JPS6171790A - Image pickup device of endoscope - Google Patents

Image pickup device of endoscope

Info

Publication number
JPS6171790A
JPS6171790A JP59193640A JP19364084A JPS6171790A JP S6171790 A JPS6171790 A JP S6171790A JP 59193640 A JP59193640 A JP 59193640A JP 19364084 A JP19364084 A JP 19364084A JP S6171790 A JPS6171790 A JP S6171790A
Authority
JP
Japan
Prior art keywords
color shift
color
accordance
circuit
prevention signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59193640A
Other languages
Japanese (ja)
Other versions
JPH069392B2 (en
Inventor
Masahide Sugano
菅野 正秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP59193640A priority Critical patent/JPH069392B2/en
Publication of JPS6171790A publication Critical patent/JPS6171790A/en
Publication of JPH069392B2 publication Critical patent/JPH069392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To prevent color shift by detecting the color shift and changing an image pickup speed in accordance with the degree of the color shift. CONSTITUTION:Picture signals delayed by the image pickup time of three frames (normally 1/30sec) are stored in frame memories 40 and 46, and by comparing these two picture signals with each other the color shift of a picture can be detected. A charge accumulating circuit 70 integrates input signals in accordance with an integration start pulse P, and outputs the difference between two picture signals in accordance with the color shift. When the integral value exceeds the prescribed value, a color shift prevention signal generator circuit 72 generates a color shift prevention signal. A lamp drive circuit 74 strengthens the intensity of incident light from a lamp 22, while a motor drive circuit 76 speeds up the rotating speed of a step motor 26. Moreover the color shift prevention signal speeds up the action of a timing controller 38, and the switching of a selector 36 is quickened while synchronizing to the switching of a filter by means of a rotating disk 24.

Description

【発明の詳細な説明】 〔;支    術    分    !7 〕この発明
は内視鏡撮像装置に係り、特に1面順次方式でカラー撮
像を行なう内視鏡撮像装置に関する。
[Detailed description of the invention] 7] The present invention relates to an endoscope imaging device, and particularly to an endoscope imaging device that performs color imaging in a single-screen sequential manner.

〔従  米  技  術〕[Subordinate Rice Techniques]

近年、内視鏡の先端にCCD7fの固体撮像素子を設け
1体、控内の画像をカラー屋形し、モニタ装置に表示さ
れた画像をもとに診断を行なう内視鏡撮像装置が開発さ
れている。ここで、撮像素子は内視鏡先端という狭い場
所に設けられる関係から、画素数を多くとれない、その
ため、カラー撮影は全画素を有効に使える面順次方式に
より行なわれている。すなわち、RGBの3色の成分画
像を順次撮像し、各画素毎に3色の成分信号を合成して
1枚のカラー画像信号を生成するものである。ところが
、この方式では1枚の画像を撮影するのに3色の成分画
像を撮影する必要があるので、それだけ、時間がかかり
、被写体の動きや手ブレによりl1Ij像の色ずれが発
生しやすい、内視鏡画像において、色ずれが生じると、
病巣の発見が困難になり、正確な診断が不可能となる。
In recent years, an endoscope imaging device has been developed that is equipped with a CCD 7F solid-state imaging device at the tip of the endoscope, displays a color image of the interior, and performs diagnosis based on the image displayed on a monitor device. There is. Here, since the image sensor is installed in a narrow space at the tip of the endoscope, it is not possible to increase the number of pixels, so color photography is performed using a frame sequential method that makes effective use of all pixels. That is, three color component images of RGB are sequentially imaged, and the three color component signals are combined for each pixel to generate one color image signal. However, with this method, it is necessary to capture component images of three colors to capture one image, which takes time, and color shift in the l1Ij image is likely to occur due to subject movement or camera shake. When color shift occurs in endoscopic images,
It becomes difficult to detect the lesion, making accurate diagnosis impossible.

