JPS6171625A - Vertical cvd device - Google Patents

Vertical cvd device

Info

Publication number
JPS6171625A
JPS6171625A JP19527084A JP19527084A JPS6171625A JP S6171625 A JPS6171625 A JP S6171625A JP 19527084 A JP19527084 A JP 19527084A JP 19527084 A JP19527084 A JP 19527084A JP S6171625 A JPS6171625 A JP S6171625A
Authority
JP
Japan
Prior art keywords
wafers
wafer holder
wafer
vertical
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19527084A
Other languages
Japanese (ja)
Inventor
Yasuo Uoochi
魚落 泰雄
Yoshimi Shiotani
喜美 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19527084A priority Critical patent/JPS6171625A/en
Publication of JPS6171625A publication Critical patent/JPS6171625A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To obtain films having a uniform thickness and a small amount of foreign matter deposit by a method wherein a plurality of wafers are contained in a vertical wafer holder and kept almost horizontal, and a film is grown on a wafer surface in vapor phase under the rotation of the wafer holder. CONSTITUTION:The vertical wafer holder 12 is loaded in the center of a vertical cylindrical reaction tube 11, and the wafer holder is hung down with a supporting rod 12B and can be rotated by turning the supporting rod 12B. Many wafers 13 are contained almost horizontally in the wafer holder 12, these wafers are contained usually by exposing film-forming surfaces and adhering, i.e. with every two pieces back to back. Besides, the gap between adjacent wafers is 10mm or so. The wafer holder 12 with wafers 13 thus contained is rotated by being hung down with the supporting rod 12B. It is slowly rotated at a speed of rotation of approximately 3rev/min. Then, under vacuum suction through an exhaust port 14, the wafers 13 are heated with a heater 15, and the reaction gas is spouted out of the nozzle of a gas inflow tube 16.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は縦型CVD装置に係り、特に多数枚のウェハー
に均質な被膜が形成される縦型CVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vertical CVD apparatus, and particularly to a vertical CVD apparatus in which a uniform coating is formed on a large number of wafers.

従来、半導体装置を製造する際、そのウェハープロセス
において、CVD装置(Chemical Vapor
Oepos i t ion ;化学気相成長装置)が
使用されており、例えばシリコン膜をエビクキシャル成
長したり、あるいは絶縁膜を被着したりする工程に使用
されている。
Conventionally, when manufacturing semiconductor devices, a CVD device (Chemical Vapor
A chemical vapor deposition system (chemical vapor deposition system) is used, for example, in the process of eviaxially growing a silicon film or depositing an insulating film.

このようなCVD装置においては、ウェハー面に均一な
膜厚で被膜が形成されることが大切で、従前から種々の
方法が提案されている。
In such a CVD apparatus, it is important to form a film with a uniform thickness on the wafer surface, and various methods have been proposed.

一方、ICなどの半導体装置はOA機器やその他の電子
機器、並びに他部門のエレクトロニクス化によって需要
が益々増大してきた。それに伴って、ウェハーが大型化
され、ウェハープロセスの製造設備も大幅に変化して、
大型化・量産化してきた。
On the other hand, demand for semiconductor devices such as ICs has been increasing due to the use of office automation equipment, other electronic equipment, and electronics in other sectors. Along with this, wafers have become larger and wafer process manufacturing equipment has changed significantly.
They have become larger and mass produced.

従って、CVD装置においても、多数の大口径ウェハー
を収容し、それに成長する被膜は均一な膜厚で、高品質
なものが得られるようなCVD装置が要望されている。
Therefore, there is a demand for a CVD apparatus that can accommodate a large number of large diameter wafers and grow a film of uniform thickness and high quality.

[従来の技術] さて、第3図(alは従来より使用されている一般的な
、横型の減圧CVD装置の概要断面図を示しており、同
図(blはそのAA’断面図である。
[Prior Art] Now, FIG. 3 (al is a schematic cross-sectional view of a conventionally used general horizontal reduced pressure CVD apparatus, and FIG. 3 (bl is an AA' cross-sectional view thereof).

