JPS6171195A - Manufacture of heat treated steel tube - Google Patents

Manufacture of heat treated steel tube

Info

Publication number
JPS6171195A
JPS6171195A JP19054584A JP19054584A JPS6171195A JP S6171195 A JPS6171195 A JP S6171195A JP 19054584 A JP19054584 A JP 19054584A JP 19054584 A JP19054584 A JP 19054584A JP S6171195 A JPS6171195 A JP S6171195A
Authority
JP
Japan
Prior art keywords
flux
less
amount
weld metal
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19054584A
Other languages
Japanese (ja)
Inventor
Hiroyuki Honma
弘之 本間
Hiroshi Naganuma
長沼 浩
Shigeru Okita
茂 大北
Motonori Tamura
元紀 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19054584A priority Critical patent/JPS6171195A/en
Publication of JPS6171195A publication Critical patent/JPS6171195A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a heat treated steel tube having necessary strength and tenacity by heat treating a steel tube obtained by submerged arc welding of a steel plate having specified components using a welding wire and flux comprised of specified compositions respectively. CONSTITUTION:The steel plate consisting of, by weight, 0.03-0.15% C, 0.4% or less Si, 0.5-2.0% Mn, and the balance Fe with inevitable impurities is pre pared. This steel plate is made to a steel tube by submerged arc welding using a welding wire consisting of 0.01-0.20%C, 0.2% or less Si, 0.5-2.5% Mn, 0.2% or less Al, and the balance Fe with inevitable impurities, and flux having follow ing composition. Above-mentioned flux is 1.5 or more in basicity Bx shown by the equation, and contain 6-60% the flux weight of, CaF2 excluding CO2 component, and contains 5% or less CO2 of carbonate minerals in the flux in terms of gaseous CO2. The steel tube is then heated at 870-970 deg.C for 1-30 minutes and cooled. Then, the tube is tempered at the temperature of 500- the temp. of just under AC for 5-30 minutes, and an objective heat treated steel tube having high tenacity is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は潜弧−溶接により製造した鋼管を熱処F11す
ることにより、必要な強度と靭性を有する熱処理鋼管の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a heat-treated steel pipe having required strength and toughness by subjecting a steel pipe manufactured by latent arc welding to heat treatment F11.

(従来の技術) 最近、原油i’1ifi格の高騰により、従来はかえり
みられなかった寒冷地(例えば−60℃)、ある(・は
腐食環境下でのエネルギー開発がさかんとなり。
(Prior art) Recently, due to the rise in the price of crude oil, energy development in corrosive environments, such as cold regions (for example -60 degrees Celsius), which have not been seen before, has become active.

そこで使用される海洋構造物やラインパイプの低畠靭法
1強度の要求は、低温化、高強度化の一途をたどって℃
・る。
The requirements for low ridge toughness 1 strength for offshore structures and line pipes used in these areas are increasing as temperatures continue to decrease and strength increases.
・Ru.

一方、パイプライン敷設時には、直管のみではなく、曲
管、異径管、7字管が必要とされる。このような鋼管は
、溶接後熱間加工を行なうのが最も廉価に製造できるこ
とから、直管を溶接により、製造し高周波加熱等により
熱間加工を行なっている。
On the other hand, when laying pipelines, not only straight pipes but also curved pipes, pipes with different diameters, and 7-shaped pipes are required. Since such steel pipes can be manufactured most inexpensively by hot working after welding, straight pipes are manufactured by welding and then hot worked by high frequency heating or the like.

しかし、このような技術はこれまで、常温及び高温用と
して採用されては(・るが、低温用としては採用されな
かった。その理由は溶接金属の靭性が、オーステナイト
域まで加熱後冷却されると低下すると(・5問題があっ
たためである。
However, until now, this type of technology has been adopted for applications at room temperatures and high temperatures, but has not been adopted for applications at low temperatures. This is because there were 5 problems.

従来、溶接鋼管を熱処理して、高靭化を達成する技術と
して、特開昭50−33946号、同50−56773
4号公報に溶接金属の低酸素化が、高靭化に有効な方法
として提案されている。これらは、酸素量が多(7,C
ると、酸化物系介在物が増加し、破壊しやすくなること
、および焼入性が低下し、上部ベイナイト組織となるた
め、靭性が低下することを、(@接金属を低酸素化する
ことによって防止しようとするものである。
Conventionally, as a technique for heat-treating welded steel pipes to achieve high toughness, Japanese Patent Application Laid-Open Nos. 50-33946 and 50-56773 have been proposed.
No. 4 proposes reducing the oxygen content of weld metal as an effective method for increasing toughness. These have a high amount of oxygen (7, C
In this case, the number of oxide inclusions increases, making it easier to fracture, and the hardenability decreases, forming an upper bainite structure, resulting in a decrease in toughness. This is what we are trying to prevent.

しかし、サブマージアーク溶接にお(・て、溶接金属の
低酸素化な計るためには、フラックスの塩&Kを上げる
必要がある。フラックスの塩基度を上げると、溶接作業
性が低下すると(・5問題及び低酸素化を目的としたフ
ラックスでは、溶接金属を7−ルドする効果が減少し、
溶接金属中グ)窒素j[tが増加して、靭性が低下する
と(・5問題があった。
However, in submerged arc welding (・), it is necessary to increase the salt and K of the flux in order to reduce the oxygen content of the weld metal.If the basicity of the flux is increased, welding workability decreases (・5 Problems and fluxes aimed at lowering oxygen levels reduce the effect of welding the weld metal.
In the weld metal, when nitrogen j[t increases and the toughness decreases (・5 problems occurred).