〔目 的〕〔the purpose〕

この発明は一ヒ述した事情に対処すべくなされたもので
1面順次カラー撮影方式の内視鏡撮像装置において色ず
れを防止することをその目的とする。
The present invention was made in order to cope with the above-mentioned situation, and an object of the present invention is to prevent color shift in an endoscope imaging apparatus that uses a one-screen sequential color photographing method.

〔概  實〕[General facts]

この目的は色ずれを検出し、色ずれの程度に応じて撮像
速度を可変することにより実現される。
This purpose is achieved by detecting color shift and varying the imaging speed depending on the degree of color shift.

〔実  施  例〕〔Example〕

以下図面を参照して、この発明による内視鏡撮像袋この
一実施例を説明する。第一図はこの一実施例の構成を示
すブロック図である。内視鏡本体10はライトガイド1
2、対物レンズ14、固体撮像素子(例えば、CCD)
16を有する。ライトガイド12は一端が光源二ニー7
ト20に接続され、他端が内視m本体10の先端に導か
れ、光源ユニット20内のランプ22かうの照明光を体
腔内に導く光ファイバ束からなる。ライトガイド12の
一端とランプ22の間には1円周方向に沿って扇状に三
等分され各部分にR,G、Hのカラーフィルタが配Jジ
された回転円板24が設けられる0回転円板24はステ
ップモータ26により120°ずつ回転され、ランプ2
2から照射される照明光を順次R,G、Bに着色する。
An embodiment of the endoscopic imaging bag according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment. The endoscope body 10 is a light guide 1
2. Objective lens 14, solid-state image sensor (e.g. CCD)
It has 16. One end of the light guide 12 is the light source knee 7.
The optical fiber bundle is connected to a lamp 20, the other end of which is guided to the tip of the main body 10 of the endoscope m, and which guides illumination light from a lamp 22 in the light source unit 20 into the body cavity. A rotating disk 24 is provided between one end of the light guide 12 and the lamp 22. The rotating disk 24 is divided into three fan-shaped sections along the circumferential direction, and R, G, and H color filters are arranged in each section. The rotating disk 24 is rotated by 120 degrees by a step motor 26, and the lamp 2
The illumination light irradiated from 2 is sequentially colored R, G, and B.

これにより、固体撮像素子16は1フレーム毎にR,G
As a result, the solid-state image sensor 16 has R, G, and G signals for each frame.
.

Bの色成分画像を撮影し、面順次方式によりカラー撮影
が行なわれる。固体撮像素子16の出力信号がビデオプ
ロセ、す30に供給される。固体撮像素子16の出力信
号は、まず、サンプル/ホールド回路32に入力される
。サンプル/ホールド回路32の出力信号がA/D変換
器34を介してセレクタ36の入力端に供給される。セ
レクタ36は4出力端を有し、各出力端がフレームメモ
リ40.42.44.46にそれぞれ接続される。セレ
クタ36はフレームメモリ40.42゜44.46にそ
れぞれR,G、B、R(=R’)の色成分信号が書込ま
れるように制御されている。ここで、R,R′とは、そ
れぞれ奇数番目。
A color component image of B is photographed, and color photographing is performed using a frame sequential method. The output signal of the solid-state image sensor 16 is supplied to a video processor 30. The output signal of the solid-state image sensor 16 is first input to the sample/hold circuit 32. The output signal of the sample/hold circuit 32 is supplied to the input terminal of a selector 36 via an A/D converter 34. The selector 36 has four output terminals, and each output terminal is connected to a frame memory 40, 42, 44, and 46, respectively. The selector 36 is controlled so that color component signals of R, G, B, and R (=R') are written into the frame memories 40.42.degree. and 44.46, respectively. Here, R and R' are odd numbers, respectively.