図のように、円筒形反応管1の中心にウェハーホルダー
2に収容したウェハー3を装入して、排気口4から真空
吸引する。加熱体5によってウエバー3が加熱され、ガ
ス流入管6のノズルから反応ガスを噴出して、反応管内
を0.5〜I Torr程度の減圧度にする。そうする
と、反応ガスが反応管内で分解されて、ウェハー3面に
被膜が成長する。
As shown in the figure, a wafer 3 housed in a wafer holder 2 is placed in the center of a cylindrical reaction tube 1, and a vacuum is drawn through an exhaust port 4. The webber 3 is heated by the heating element 5, and the reaction gas is ejected from the nozzle of the gas inlet tube 6, thereby reducing the pressure inside the reaction tube to about 0.5 to I Torr. Then, the reaction gas is decomposed within the reaction tube, and a film is grown on the three surfaces of the wafer.

[発明が解決しようとする問題点] ところが、このような横型構造のCVD装置にはいくつ
かの問題点があり、その一つは被膜の膜厚がウェハー面
内の位置によって不均一になり易く、且つ、多数のウェ
ハー相互の間で膜厚バラツキが大きくなることである。
[Problems to be solved by the invention] However, there are several problems with such a horizontally structured CVD apparatus, one of which is that the film thickness of the film tends to be uneven depending on the position within the wafer surface. , and the variation in film thickness becomes large among a large number of wafers.

これは特に重要なことで、従来からその対策が採られて
おり、ガス流入管6を反応管l内に差し込んでいるのも
その対策であり、また、図示のようにウェハーホルダー
2の下に邪魔板(孔のある板)7を介在させているのも
、その対策の一つである。
This is particularly important, and countermeasures have been taken in the past, such as inserting the gas inlet tube 6 into the reaction tube 1, and also inserting the gas inlet tube 6 under the wafer holder 2 as shown in the figure. One of the countermeasures is to provide a baffle plate (a plate with holes) 7.

又、ガス流入管6をウェハー3の下側だけでなく、上下
に2本挿入する方式もあり、また、ガス流入管6を回転
する方法も採られている。しかし、ウェハー内の膜厚分
布並びにウェハー間の膜厚分布を均一にすることは難か
しいことで、且つ、ウェハーが大口径化してきた現在、
そのバラツキは益々顕著になってきた。
There is also a method in which two gas inflow tubes 6 are inserted above and below the wafer 3 instead of just below the wafer 3, and a method in which the gas inflow tube 6 is rotated is also adopted. However, it is difficult to make the film thickness distribution within a wafer and between wafers uniform, and now that wafer diameters have become larger,
The dispersion is becoming more and more noticeable.

横型CVD装置の他の問題点は、被膜形成面に異物やゴ
ミの付着が多いことである。反応ガスの分解した被膜は
、ウェハー面だけでなくて反応管壁にも付着し、これが
ウェハー面に落下して付着する。又、ウェハーホルダー
が管壁や邪魔板を擦って、これがゴミになってウェハー
面に付着する。
Another problem with the horizontal CVD apparatus is that foreign matter and dust often adhere to the film forming surface. The film formed by the decomposition of the reaction gas adheres not only to the wafer surface but also to the reaction tube wall, and falls and adheres to the wafer surface. Also, the wafer holder rubs against the tube wall and baffle plate, which becomes dust and adheres to the wafer surface.

そうすると、成長した被膜に異物やゴミが混入して、膜
質が悪くなる。
If this happens, foreign matter and dust will be mixed into the grown film, resulting in poor film quality.

本発明はこれらの欠点を解消させて、且つ、大口径ウェ
ハーに適用できる縦型CVD装置を提案するものである
The present invention solves these drawbacks and proposes a vertical CVD apparatus that can be applied to large diameter wafers.

[問題点を解決するための手段] その問題は、縦形ウェハーホルダーに複数のウェハーが
収容されて、ほぼ水平に保持され、前記ウェハーホルダ
ーを回転させながら、ウェハー面に被膜を気相成長させ
るようにした縦型CVD装置によって解消される。
[Means for solving the problem] The problem is that a plurality of wafers are housed in a vertical wafer holder and held almost horizontally, and a film is grown in a vapor phase on the wafer surface while rotating the wafer holder. This problem can be solved by using vertical CVD equipment.

