tubular extrusion molding product comprising a high molecular weight polyarylene sulfide
JPH07312325A (en) * 1995-05-12 1995-11-28 Kureha Chem Ind Co Ltd Capacitor
EP0839851A3 (en) * 1996-10-31 2001-08-29 Tonen Chemical Corporation Process for the preparation of polyarylene sulfide
US6600009B2 (en) 1996-10-31 2003-07-29 Dainippon Ink And Chemicals, Incorporated Process for the preparation of polyarylene sulfide
US7632915B2 (en) 2002-12-27 2009-12-15 Kureha Corporation Production process and washing method of poly(arylene sulfide), and purification process of organic solvent used in washing
US7504476B2 (en) 2003-01-21 2009-03-17 Kureha Corporation Poly(arylene sulfide) and production process thereof
US7767783B2 (en) 2003-01-21 2010-08-03 Kureha Corporation Poly (arylene sulfide) and production process thereof
WO2007129721A1 (en) 2006-05-10 2007-11-15 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film
WO2008123183A1 (en) 2007-03-23 2008-10-16 Toray Industries, Inc. Polyphenylene sulfide resin composition
US8349974B2 (en) 2007-05-09 2013-01-08 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and method for producing the same
WO2008139989A1 (en) 2007-05-09 2008-11-20 Toray Industries, Inc. Biaxially oriented polyarylene sulfide film and process for producing the same
JP2007284700A (en) * 2007-08-09 2007-11-01 Kureha Corp Method for stabilizing color tone of polyarylenesulfide resin molding and method for producing polyarylenesulfide resin composition
US8357761B2 (en) 2008-12-10 2013-01-22 Konica Minolta Business Technologies, Inc. Polymer composition, transferring belt for electrophotography, image-forming apparatus and method for producing polymer composition
JP2011149014A (en) * 2009-12-22 2011-08-04 Toray Ind Inc Method for producing cyclic polyarylene sulfide
WO2012165140A1 (en) 2011-05-31 2012-12-06 東レ株式会社 Process for producing polymer alloy, polymer alloy, and molded article
US9175164B2 (en) 2011-05-31 2015-11-03 Torray Industries, Inc. Process for producing polymer alloy, polymer alloy, and molded article
US10391676B2 (en) 2014-02-03 2019-08-27 Toray Industries, Inc. Fiber-reinforced multilayered pellet, molded article molded therefrom, and method of producing fiber-reinforced multilayered pellet
US9862804B2 (en) 2014-02-25 2018-01-09 Toray Industries, Inc. Polyarylene sulfide resin powder/grain composition and method of producing same
US10385174B2 (en) 2014-08-06 2019-08-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin molding material, and fiber reinforced thermoplastic resin molded article
US9422402B2 (en) 2014-09-05 2016-08-23 Kureha Corporation Method of producing polyarylene sulfide and polyarylene sulfide
US10010857B2 (en) 2014-09-22 2018-07-03 Kureha Corporation Polyarylene sulfide production device provided with supply tube
JPWO2016199894A1 (en) * 2015-06-12 2018-03-08 株式会社クレハ Method for producing granular polyarylene sulfide and granular polyarylene sulfide
WO2016199894A1 (en) * 2015-06-12 2016-12-15 株式会社クレハ Method for producing granular polyarylene sulfide, and granular polyarylene sulfide
US11008426B2 (en) 2016-01-20 2021-05-18 Toray Industries, Inc. Polyarylene sulfide resin particulate and method of producing same
WO2018043025A1 (en) 2016-08-31 2018-03-08 東レ株式会社 Resin composition and molded article thereof
WO2018074353A1 (en) 2016-10-21 2018-04-26 東レ株式会社 Polyarylene sulfide resin powder granular article mixture and method for producing three-dimensional molded article
US11529769B2 (en) 2017-08-08 2022-12-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
WO2019049816A1 (en) 2017-09-05 2019-03-14 東レ株式会社 Moldings of fiber-reinforced thermoplastic resin
WO2019146633A1 (en) 2018-01-26 2019-08-01 東レ株式会社 Fiber-reinforced thermoplastic resin molded article and fiber-reinforced thermoplastic resin molding material
WO2021106714A1 (en) 2019-11-25 2021-06-03 東レ株式会社 Fiber-reinforced thermoplastic resin molded article
WO2023013626A1 (en) 2021-08-03 2023-02-09 東レ株式会社 Inorganic filling material and inorganic filling material-reinforced thermoplastic resin
WO2023058448A1 (en) 2021-10-07 2023-04-13 東レ株式会社 Fiber-reinforced thermoplastic resin composition

Also Published As

Publication number Publication date
JPS6333775B2 (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JPS617332A (en) Production of high molecular weight polyarylene sulfide
EP1714994B1 (en) Polyarylene sulfide and process for producing the same
US4645826A (en) Process for production of high to ultra-high molecular weight linear polyarylenesulfides
JPS6339926A (en) Production of polyarylene sulfide
JPH0466263B2 (en)
JP4310279B2 (en) Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing
JP6517337B2 (en) Process for producing particulate polyarylene sulfide, and particulate polyarylene sulfide
JPH0813887B2 (en) Process for producing poly (arylene sulfide) having excellent handling property
EP1586601A1 (en) Polyarylene sulfide and process for producing the same
US4812552A (en) Process for preparing poly(arylene sulfide ketone) with water addition
JPH04145127A (en) Production of polyarylene sulfide
JPH03195734A (en) Production of granular polyarylenesulfide having high molecular weight
JPH03215526A (en) Production of polyarylene sulfide
JPH08231722A (en) Production of aromatic sulfide polymer
JPH05271414A (en) Production of high-molecular-weight polyarylene sulfide
JPH0464533B2 (en)
JPH06172530A (en) Preparation of polyarylene sulfide resin
JP3699777B2 (en) Process for producing polyarylene sulfide
JPH0350237A (en) Production of polyarylene sulfide
JP3034550B2 (en) Method for producing high molecular weight polyarylene sulfide
US5374709A (en) Production of granular poly(arylene sulfide) polymers containing reduced amounts of oligomers
JP2707118B2 (en) Method for producing high molecular weight polyphenylene sulfide resin
JP3235037B2 (en) Continuous recovery method of polyarylene sulfide granules
EP0304303A2 (en) Preparation of poly (arylene sulfide)
KR940010019B1 (en) High-heat-resistant, crystalline block copolymers and production process thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term