(発明が解決しようとする問題点) 本発明は、溶接金属の酸素量を低減すると同時に、At
、窒素を積極的に利用して、At、窒素の効果を最大限
に利用する熱処理を施すことによって、溶接位属の引張
強さが40〜70 Kr f /rxx2の範囲で、ミ
クロ組織を倣細フェライトとして、−50℃以下の開用
に耐える熱処理鋼管の製造方法の提供を目的とする。
(Problems to be Solved by the Invention) The present invention reduces the amount of oxygen in weld metal and at the same time
By proactively using nitrogen and performing heat treatment to maximize the effects of At and nitrogen, the microstructure can be imitated with a tensile strength of the welded metal in the range of 40 to 70 Kr f /rxx2. The object of the present invention is to provide a method for manufacturing a heat-treated steel pipe that can withstand use at -50°C or lower as a fine ferrite.

(問題点を解決するための手段、作用)本発明は、熱処
理後の溶接金属の高靭化要因を柾々検討することにより
、溶接金属中の酸素、Atおよび窒素が、靭性と密接な
関係を持つこと、すなわち低酸素化およびAt、窒素の
存在が熱処理後のフェライト組織を微細化して、高靭化
に有効であるとの知見を得てなされたもので、その要旨
は、C:0.03〜015%(重量チ以下同じ) 、 
Si :04逅以下、:Vln : 0.5〜2.0 
%残部F’eおよび不可避的不純物よりなる鋼板を、C
:0.01〜0.20%、Si:0.2%以下、Mn:
05〜2.5%、At : 0.2%以下残部Feおよ
び不可避的不純物よりなる溶接ワ・イヤと、下式に示す
塩基AtBxIJ″−1,5以上であり、かつCO2成
分を除くフラックス重量に対し、CaFz : 6〜6
0%を含み、かつフラックス中の炭酸塩鉱物り) CO
2ガス成分が、  CO2ガス量に換算して、CO2ガ
ス成分を除くフラックス重量の5%以下を富有するフラ
ックスを用いて、潜弧溶接により造管した誦管乞、87
0℃〜970℃で1〜30分卯2分段2A後冷却し・で
500℃〜AC+直下の温度で、5〜30分焼戻しする
ことにより高靭性を1′、)るものである。
(Means and effects for solving the problem) The present invention, by carefully studying the factors that increase the toughness of weld metal after heat treatment, has revealed that oxygen, At, and nitrogen in weld metal have a close relationship with toughness. This was done based on the knowledge that low oxygen and the presence of At and nitrogen are effective in refining the ferrite structure after heat treatment and increasing toughness.The gist of this is that C:0 .03~015% (same below weight),
Si: 04 or less, Vln: 0.5 to 2.0
% balance F'e and unavoidable impurities, C
: 0.01 to 0.20%, Si: 0.2% or less, Mn:
05 to 2.5%, At: 0.2% or less Welding wire consisting of the balance Fe and unavoidable impurities, and a flux weight of the base AtBxIJ''-1.5 or more shown in the following formula and excluding CO2 components. On the other hand, CaFz: 6-6
carbonate minerals in the flux) CO
87 A pipe made by submerged arc welding using a flux in which two gas components account for 5% or less of the weight of the flux excluding the CO2 gas component in terms of the amount of CO2 gas.
High toughness is achieved by cooling at 0° C. to 970° C. for 1 to 30 minutes in two stages and then tempering at a temperature of 500° C. to just below AC+ for 5 to 30 minutes.

Bx = 6.5 ONnmo+6.05NCaO+4
.8NMnO+4.ONMgO+3.4NFeO+5.
I NCnF2+ 0.3 N Zr02−0.2N紅
xOz  2.2NTi02 6.3NSiO□但しN
Kは成分Xのモル分率とする。
Bx = 6.5 ONnmo+6.05NCaO+4
.. 8NMnO+4. ONMgO+3.4NFeO+5.
I NCnF2+ 0.3 N Zr02-0.2N Red x Oz 2.2NTi02 6.3NSiO□However, N
K is the mole fraction of component X.

以下、本発明を作用と共に詳細1に説明する。Hereinafter, the present invention will be explained in detail 1 along with its operation.

不発明のメ1犬とする鋼管は、引張強さが70Kg7’
m2以下の比較的強度の低(・ものである。鋼管素材と
して、単純にC、Si 、 Mn、残部Feおよび不可
避的不純物よりなる鋼板を用し・る場合と、これにNi
 、 Cr、 M0. Cu、 Nb、V、Ti、Bを
添加した鋼板を用(・石場合とがある。
The uninvented steel pipe has a tensile strength of 70Kg7'
m2 or less and has a relatively low strength.There are two cases in which a steel plate simply made of C, Si, Mn, the balance Fe and unavoidable impurities is used as the steel pipe material, and another case in which Ni
, Cr, M0. Uses steel plates containing Cu, Nb, V, Ti, and B (sometimes with stone).

Cは溶接金属中にお(・て、005%未真の場合は焼入
性が不足し、適正強度を寿らrLな(・。他の合金元素
で強度を侮ることは経済的に不利となる。
C is present in the weld metal (・If it is less than 0.05%, the hardenability will be insufficient and the proper strength will not be maintained (・. It is economically disadvantageous to underestimate the strength with other alloying elements. Become.

また015%を超えると低温靭性か得られな(・。Also, if it exceeds 0.15%, low-temperature toughness cannot be obtained (・.

この、蝋から鋼板中のC金は0.05%〜0.15チ、
溶接ワイヤ中のC量は001%〜020%を限定する。
The C gold in the steel plate from this wax is 0.05% to 0.15%,
The amount of C in the welding wire is limited to 0.001% to 0.020%.