[作用] 即ち、本発明にかかる縦型CVD装置は、ウェハーホル
ダーを回転させることによって、ウェハー内の膜厚分布
を均一にし、且つ、反応管も縦型になっているため、ホ
ルダーが管壁を擦することがなくなって、その付着物が
ウェハー面に付着することもなくなる。加えて、ガス流
入管を管壁に沿って複数本差し込むことが可能になるが
ら、それぞれのガス金を調節することによって、反応ガ
ス分布を管内で制御し易くなり、そのためにウェハー間
の膜厚バラツキが減少する。
[Function] That is, the vertical CVD apparatus according to the present invention makes the film thickness distribution within the wafer uniform by rotating the wafer holder, and since the reaction tube is also vertical, the holder can be attached to the tube wall. This eliminates the need to rub the wafer, and prevents the deposits from adhering to the wafer surface. In addition, while it is possible to insert multiple gas inlet tubes along the tube wall, by adjusting the amount of each gas, it becomes easier to control the reaction gas distribution within the tube, which makes it possible to control the film thickness between wafers. Variability is reduced.

[実施1列] 以下1図面を参照して実施例によって詳細に説明する。[Implementation 1 row] An embodiment will be described in detail below with reference to one drawing.

第1図(a)は本発明にかかる減圧CVD装置で、第1
ロー)はそのBB“断面図である。
FIG. 1(a) shows a low pressure CVD apparatus according to the present invention.
Row) is its BB" cross-sectional view.

図において、11は縦型の円筒形反応管で、その中心に
は縦形ウェハーホルダー12が装入され、このウェハー
ホルダーは支持棒12Bによって吊り下げられて、支持
棒12Bを廻して回転することができる。ウェハーホル
ダー12には、ほぼ水平に多数のウェハー13が収容さ
れており、このウェハーは通常、被膜形成面を表出させ
裏面を密着して、2枚を背中合わせにして収容しである
。且つ、隣接するウェハー相互の間隙は10m前後にす
る。
In the figure, 11 is a vertical cylindrical reaction tube, and a vertical wafer holder 12 is placed in the center of the tube, and this wafer holder is suspended by a support rod 12B and can be rotated around the support rod 12B. can. A large number of wafers 13 are housed in the wafer holder 12 almost horizontally, and the wafers are usually housed in two back-to-back formats with the film-forming surface exposed and the back surfaces in close contact. In addition, the gap between adjacent wafers is approximately 10 m.

第2図はウェハーホルダー12の部分斜視図を示してお
り、図のような4本のガイド棒12Gに切欠きを設けて
、その切欠き部分にウェハーを挟んで保持する。4本の
ガイド棒12Gのうち、1本は取外しを可能にしておき
、ウェハー収容時には、それを取外してウェハーを装着
する。
FIG. 2 shows a partial perspective view of the wafer holder 12, in which notches are provided in the four guide rods 12G as shown in the figure, and wafers are sandwiched and held in the notches. One of the four guide rods 12G is made removable, and when storing a wafer, it is removed and the wafer is mounted.

このようにして、ウェハー13を収容したウェハーホル
ダー12を、支持棒12Bによって吊り下げて回転する
が、回転速度は3回/分程度とゆっくり廻す。か(して
、排気口14から真空吸引し、加熱体15によってウェ
ハー13を加熱して、ガス流入管16のノズルから反応
ガスを噴出する。
In this way, the wafer holder 12 containing the wafer 13 is suspended by the support rod 12B and rotated, but at a slow rotation speed of about 3 times/minute. Then, a vacuum is drawn from the exhaust port 14, the wafer 13 is heated by the heating element 15, and the reaction gas is ejected from the nozzle of the gas inflow pipe 16.

本例では、ガス流入管16は3本差し込んでおり、反応
管の下段にはガス流入管16aから反応ガスを噴出させ
、中段にはガス流入管16bから、また、上段にはガス
流入管16cから反応ガスを噴出させている。このよう
にすれば、それぞれのガス流入量が加減できるから、反
応管内の反応ガス分布を制御し易くなる。
In this example, three gas inflow pipes 16 are inserted, and the reaction gas is ejected from the gas inflow pipe 16a in the lower stage of the reaction tube, the gas inflow pipe 16b in the middle stage, and the gas inflow pipe 16c in the upper stage. Reactant gas is ejected from the reactor. In this way, the inflow amount of each gas can be adjusted, making it easier to control the reaction gas distribution within the reaction tube.