偶数番目に撮影された赤成分信号を示す、サンプル/)
−ルド回路32、A/D変換器34のタイミング、セレ
クタ36の切り替え、フレームメモリ40.42.44
.46への書込みの制御はタイミングコントローラ38
により行なわれる。フレームメモリ40,42,44.
46の出力端がそれぞれD/A変換器50.52.54
.56の入力端に接続される。D/A変換泰50.56
の出力の一方がセレクタ58を介して、D/A変換器5
2.54の出力がそのままモニタ装置60に供給されカ
ラー画像が動画表示される。フレームメモリ40.42
.44.46からの読出し。
Sample/) showing the even-numbered red component signal
- timing of the field circuit 32, A/D converter 34, switching of the selector 36, frame memory 40.42.44
.. 46 is controlled by the timing controller 38.
This is done by Frame memories 40, 42, 44.
46 output terminals are each D/A converter 50, 52, 54
.. 56 input terminal. D/A conversion speed 50.56
One of the outputs is sent to the D/A converter 5 via the selector 58.
The output of 2.54 is directly supplied to the monitor device 60, and a color image is displayed as a moving image. Frame memory 40.42
.. Read from 44.46.

D/A変換器50.52.54.56のタイミング、セ
レクタ48の切り替えの制御はタイミングコントローラ
62により行なわれる。
The timing of the D/A converters 50, 52, 54, 56 and the switching of the selector 48 are controlled by a timing controller 62.

一方、D/A変換器50.56の出力が減算=64に供
給され、D/A変換器5oの出力からD/A変換器56
の出力が減算される。減算器64の出力が絶対値回路6
6、比較器68を介して電荷蓄積口1!870に供給さ
れる。比較器68は絶対値回路66の出方のうち基準レ
ベル8以上の信号を抽出するものである。”i′R蓄積
回路7oはタイミングコントローラ62かもの積分開始
パルスPに応じてフレームメモリ4o、46の胱出し周
期毎に比較器68の出力を積分する i荷蓄積回路70
の積分結果が色ずれ防止信号発生回路72に供給される
0色ずれ防止信号発生回路72は電荷蓄積回路70の出
力信号に応じて、ランプ駆動回路74、モータ駆動回路
76によりランプ22から照射される照明光の強さ、ス
テー、ブモータ26の回転速度をそれぞれ制御する。ま
た1色ずれ防II:信号発生回路72の出力信号はタイ
ミングコントローラ38も制御する。
On the other hand, the outputs of the D/A converters 50 and 56 are supplied to subtraction=64, and the outputs of the D/A converters 50 and 56 are
The output of is subtracted. The output of the subtracter 64 is the absolute value circuit 6
6. The charge storage port 1!870 is supplied via the comparator 68. The comparator 68 extracts signals of reference level 8 or higher from the output of the absolute value circuit 66. The i'R accumulation circuit 7o integrates the output of the comparator 68 for each bladder release period of the frame memories 4o and 46 in response to the integration start pulse P of the timing controller 62.
The integration result is supplied to the color shift prevention signal generation circuit 72. The color shift prevention signal generation circuit 72 receives the light irradiated from the lamp 22 by the lamp drive circuit 74 and the motor drive circuit 76 in accordance with the output signal of the charge storage circuit 70. The intensity of the illumination light and the rotational speed of the stay and motor 26 are controlled respectively. Further, the output signal of the one-color shift prevention II: signal generation circuit 72 also controls the timing controller 38.

次にこの実施例の動作を第二図を参照して説明する。第
二図(a’)に被写体の動きの速さを示す、モニタ装置
60は毎秒30フレームの画像を表示するとする。この
ため、フレームメモリ40.42.44.46からは第
二図(d)に示すように1/30秒毎にR(、Hの色成
分信号が読出される。そして、フレームメモリ40.4
2.44゜46への書込みは通常はこの1/30秒の周
期内にRGBの3色の成分信号が書込まれるようになっ
ている。第二図(b)は固体撮像素子16からの画像信
号の色成分を示し、これは回転円板24の回転速度に比
例する。すなわち、通常はRGBの各色成分画像がl/
90秒毎に順次撮影されている1画像信号は第二図(C
)に示すように各色成分毎に所定のフレームメモリに書
込まれる。
Next, the operation of this embodiment will be explained with reference to FIG. FIG. 2(a') shows the speed of movement of the subject. It is assumed that the monitor device 60 displays images at 30 frames per second. Therefore, as shown in FIG. 2(d), color component signals of R(, H) are read out from the frame memory 40.42.44.46 every 1/30 seconds.
When writing to 2.44°46, normally three color component signals of RGB are written within this period of 1/30 seconds. FIG. 2(b) shows the color component of the image signal from the solid-state image sensor 16, which is proportional to the rotational speed of the rotating disk 24. That is, normally each color component image of RGB is l/
One image signal taken sequentially every 90 seconds is shown in Figure 2 (C
), each color component is written into a predetermined frame memory.