Siは、鋼板中に鋭敏および強度確味の目屹で添加され
るが溶接金属中にお汽・て、04%を超えて添加される
と、靭性に対して有害であることから、鋼板中のSj 
Bを04係以下とする。しかし溶接ワイヤ中には、0.
2%を超えては必要な(・ことから0.2%以下とする
。結果的にはf’i H−ikA中に01〜03%程度
含有されることになる。
Si is added to steel sheets to improve sharpness and strength, but if it is added to weld metal in an amount exceeding 0.4%, it is harmful to the toughness. Sj of
Set B to 04 or below. However, in the welding wire, 0.
If it exceeds 2%, it is necessary (・), so it is set to 0.2% or less. As a result, it is contained in f'i H-ikA at about 01 to 03%.

1VInは強度を得るために最も一般的に使用される元
素である。通常の鋼&1シ工n友は0.5〜2.0%が
必要であり、ワイヤ中IVln鉦が0.5%未満では強
度不足、25チを超えると低温vJ注が低下することか
ら、ワイヤ中Mn ’Aは05〜2.5%と限定する。
1VIn is the most commonly used element for strength. Ordinary steel & 1st grade engineering n friends require 0.5 to 2.0%, and if the IVln in the wire is less than 0.5%, the strength will be insufficient, and if it exceeds 25%, the low temperature vJ will decrease. Mn'A in the wire is limited to 05 to 2.5%.

この埒溶接金楓中IVln量は、引張強さの点から鋼板
と同じ05〜2υチとすることが望ましく・0Atは不
発明にお℃・て最も重要な元素である。Atは沿接金(
・i中のフリーNをAtNとして固定し、また生成した
AtNは、再加熱時にオーステナイト粒の成長を抑制し
、γ→α変域時にフェライト生成を促進させる。第1図
は、水冷焼入した溶接金属中のs o tA tと、破
面遷移@K vTrs 17)関係を、溶接TL樵中記
素蓋しにル苺に示したもので、5otAl量が0005
多未調ではオーステナイ[・粒粗大化仰利効果および)
IJ−N固定効果がな℃・ため、本発明の目的とするv
Trs < −50℃が得られていない。
From the viewpoint of tensile strength, it is desirable that the IVln content in the welded metal maple be 05 to 2υ, the same as that of the steel plate. 0At is the most important element in the temperature range. At is the interest charge (
- The free N in i is fixed as AtN, and the generated AtN suppresses the growth of austenite grains during reheating and promotes ferrite formation in the γ→α range. Figure 1 shows the relationship between s o tA t in water-quenched weld metal and fracture surface transition @K vTrs 17). 0005
In the Tami tone, austenai [・grain coarsening effect and]
Since there is no IJ-N fixed effect, the v
Trs < -50°C was not obtained.

−万、5olALが0.1%を超えると、高温脆性ある
℃・:i加工中に割れが生ずるため、溶接金属中の5o
jAj量は、0.1%以下とする必要がある。したがっ
て、溶接ワイヤ中のAt含有量を029b以下とする必
要がある。γ域熱処理による溶接金属の靭性劣化は、主
として高酸素が原因である。Atの効果を最大限に発揮
させるためには、溶接金属中の総酸素量は、第1図から
も明らかなように、200ppm以下とすることが有効
である。この低醐素化につし・では、後述の本発明フラ
ックスを使用することによって達成できる。
- If the 5ol AL exceeds 0.1%, cracks will occur during processing due to high temperature brittleness.
The amount of jAj needs to be 0.1% or less. Therefore, the At content in the welding wire needs to be 029b or less. The deterioration of the toughness of weld metal due to γ-range heat treatment is mainly caused by high oxygen content. In order to maximize the effect of At, it is effective to keep the total amount of oxygen in the weld metal to 200 ppm or less, as is clear from FIG. This reduction in phosphorus content can be achieved by using the flux of the present invention, which will be described later.

窒素は、溶接金属中に不純物元素としで不可避的に混入
している元素であり、これまで低ければ低い程、高靭性
が得られると見なされてきた。しかし、焼入れ焼もどし
た場合の溶接金属の窒素量と、vTrsの関係について
検討の結果、第2図から明らかな如(、窒素量が高くて
も、ハtによりAtNとして固定すれば、高靭性が喝ら
nることが判明した。第2図のγ化温度は920℃であ
る。
Nitrogen is an element that is unavoidably mixed into weld metal as an impurity element, and until now it has been considered that the lower the nitrogen content, the higher the toughness can be obtained. However, as a result of examining the relationship between the nitrogen content of the weld metal and vTrs when quenched and tempered, it is clear from Fig. It was found that the gamma temperature in Fig. 2 is 920°C.

この理由は上述したように、生成したAjN b’−做
、tdフェライト生成に寄与していることによる。この
AtNを種部的に利用するために、溶接金属中の窒素量
の下限値は20 ppmとし、上限につ(・では不必要
な過剰添加は、フリー窒素の過剰あるし・はAtHの過
剰析出による靭性低下が生ずるため1100ppが々子
まし℃・0 な2、鋼板中に通常含有される窒素量は20〜” OP
pm 程度、溶接ワイヤ中に含有されるものは20〜3
0ppm程度である。
The reason for this is that, as described above, the generated AjN b'-做 contributes to the generation of td ferrite. In order to make partial use of this AtN, the lower limit of the amount of nitrogen in the weld metal is set at 20 ppm, and the upper limit is set at 20 ppm. Since toughness decreases due to precipitation, 1100 pp is better.
pm, and those contained in the welding wire are 20 to 3
It is about 0 ppm.