又、上記の加熱体も幾つかのゾーンに分離されており、
それぞれが温度調節される。これは、従来の横型と同様
であるが、縦型では加熱ガスが上方に上昇するために、
特に調節が重要である。
In addition, the heating element mentioned above is also separated into several zones,
Each is temperature regulated. This is similar to the conventional horizontal type, but in the vertical type, the heated gas rises upwards, so
Adjustment is particularly important.

このような縦型減圧CVD装置を使用して、50枚の6
P直径ウエハーに膜厚Iμmの燐シリケートガラス(P
SG)FAを成長した条件を説明すると、加熱温度を4
25℃として、 モノシラン(SiH4)   40cc/分フォスフイ
ン(PH3)20χ1nN2 17cc/分酸素(02
)       120cc/分の反応ガスを流入して
減圧度をI Torrにする。そうして、約1時間反応
させると、均一な膜厚をもったPSG膜が6!′ウ工ハ
ー面に成長して、それは異物付着の少ない膜であった。
Using such a vertical low pressure CVD device, 50 6 sheets
Phosphorus silicate glass (P
SG) To explain the conditions under which FA was grown, the heating temperature was set to 4.
As 25℃, monosilane (SiH4) 40cc/min phosphine (PH3) 20χ1nN2 17cc/min oxygen (02
) A reaction gas of 120 cc/min was introduced to reduce the pressure to I Torr. Then, after reacting for about 1 hour, a PSG film with a uniform thickness was formed. 'It grew on the surface of the wafer, and it was a film with little foreign matter adhesion.

[発明の効果コ 従って、上記の説明から明らかなように、本発明にかか
る縦型CVD装置によれば、大口径ウェハーに対処させ
て、均一な膜厚か得られ、且つ、異物付着の少ない被膜
が得られる利点が大きいものである。
[Effects of the Invention] Therefore, as is clear from the above description, the vertical CVD apparatus according to the present invention can handle large-diameter wafers, obtain a uniform film thickness, and have less foreign matter adhesion. This method has a great advantage in that a film can be obtained.

尚、本発明は減圧型のみならず、常圧型にも適用できる
ことは云うまでもない。
It goes without saying that the present invention is applicable not only to the reduced pressure type but also to the normal pressure type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は本発明にかかる縦型CVD
装置のαり断面図と、そのBB’断面図、第2図はその
ウェハーホルダーの部分斜視図、第3図(a)および(
′b)は従来の横型CVD装置の側断面図と、そのAA
’断面図である。 図において、 1は横型円筒形反応管、2はウェハーホルダー、3.1
3はウェハー、   4.14は排気口、5.15は加
熱体、    6.16はガス流入管、11は縦型円筒
形反応管、 12はウェハーホルダー、12Bはその回転支持棒、1
2Gはガイド欅、 16a 、 16b 、 16cはそれぞれ下段、中段
、上段のガス流入管 を示している。 第1図 第2111 第3図
FIGS. 1(a) and 1(b) show vertical CVD according to the present invention.
Figure 2 is a partial perspective view of the wafer holder, Figure 3 (a) and (
'b) is a side sectional view of a conventional horizontal CVD device and its AA
'This is a cross-sectional view. In the figure, 1 is a horizontal cylindrical reaction tube, 2 is a wafer holder, and 3.1
3 is a wafer, 4.14 is an exhaust port, 5.15 is a heating element, 6.16 is a gas inflow pipe, 11 is a vertical cylindrical reaction tube, 12 is a wafer holder, 12B is its rotation support rod, 1
Reference numeral 2G indicates a guide pipe, and 16a, 16b, and 16c indicate lower, middle, and upper gas inflow pipes, respectively. Figure 1 Figure 2111 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 縦形ウェハーホルダーに複数のウェハーが収容されて、
ほぼ水平に保持され、前記ウェハーホルダーを回転させ
ながら、ウェハー面に被膜を気相成長させるようにした
ことを特徴とする縦型CVD装置。
Multiple wafers are housed in a vertical wafer holder,
A vertical CVD apparatus characterized in that the wafer holder is held substantially horizontally and a film is grown in a vapor phase on the wafer surface while the wafer holder is rotated.
JP19527084A 1984-09-17 1984-09-17 Vertical cvd device Pending JPS6171625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19527084A JPS6171625A (en) 1984-09-17 1984-09-17 Vertical cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19527084A JPS6171625A (en) 1984-09-17 1984-09-17 Vertical cvd device