ここで、赤の色成分信号はタイミングコントローラ38
、セレクタ36により1フレーム毎にフレームメモリ4
0.46 (R,R’)に交互に書込まれる。そのため
、赤の成分画像信号の読出しも1フレーム毎にフレーム
メモリ4o、46から交互に行なわれる。すなわち、第
二図(d)に示すように1/30秒毎にフレームメモリ
40゜42.44内のR,G、B成分信号と、フレーム
メモリ42.44.46内のR’、G、B成分信号が交
互に読出される。
Here, the red color component signal is output from the timing controller 38.
, the selector 36 selects the frame memory 4 for each frame.
0.46 (R, R') are written alternately. Therefore, the red component image signal is also read out alternately from the frame memories 4o and 46 for each frame. That is, as shown in FIG. 2(d), the R, G, and B component signals in the frame memory 40°42.44 and the R', G, and B component signals are read out alternately.

このようにフレームメモリ40.46には3フレームの
撮影時間(通常はl/30秒)だけずれた画像信号が格
納されている。そのため、これらの2つの画像信号を比
較することにより画像の色ずれを検出することができる
。雑音成分を除去するために、フレームメモリ40.4
6の出力信号の差の絶対値(IR−R’l)のうち、基
準レベル8以上の成分が電荷蓄積回路7oに久方される
。タイミングコントローラ62は第二図(e)に示すよ
うに、フレームメモリ40.42,44.46から信号
の読出しに同期して1/3o秒毎に電荷蓄積回路70に
積分開始パルスPを供給する。電荷蓄積回路70はこの
積分開始パルスPに応じて入力信号を積分し、第二図(
f)に示すような色ずれに応じた2画像値号の差を出力
する。
In this way, the frame memories 40 and 46 store image signals that are shifted by the shooting time of three frames (usually 1/30 seconds). Therefore, by comparing these two image signals, it is possible to detect color shift in the image. In order to remove noise components, the frame memory 40.4
Of the absolute value (IR-R'l) of the difference between the output signals of 6 and 6, a component having a reference level of 8 or higher is stored in the charge storage circuit 7o. As shown in FIG. 2(e), the timing controller 62 supplies an integration start pulse P to the charge storage circuit 70 every 1/3o seconds in synchronization with the reading of signals from the frame memories 40.42, 44.46. . The charge accumulation circuit 70 integrates the input signal in response to this integration start pulse P, and as shown in FIG.
The difference between the two image values according to the color shift as shown in f) is output.

色ずれ防止信号発生回路72はこの積分値が所定値以上
になると、被写体の動きが逮〈なり色ずれの影響が大と
して、第二図(g)に示すように色ずれ防止信号を発生
する。ここで、積分値の判別積分開始パルスPのタイミ
ングで行なわれる。この色ずれ防止信号の発生に応じて
、ランプ駆動回路74.モータ駆動回路76は、それぞ
れ、ランプ22の照射する照明光の強ざを強くし、ステ
ップモータ26の回転速度を速くする。また、この色ず
れ防と信号により、タイミングコントローラ38の動作
速度も速くなり、セレクタ36の切り替えが回転円板2
4によるフィルタの切り替えと同期して速くなる。この
結果、固体撮像素子16の撮影速度が速められ、被写体
が速く動いても色ずれが発生しない、被写体の動きが遅
くなると。
When this integral value exceeds a predetermined value, the color shift prevention signal generation circuit 72 determines that the movement of the subject is stopped and the effect of color shift is large, and generates a color shift prevention signal as shown in FIG. 2 (g). . Here, the discrimination of the integral value is performed at the timing of the integration start pulse P. In response to the generation of this color misregistration prevention signal, the lamp drive circuit 74. The motor drive circuit 76 increases the intensity of the illumination light emitted by the lamp 22 and increases the rotational speed of the step motor 26, respectively. Furthermore, due to this color misregistration prevention and signal, the operating speed of the timing controller 38 is also increased, and the switching of the selector 36 is performed by rotating the rotating disk 2.
The speed increases in synchronization with the filter switching in step 4. As a result, the photographing speed of the solid-state image sensor 16 is increased, and color shift does not occur even if the subject moves quickly, and the subject moves slowly.