窒素は溶接中に鋼板、ワイヤ及び大気から溶接挺属に入
ってくるが、後述するように、本発明フラックスを用(
・れば、大気から吸収する呈素量の:ま五が可能で1通
常の窒素量を含有する鋼板、ワイマを用(・ても、溶接
金属中の窒素量を100 ppm以下とすることが可能
なので、鋼板及びワイヤの望粱貨につ(・て特に考慮す
る必要シエな(・。
Nitrogen enters the welding metal from the steel plate, wire, and atmosphere during welding, but as will be described later, it can be removed using the flux of the present invention (
・If the amount of elements absorbed from the atmosphere is lower than 1, it is possible to use a steel plate containing a normal amount of nitrogen (・Even if the amount of nitrogen in the weld metal is 100 ppm or less) Since it is possible, special consideration should be given to the production of steel plates and wires.

P及びSは、不純物元素として溶接中に鋼板、ワイで及
びフラックスがら溶接金属中に入ってくる元素であり、
少な(・はど低温靭性が曖れて(・る二とが知られて(
・る。現在の製鋼及び溶接材料製造技術による制限から
、P、sく0.02%は通常の値であり、特に添加する
ものではない。
P and S are elements that enter the weld metal from the steel plate, wire and flux during welding as impurity elements,
Low temperature toughness is unclear (・ Ruji is known (
・Ru. Due to limitations imposed by current steelmaking and welding material manufacturing technology, 0.02% of P is a normal value and is not particularly added.

これらの元素のほか、必要に応じ強度確保の目的で、C
u、Ni、1yl0. Cr、 B、 Ti、 Nb、
 Vを添加してもよ(・。これらの元素は溶接金属中に
添加されると、Niを除き靭性を劣化させる。vTrs
<、−50℃を満足させるためには、その量を制限する
必要がある。Ni 、 Cr 、 Moは鋼板及びワイ
ヤ成分として、Ni : 3.5%以下、l’Vio 
: 0.5%以下、Cr : 0.6%以下に制限する
必要がある。
In addition to these elements, C may be added to ensure strength as necessary.
u, Ni, 1yl0. Cr, B, Ti, Nb,
You can also add V (・. When these elements are added to the weld metal, they remove Ni and deteriorate the toughness.vTrs
In order to satisfy <, -50°C, it is necessary to limit the amount. Ni, Cr, and Mo are steel plate and wire components, Ni: 3.5% or less, l'Vio
Cr: 0.5% or less, Cr: 0.6% or less.

このように焼入性元素を匍]限τるのは、ここで目的と
する溶接金属の引張強さが、70に9/ 藺2以下を対
象としているため、過剰のぢミ加;ま不必要であり、か
つ微細フェライト生成には、むしろ有否な元素となるこ
とによる。
The hardenable elements are limited in this way because the target tensile strength of the weld metal is 70 to 9/2 or less. This is due to the fact that it is a necessary and, rather, a necessary element for the production of fine ferrite.

歯、V、Tiにつ(・て′は、鋼板中から不可避叩に入
る元素であり、貿化物、炭化物ある℃・は成製化物を形
成して、溶接金属を脆化させるため、銅板中の含有量を
極微量に制限する必要がある。第3図は溶接金属中の隅
、V、Ti童とvTrsの関係を示して2つ、vTrs
 −; −50℃を確保するためニハ、Nb : 0.
06%以下、V:0.04%以下、Ti:0.04%以
下とする必要がある。このことから鋼板中の隅、■およ
びTiの址は、それぞれOO8係、0,06%および0
.07%以下とする。
Teeth, V, Ti (・Te') are elements that inevitably enter the steel plate, and compounds and carbides (℃・) form compounds and embrittle the weld metal, so they are included in the copper plate. It is necessary to limit the content of
-; To ensure -50°C, Ni, Nb: 0.
V: 0.04% or less, Ti: 0.04% or less. From this, the corners of the steel plate, ■, and Ti areas are OO8, 0.06%, and 0, respectively.
.. 07% or less.

A広巾Bにつ(・ては、通常は)1,1−M素の固定、
焼入性同上を目的として添加されるが、過刺添加1工依
1目」jフェライトの生成を阻害りるため、0002%
U、下シC制限する。
For A wide width B (usually) fixation of 1,1-M element,
It is added for the purpose of improving hardenability, but 0002% is added to inhibit the formation of ferrite.
U, lower C limit.

さらに、Ceqは050桑以下とするのが好ましく・5
、Ceqが05係を超えると、焼入時の刃口熱温度、パ
′6却速反を実用的な範囲で変化させても、微細フェラ
イト組織が舟られない場合があるためである。
Furthermore, Ceq is preferably 050 mulberry or less.・5
, Ceq exceeds 05, the fine ferrite structure may not be formed even if the thermal temperature at the cutting edge during quenching and the deceleration speed of Pa'6 are changed within a practical range.

次(こ溶接フラックスにつ(・て説明する。Next, I will explain about welding flux.

第1′A:ま、7谷嵌全属中の蛇、酸素量と7ヤルピー
・、!I′I卓値の関係を示したもので、熱処理溶接金
属の+3J ffを、vTrs<−50℃とするには、
溶接金属中のi素置を200 ppm以下にすることが
有効である。r&弧溶接のように、フラックスを使用す
る溶妥にお℃・では、フラックスの塩基度を筒のると、
溶接金属中の酸素量は減少する。
1'A: Well, the snake in the entire genus of 7 valleys, the amount of oxygen and 7 yalpi...! This shows the relationship between I′I table values, and in order to make +3J ff of heat-treated weld metal vTrs<-50℃,
It is effective to reduce the i content in the weld metal to 200 ppm or less. When melting using flux, such as in r&arc welding, the basicity of the flux is determined by
The amount of oxygen in the weld metal decreases.