Publications (1)

Publication Number Publication Date
JPS6171625A true JPS6171625A (en) 1986-04-12

Family

ID=16338360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19527084A Pending JPS6171625A (en) 1984-09-17 1984-09-17 Vertical cvd device

Country Status (1)

Country Link
JP (1) JPS6171625A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109714A (en) * 1987-10-22 1989-04-26 Nec Corp Vapor-phase epitaxy appratus
JPH01220434A (en) * 1988-02-29 1989-09-04 Tel Sagami Ltd Heat treating furnace
JPH1012559A (en) * 1996-06-07 1998-01-16 Samsung Electron Co Ltd Chemical vapor deposition apparatus for manufacturing semiconductors
US6074486A (en) * 1997-04-22 2000-06-13 Samsung Electronics Co., Ltd. Apparatus and method for manufacturing a semiconductor device having hemispherical grains
US6953739B2 (en) 1997-04-22 2005-10-11 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having hemispherical grains at very low atmospheric pressure using first, second, and third vacuum pumps
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883856A (en) * 1981-11-13 1983-05-19 Canon Inc Photoconductive member
JPS58110034A (en) * 1981-12-24 1983-06-30 Fujitsu Ltd Vertical vapor phase epitaxial device
JPS58133376A (en) * 1982-01-26 1983-08-09 マテリアルズ・リサ−チ・コ−ポレ−シヨン Magnetron bias sputtering method and device
JPS5973496A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883856A (en) * 1981-11-13 1983-05-19 Canon Inc Photoconductive member
JPS58110034A (en) * 1981-12-24 1983-06-30 Fujitsu Ltd Vertical vapor phase epitaxial device
JPS58133376A (en) * 1982-01-26 1983-08-09 マテリアルズ・リサ−チ・コ−ポレ−シヨン Magnetron bias sputtering method and device
JPS5973496A (en) * 1982-10-19 1984-04-25 Matsushita Electric Ind Co Ltd Vapor-phase growth apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109714A (en) * 1987-10-22 1989-04-26 Nec Corp Vapor-phase epitaxy appratus
JPH01220434A (en) * 1988-02-29 1989-09-04 Tel Sagami Ltd Heat treating furnace
JPH1012559A (en) * 1996-06-07 1998-01-16 Samsung Electron Co Ltd Chemical vapor deposition apparatus for manufacturing semiconductors
US6074486A (en) * 1997-04-22 2000-06-13 Samsung Electronics Co., Ltd. Apparatus and method for manufacturing a semiconductor device having hemispherical grains
US6953739B2 (en) 1997-04-22 2005-10-11 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having hemispherical grains at very low atmospheric pressure using first, second, and third vacuum pumps
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium

Similar Documents

Publication Publication Date Title
US4232063A (en) Chemical vapor deposition reactor and process
JP3067940B2 (en) Silicon nitride thin film deposition
EP0164928A2 (en) Vertical hot wall CVD reactor
JP2556621B2 (en) Method for forming silicon carbide film
US3484311A (en) Silicon deposition process
JPH09246192A (en) Thin film gas phase growing device
JPS6171625A (en) Vertical cvd device
EP0605725B1 (en) Apparatus for introducing gas, and apparatus and method for epitaxial growth
JPS6365639B2 (en)
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JPH05226263A (en) Vapor phase silicon epitaxial growth device
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JP2000068215A (en) Method for growing vapor phase thin film and device therefor
JP2762576B2 (en) Vapor phase growth equipment
JPS6369794A (en) Vapor phase epitaxy device
JPH01257321A (en) Vapor growth apparatus
JPS63300512A (en) Chemical vapor deposition apparatus
JP3231312B2 (en) Vapor phase growth equipment
JPS61114519A (en) Vapor growth equipment
JP3057716B2 (en) Thin film formation method
JPH0220213Y2 (en)
JPS6126217A (en) Vapor growth apparatus
JPH05243161A (en) Vapor growth device and method of growing epitaxial film
JPH0319324A (en) Vapor growth device