色ずれ防止信号の発生が終了し、ランプ22の照射する
照明光の強さが弱まり、ステップモータ26の回転速度
がどくなる。また、セレクタ36の切り替えが回転円板
24によるフィルタの切り替えと同期して遅くなり、固
体撮像素子16の撮像速度が標準速度に戻る。
The generation of the color misregistration prevention signal is completed, the intensity of the illumination light emitted by the lamp 22 is weakened, and the rotational speed of the step motor 26 is increased. Furthermore, the switching of the selector 36 is slowed down in synchronization with the switching of the filter by the rotary disk 24, and the imaging speed of the solid-state imaging device 16 returns to the standard speed.

以上説明したように、この実施例によれば、被写体の動
作a度に応じて固体撮像素子の動作速度が変化し、速く
動く被写体の場合にも色ずれが生じない、そのため、病
巣を見落すことがなく、正確な診断が可能である。なお
、この発明は上述の実施例に限定されることなく1種々
変更可能である。土吐の実施例では色ずれ防止信号は二
値信号とし撮像速度は二段階に変るとしたが1色ずれ防
lヒ信号を多値信号とし撮像速度も多段階に変るとして
もよい。
As explained above, according to this embodiment, the operating speed of the solid-state image sensor changes according to the degree of movement of the subject, and color shift does not occur even when the subject moves quickly.Therefore, it is possible to overlook a lesion. Accurate diagnosis is possible. Note that this invention is not limited to the above-described embodiments, and can be modified in various ways. In Doi's embodiment, the color misregistration prevention signal is a binary signal and the imaging speed changes in two stages, but the single color misregistration prevention signal may be a multivalued signal and the imaging speed also changes in multiple stages.

〔発  明  の  効  果〕〔Effect of the invention〕

以上説明したようにこの発明によれば1色ずれのないカ
ラー画像が得られ正確な診断に役立つ内視鏡撮像装置が
提供される。
As described above, according to the present invention, an endoscopic imaging device is provided that can obtain a color image without one color shift and is useful for accurate diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

第一図はこの発明による装置の一実施例の構成を示すブ
ロック図、第二図はその動作を示す図である。 16・・・固体4Ig像素子 22・・・ランプ 24・・・回転円板 36.58・・・セレクタ 40.42.44.46・・・フレームメモリ60・・
・モニタ装置 64・・・減算器 70・・・電荷蓄積回路 72・・・色ずれ防止信号発生回路 74・・・ランプ駆動回路 76・・・モータ駆動回路
FIG. 1 is a block diagram showing the configuration of an embodiment of the apparatus according to the present invention, and FIG. 2 is a diagram showing its operation. 16...Solid state 4Ig image element 22...Lamp 24...Rotating disk 36.58...Selector 40.42.44.46...Frame memory 60...
・Monitor device 64...Subtractor 70...Charge accumulation circuit 72...Color shift prevention signal generation circuit 74...Lamp drive circuit 76...Motor drive circuit

Claims (1)