第5ズはフラックスの塩基度(Bx)と、溶慢金属中焼
、酸素量との関係を示したもので、塩基度(Bx )は
仄式による。
The fifth item shows the relationship between the basicity (Bx) of the flux, molten metal intermediate quenching, and the amount of oxygen, and the basicity (Bx) is based on the following formula.

Bx = 6.5ONnmo+6.057tJcao千
4.8 N MnO+ 4.ONM+rO+3.4NF
eO+5.1NCaF2 +0.3NZrO□−0,2
N鳩03  2.2 N TlO2’ 3 N 810
まただし、NK:成分にのモル分率 溶接金属中の総酸素量を200 ppm以下とするには
、フラックスの塩基度を15以上とすることが必要であ
る。しかし一般にフラックスの塩基度を旨めると、次に
述べる問題が生じ、従来市販フラックスでは、溶接金属
の酸素量を300 ppm程度まで減少させることが限
度であった。
Bx = 6.5ONnmo+6.057tJcao 1,0004.8N MnO+ 4. ONM+rO+3.4NF
eO+5.1NCaF2 +0.3NZrO□-0,2
N Pigeon 03 2.2 N TlO2' 3 N 810
In addition, in order to make the total amount of oxygen in the mole fraction of NK component in the weld metal 200 ppm or less, it is necessary to make the basicity of the flux 15 or more. However, in general, increasing the basicity of flux causes the following problems, and conventional commercially available fluxes have been limited to reducing the amount of oxygen in the weld metal to about 300 ppm.

第1の問題は、フラックスの高塩基夏化にともな℃・、
ビード形状の悪化やスラグ巻込み、ア/り゛−カット等
溶接欠陥が発生しやすくなる点である。
The first problem is that due to high base summerization of flux,
Welding defects such as deterioration of the bead shape, slag entrainment, and cuts are likely to occur.

第2の問題は、溶接金属中の酸素量が減少するにともな
し・、窒素量が増加することである。ジノ謔盛偕弧溶接
にお(・ては、溶接金属中の蓋紫が加昇されて(・くの
で、初層の窒素量を低くする必要がある。多層盛溶接金
属の窒素量をiooppm以下とするには、大気から吸
収する窒素量ΔNを10 ppm以下にする必要がある
。商塩基性フランクスの上記見聞−の解欠lを検討した
結果、CaF2及び炭設遍を利用することが有効である
ことがわかった。
The second problem is that as the amount of oxygen in the weld metal decreases, the amount of nitrogen increases. In arc welding, the nitrogen content in the weld metal increases, so it is necessary to lower the nitrogen content in the first layer. In order to achieve the following, it is necessary to reduce the amount of nitrogen absorbed from the atmosphere ΔN to 10 ppm or less.As a result of examining the solution of the above observation of commercial base Franks, it was found that it is possible to use CaF2 and carbon It turned out to be effective.

CaF、はフラックスを高塩基にするのに有効な成分で
ある。またフラックスの粘匿、軟化浴融温工を低1させ
るので、適量配合すれば好ましい成庁である。さらに、
 CaF2は溶込み形状を安定化し、−スラグ巻込みを
防止する。非溶接金属中の窒素、水素をも減少させる。
CaF is an effective component to make the flux highly basic. It also reduces the viscosity of the flux and the melting temperature of the softening bath, so if it is added in an appropriate amount, it is a desirable solution. moreover,
CaF2 stabilizes the penetration shape and - prevents slag entrainment. It also reduces nitrogen and hydrogen in non-weld metals.

特にスラグ巻込みを防止するため9では、フランクスミ
汝の6%以上のCaFx賃が必要である。
In particular, in order to prevent slag entrainment, a CaFx content of 6% or more is required in order to prevent slag entrainment.

A1表:て示すよ5iC,CaF2含有5:のはy%し
い4仕りフラックスを基準とし、CaF2以外の成分比
を一定lこして、CaF”z配合量を変化させ、ΔNと
C訂゛2のに合量を検討の結果、第6図に示すように、
フラックス中CaF2配合玉と疹接金kA中の窒素量と
のrt!:月、りζ11らztた。このCa)’2によ
り、溶接金属中の窒素を減少させることができる。Ca
F2が60慢を超えると、CaFxのガス化によって、
ピード表面シこポックマークやヘリンボーンが発生する
ようになる。したがってCaFz 蚤は、6%以上60
%以下にすることが必要である。ただ、ΔNを定常的に
10 ppm以下にするには、 CaFzの効果だけで
は不充分であり、次に述べるように、フラックス中のC
Otガスを利用しなければならない。COtガスは、フ
ラックスの粒度構成が違っても効果がある。
Table A1: As shown in 5iC, CaF2 content 5: is y% based on the final flux, the ratio of components other than CaF2 is kept constant, the amount of CaF''z blended is changed, and ΔN and C correction 2 As a result of considering the total amount, as shown in Figure 6,
rt of the amount of nitrogen in the CaF2 compound ball in the flux and the amount of nitrogen in the welding metal kA! :Moon, riζ11 et al. This Ca)'2 can reduce nitrogen in the weld metal. Ca
When F2 exceeds 60%, gasification of CaFx causes
Pockmarks and herringbones begin to appear on the surface of the peel. Therefore, CaFz fleas are more than 6%60
% or less. However, the effect of CaFz alone is not sufficient to keep ΔN below 10 ppm on a regular basis, and as described below,
Ot gas must be used. COt gas is effective even if the particle size structure of the flux is different.

傘その他成分とは、  Bad、 K2O,Na、01
Mn01Tilt%ZrO*などの成分を示す。
Umbrella and other components are Bad, K2O, Na, 01
Indicates components such as Mn01Tilt%ZrO*.