【特許請求の範囲】[Claims] 少なくとも3色の色成分画像を撮影する面順次方式の撮
像手段と、前記撮像手段によって異なる時刻で撮像され
た画像の差に基ずいて画像の色ずれを検出する手段と、
前記検出手段の出力に応じて前記撮像手段の撮像速度を
制御する手段を具備する内視鏡撮像装置。
a frame-sequential imaging means for photographing color component images of at least three colors; and means for detecting color shift in images based on a difference between images taken at different times by the imaging means;
An endoscopic imaging device comprising means for controlling an imaging speed of the imaging means in accordance with an output of the detection means.
JP59193640A 1984-09-14 1984-09-14 Endoscopic imaging device Expired - Lifetime JPH069392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193640A JPH069392B2 (en) 1984-09-14 1984-09-14 Endoscopic imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193640A JPH069392B2 (en) 1984-09-14 1984-09-14 Endoscopic imaging device

Publications (2)

Publication Number Publication Date
JPS6171790A true JPS6171790A (en) 1986-04-12
JPH069392B2 JPH069392B2 (en) 1994-02-02

Family

ID=16311300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193640A Expired - Lifetime JPH069392B2 (en) 1984-09-14 1984-09-14 Endoscopic imaging device

Country Status (1)

Country Link
JP (1) JPH069392B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167576A (en) * 1986-12-27 1988-07-11 Olympus Optical Co Ltd Picture freeze device
US5032913A (en) * 1989-02-28 1991-07-16 Olympus Optical Co., Ltd. Electronic endoscope system equipped with color smear reducing means
US5103300A (en) * 1988-11-17 1992-04-07 Nikon Corporation Rotary filter color camera with control of filter rotation and pickup output
JPH04227226A (en) * 1991-04-15 1992-08-17 Olympus Optical Co Ltd Color convergense error preventing device for endoscope image pick-up device
USRE34504E (en) * 1988-02-16 1994-01-11 Olympus Optical Co., Ltd. Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
JP2001211448A (en) * 2000-01-27 2001-08-03 Olympus Optical Co Ltd Endoscope system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167576A (en) * 1986-12-27 1988-07-11 Olympus Optical Co Ltd Picture freeze device
USRE34504E (en) * 1988-02-16 1994-01-11 Olympus Optical Co., Ltd. Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
US5103300A (en) * 1988-11-17 1992-04-07 Nikon Corporation Rotary filter color camera with control of filter rotation and pickup output
US5032913A (en) * 1989-02-28 1991-07-16 Olympus Optical Co., Ltd. Electronic endoscope system equipped with color smear reducing means
JPH04227226A (en) * 1991-04-15 1992-08-17 Olympus Optical Co Ltd Color convergense error preventing device for endoscope image pick-up device
JP2001211448A (en) * 2000-01-27 2001-08-03 Olympus Optical Co Ltd Endoscope system

Also Published As

Publication number Publication date
JPH069392B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP2848574B2 (en) Color shift correction device
US5243666A (en) Static-image signal generation apparatus using fuzzy theory
US5164824A (en) Image freezing signal-processing apparatus
JPH04259442A (en) Device for electronic endoscope
JPH0620318B2 (en) Endoscope device
JPH07288824A (en) Luminance signal generator
JPS6171790A (en) Image pickup device of endoscope
JP3288465B2 (en) Electronic endoscope device
JP3398550B2 (en) Electronic endoscope device with electronic shutter function
JP3300086B2 (en) Color shift prevention device for endoscope devices
JP2519302B2 (en) Image freezing device
JP2822836B2 (en) Electronic endoscope device
JP3403588B2 (en) All-pixel readout electronic endoscope
JP2979534B2 (en) Electronic endoscope device
JP3380458B2 (en) Electronic endoscope device
JP2510259B2 (en) Image Freezing Signal Processor
JP3514557B2 (en) Color shift reduction device for electronic endoscopes
JP2690209B2 (en) Color shift prevention device
JPH0530460A (en) Picture freeze processing device
JP3169084B2 (en) Electronic endoscope device
JP2693071B2 (en) Freezing device for electronic endoscope
JPH1085177A (en) Full picture element reading type electronic endoscope system
JP3055156B2 (en) Electronic endoscope device
JP2632133B2 (en) Image signal control device
JP2924805B2 (en) High-sensitivity camera device for head monitoring