第7図に粒度構成の違う2穂のフラックスについて、C
Ot成分の含有量と、溶接金属中のΔN量のズ化を示す
。図中Aは20メツツユより小さく・枝反を20%す、
上含み、Bは250メツツユより小さく一6Kを20%
以下含むフラックスな示す。CO2成分とf番接金属中
の酸素量との関係は第8図に示¥0 第7図に示すように、溶接金属中の大気からの吸収窒素
(」N)を下げるには、フラックス中のC0tkをj、
?加すると効果があるが、第8図に示すように、CO2
量のN卯とともに、溶接金属中の酸素量も1加するので
、酸素量を200 ppm以下とするには、CO2量か
フラックス中iの5%を超えては本発明の目的を達成で
きない。
Figure 7 shows the flux of two ears with different particle size compositions.
The content of the Ot component and the change in the amount of ΔN in the weld metal are shown. In the figure, A is smaller than 20 meters and has 20% branch resistance.
Including the above, B is smaller than 250 meters and 6K is 20%
The following fluxes are shown below. The relationship between the CO2 component and the amount of oxygen in the f-th weld metal is shown in Figure 8. As shown in Figure 7, in order to reduce the amount of nitrogen (N) absorbed from the atmosphere in the weld metal, it is necessary to C0tk of j,
? However, as shown in Figure 8, CO2
In addition to the amount of nitrogen, the amount of oxygen in the weld metal is also added by 1. Therefore, in order to reduce the amount of oxygen to 200 ppm or less, the object of the present invention cannot be achieved if the amount of CO2 exceeds 5% of the amount of i in the flux.

なお、こムで」Nは大気から吸収する窒素量であり、次
式で衣わさnる。
Note that N is the amount of nitrogen absorbed from the atmosphere, which is calculated by the following formula.

1旦し、Nはt容接金属中の窒素量、N1は母材中の窒
素量、ン4□はワイヤの屋装置、 NVl i末母材モpk量、W2はワイヤモ解量である
Once, N is the amount of nitrogen in the capacitive metal, N1 is the amount of nitrogen in the base metal, N4 is the wire shop equipment, NVli is the amount of mopk in the base metal, and W2 is the amount of wire molyte.

以上のように、フラックス中のCaFtと炭酸埴により
、溶接金属中の酸素が200 ppm以下のもとで、窒
素を20 ppmから100 ppmまでコントロール
できる。
As described above, by using CaFt and carbonate in the flux, nitrogen can be controlled from 20 ppm to 100 ppm while oxygen in the weld metal is 200 ppm or less.

次に本発明におげろ熱処理についてのべる。Next, the heat treatment of the present invention will be described.

溶接金属の靭性vTrs<−50℃を唯保する1こめに
は、鋼板、溶接材料成分・組成を限定するのみでは不十
分であり、熱処理条件の限定が必要である。本発明にお
いては、微細粒フェライト組織による靭性同上を計るも
のであり、特にオーステナイト化温度が限定される。す
なわち、焼入前のオーステナイト粒径を、できるだけ小
さくする方法として、上述したAtNによる粗粒化抑制
効果が期待できるが、熱処理により、AtN→At +
 Hの反応が起こると、その効果がなくなるため、 A
tNの分解温度以上には、焼入温度を上げることができ
ない。AtとNの溶解度積は、実験式として次式が与え
られている。
In order to maintain the toughness vTrs<-50° C. of the weld metal, it is insufficient to limit the steel plate and welding material components and compositions, and it is necessary to limit the heat treatment conditions. In the present invention, the same as the toughness due to the fine grain ferrite structure is measured, and the austenitization temperature is particularly limited. In other words, as a method of reducing the austenite grain size before quenching as much as possible, the above-mentioned AtN can be expected to have the effect of suppressing grain coarsening, but heat treatment can reduce AtN → At +
When the reaction of H occurs, its effect disappears, so A
The quenching temperature cannot be raised above the decomposition temperature of tN. The solubility product of At and N is given by the following formula as an empirical formula.

Log(At%〕×〔N%)=1.95−7400/T
(1050℃〜1350℃) この式から計算すると、At:0.02%、N1.11
.0070%の時、A7Nの完全溶解温度は約97OL
となる。
Log (At%) x [N%) = 1.95-7400/T
(1050℃~1350℃) Calculating from this formula, At: 0.02%, N1.11
.. At 0.070%, the complete melting temperature of A7N is approximately 97OL.
becomes.

また、この割管の素材2よび溶咲金函は、比較・的、八
C32、;J点が高く、’p JMにも依ダづ−るが8
50〜890℃となる。実踪の試峡では、870℃〜9
70CJ)万一ステナイト化温反で、高靭性が得られて
(・る二こからこの温度範囲に限定する。また加熱時、
Lllは長見・と、γ粒粗大化が起こるためD)註が劣
1ヒする。したがって1〜30分とする。
In addition, this split pipe material 2 and the wesaki metal box have comparatively high 8C32;J points, and although it depends on 'p JM,
The temperature will be 50 to 890°C. At the trial gorge of Jitsujin, the temperature is 870℃ ~ 9
70CJ) In the unlikely event that high toughness is obtained by heating to stenite, the temperature is limited to this range.Also, during heating,
D) Notes are poor because Lll becomes Nagami and coarsening of γ grains occurs. Therefore, it is set to 1 to 30 minutes.

・呪もどし温度ケ500℃〜Acl直下と限定した埋巳
:;、低丁ぎると焼もどし局果をイするのに時間が7ノ
・かること、および十分な滉もどし効果が1→られな℃
・こと、また塊もどし温度がAc、以上になるとj化が
老しく、目的とする強度が得られないことおよび靭性も
省化することによる。また、焼もどし時間につ(・ては
、短かし・と十分な効果が得られず、長(・と炭窒化物
の形成や、強度低下が起こるため、5〜30分と限定す
る。
- Temperature limit: 500°C - Just below ACl: If the temperature is too low, it will take 7 days to heat up the final result of tempering, and the temperature will be 1°C.
・In addition, if the lump reconstitution temperature exceeds Ac, the J-hardening becomes too old, the desired strength cannot be obtained, and the toughness is also reduced. In addition, the tempering time is limited to 5 to 30 minutes because a short tempering time will not produce a sufficient effect, and a long tempering will cause the formation of carbonitrides and a decrease in strength.

(実施列) 第2表に供試鋼板の成分を示す。A、 B、 C鋼板は
それぞれAPI  5LX−52、X−65、X−70
相当、D鋼板はJIS 5LA−33相当である。
(Execution column) Table 2 shows the components of the test steel sheets. A, B, and C steel plates are API 5LX-52, X-65, and X-70, respectively.
Equivalent, D steel plate is equivalent to JIS 5LA-33.

浴凝条件を第3表、熱処理条件を第4表に示す。The bath coagulation conditions are shown in Table 3, and the heat treatment conditions are shown in Table 4.

第4表におし・て、A、Bは本発明例を、C,Dは本発
明を外れる例である。
In Table 4, A and B are examples of the present invention, and C and D are examples outside the present invention.

供試フランクス組成を第5表に、供試ワイヤ組成を第6
表に示す。第7表に試験結果を示す。
The sample Franks composition is shown in Table 5, and the sample wire composition is shown in Table 6.
Shown in the table. Table 7 shows the test results.

第7表中、ノに1〜8は従来法による結果で、瓜7.8
は熱処理条件が本発明法から外れるものの結果を示す。
In Table 7, No. 1 to No. 8 are the results obtained by the conventional method, and the results are approximately 7.8.
1 shows the results when the heat treatment conditions deviate from those of the method of the present invention.

ノに2.5.6は溶接金属中酸素量が高く、ヱたml、
3.4は酸素量が低くてもsotAtMが少t(・ため
、vTrs<−50℃か得られて(・なし・。A7は完
全オーステナイト化ができて(・な(・ため、また、に
8はオーステナイトが粗大化しすぎているためは素置が
低く、5otAt量が多いにもかかわらず低靭性を示す
On the other hand, 2.5.6 has a high oxygen content in the weld metal,
3.4 has a small sotAtM even when the oxygen content is low (・, so vTrs<-50℃ can be obtained (・none・). A7 can be completely austenitized (・), so In No. 8, the austenite is too coarse, so the roughness is low, and the toughness is low despite the large amount of 5otAt.

一方、本発明法によるδ接金属759〜13では、酸素
量が低く、5ojALiが十分に存在し、適正な条件に
−〔熱処理を行って(・るため、vTrs<−50℃の
靭性が1r+られている。
On the other hand, in the δ weld metals 759 to 13 produced by the method of the present invention, the oxygen content is low, 5ojALi is sufficiently present, and the toughness at vTrs<-50°C is 1r+ due to heat treatment under appropriate conditions. It is being

第  3  表 L:先行、 T+  :中間、T、:後行第  4  
表 (発明の効果) 本発明によると、5otAl量、ある(・は従来は不’
f ’F/I元素としてつ・えり見られなかったNを利
用することによつ、熱魁埋後の組織を微細化して、廉ゴ
ーな高品質の鋼管が製造可能となり、その工業的A刀果
:工犬き(・。
Table 3 L: Leading, T+: Middle, T,: Trailing 4th
Table (Effects of the Invention) According to the present invention, there is an amount of 5otAl (.
By using N, which has never been seen as an F/I element, it becomes possible to produce inexpensive, high-quality steel pipes by refining the structure after heat burial, and its industrial A. Touka: Worker dog (・.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水冷後の溶接金属の/ヤルピー破面趨移温度V
こお〜よぼす5olALの彰善を示す図表、第2函:;
た処理後の一50℃でのシャルピー吸収エネルギーにL
−よぼす望素tの影廿を示す図表、第3区は2^処理後
の溶接金属の7ヤルビ′−破面遷移温度におよぼす歯、
V、Ti量の影響を示す図表、第4図は熱処理後の溶接
金属の7ヤルピ一飯面遷移温反に訃よぼす酸素量の影背
を示す図表、第5図は玲接全属中のO蚕におよぼす塩基
反の影響を示す図表、第6図はフランクス中のCaF、
量と溶接金属中のJN量の関係を示す図表、第7図は大
気中から吸収する溶接金属のN蓋とフランクス中のC0
tiv:の関係を示す図表、第8図は赳接金属中O量と
フランクス中CO□量の関係を示す一校である。 第1図 3a1.Al t(we %) 第2図 第3図 Nb 、 V、 Tt  L  (wt ”/、)第4
1ぺ1 010θ   2θOJθ0400 ゛             西!2.毫 t  (r
rnr>第5図 jrlL纂度Ex 第6図 Oto  2θ 3θ 4θ 5O CaFz (wt7m)
Figure 1 shows the /Yarpy fracture surface transition temperature V of the weld metal after water cooling.
Chart showing the success of Koyobosu5olAL, box 2:;
Charpy absorbed energy at -50℃ after treatment
- A diagram showing the influence of the desired element t on the surface, the third section is the effect of the tooth on the 7 Jarvi' - fracture surface transition temperature of the weld metal after the 2^ treatment,
Figure 4 is a diagram showing the effect of the amount of V and Ti on the weld metal after heat treatment. Figure 6 shows the effect of base reaction on O silkworms.
Figure 7 shows the relationship between the amount of JN in the weld metal and the amount of JN in the weld metal.
tiv: Figure 8 is a diagram showing the relationship between the amount of O in the welding metal and the amount of CO□ in the Franks. Figure 1 3a1. Al t (we %) Fig. 2 Fig. 3 Nb, V, Tt L (wt ”/,) Fig. 4
1pe1 010θ 2θOJθ0400 ゛ West! 2. t (r
rnr> Fig. 5 jrlL intensity Ex Fig. 6 Oto 2θ 3θ 4θ 5O CaFz (wt7m)

Claims (1)

【特許請求の範囲】 C:0.03〜0.15%(重量%以下同じ)、Si:
0.4%以下、Mn:0.5〜2.0%、残部Feおよ
び不可避的不純物よりなる鋼板を、C:0.01〜0.
20%、Si:0.2%以下、Mn:0.5〜2.5%
、Al:0.2%以下、残部Feおよび不可避的不純物
よりなる溶接ワイヤと、下式で与れられる塩基度B_X
が1.5以上であり、かつCO_2成分を除くフラック
ス重量に対し、CaF_2:6〜60%を含み、かつフ
ラックス中の炭酸塩鉱物のCO_2ガス成分が、CO_
2ガス量に換算して、CO_2ガス成分を除くフラック
ス重量の5%以下を含有するフラックスを用いて、潜弧
溶接により造管した鋼管を、870℃〜970℃で1〜
30分加熱後冷却し、次いで500℃〜Ac_1直下の
温度で5〜30分焼戻しすることを特徴とする熱処理鋼
管の製造方法。 B_X=6.50NBaO+6.05NCaO+4.8
NMnO+4.0NMgO+3.4NFeO+5.1N
CaF_2+0.3NZrO_2−0.2NAl_2O
_3−2.2NTiO_2−6.3NSiO_2但しN
Kは成分Kのモル分率とする。
[Claims] C: 0.03 to 0.15% (the same below weight%), Si:
0.4% or less, Mn: 0.5-2.0%, balance Fe and inevitable impurities, C: 0.01-0.
20%, Si: 0.2% or less, Mn: 0.5-2.5%
, Al: 0.2% or less, balance Fe and inevitable impurities, and basicity B_X given by the following formula:
is 1.5 or more, and contains 6 to 60% of CaF_2 based on the weight of the flux excluding the CO_2 component, and the CO_2 gas component of the carbonate mineral in the flux is CO_
A steel pipe made by submerged arc welding using a flux containing 5% or less of the flux weight excluding CO_2 gas components in terms of the amount of 2 gases is heated at 870°C to 970°C.
A method for manufacturing a heat-treated steel pipe, which comprises heating for 30 minutes, cooling, and then tempering at a temperature of 500° C. to just below Ac_1 for 5 to 30 minutes. B_X=6.50NBaO+6.05NCaO+4.8
NMnO+4.0NMgO+3.4NFeO+5.1N
CaF_2+0.3NZrO_2-0.2NAl_2O
_3-2.2NTiO_2-6.3NSiO_2However, N
K is the mole fraction of component K.
JP19054584A 1984-09-13 1984-09-13 Manufacture of heat treated steel tube Pending JPS6171195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19054584A JPS6171195A (en) 1984-09-13 1984-09-13 Manufacture of heat treated steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19054584A JPS6171195A (en) 1984-09-13 1984-09-13 Manufacture of heat treated steel tube

Publications (1)

Publication Number Publication Date
JPS6171195A true JPS6171195A (en) 1986-04-12

Family

ID=16259861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19054584A Pending JPS6171195A (en) 1984-09-13 1984-09-13 Manufacture of heat treated steel tube

Country Status (1)

Country Link
JP (1) JPS6171195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678203B2 (en) 2005-03-04 2010-03-16 Lincoln Global, Inc. Welding flux
CN102909492A (en) * 2012-10-17 2013-02-06 西安理工大学 High-welding-speed sintered flux for submerged-arc welding of X100 pipeline steel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653474A (en) * 1979-10-09 1981-05-13 Koden Electronics Co Ltd Indicating device for supersonic detection
JPS5726198A (en) * 1980-07-24 1982-02-12 Nissan Motor Co Ltd Electrodeposition painting method using anion powder
JPS5835579A (en) * 1981-08-28 1983-03-02 Toppan Printing Co Ltd Manufacture of reflection type hologram

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653474A (en) * 1979-10-09 1981-05-13 Koden Electronics Co Ltd Indicating device for supersonic detection
JPS5726198A (en) * 1980-07-24 1982-02-12 Nissan Motor Co Ltd Electrodeposition painting method using anion powder
JPS5835579A (en) * 1981-08-28 1983-03-02 Toppan Printing Co Ltd Manufacture of reflection type hologram

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678203B2 (en) 2005-03-04 2010-03-16 Lincoln Global, Inc. Welding flux
CN102909492A (en) * 2012-10-17 2013-02-06 西安理工大学 High-welding-speed sintered flux for submerged-arc welding of X100 pipeline steel and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP7219882B2 (en) Steel material for pressure vessel and its manufacturing method
WO2015088040A1 (en) Steel sheet and method for manufacturing same
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
JP5842314B2 (en) High heat input welding steel
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
KR20180074229A (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
KR20180074228A (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2024500851A (en) Extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2022510933A (en) Steel materials with excellent hydrogen-induced crack resistance and their manufacturing methods
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPS6171195A (en) Manufacture of heat treated steel tube
JP5935678B2 (en) High toughness high strength steel and method for producing the same
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP7445127B2 (en) Steel plate for LPG storage tank and its manufacturing method
JP2012188750A (en) High toughness steel for high heat input welding and manufacturing method thereof
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance