JPS6170401A - Automatic measuring method of tooth thickness - Google Patents

Automatic measuring method of tooth thickness

Info

Publication number
JPS6170401A
JPS6170401A JP19290084A JP19290084A JPS6170401A JP S6170401 A JPS6170401 A JP S6170401A JP 19290084 A JP19290084 A JP 19290084A JP 19290084 A JP19290084 A JP 19290084A JP S6170401 A JPS6170401 A JP S6170401A
Authority
JP
Japan
Prior art keywords
gear
steel ball
distance
teeth
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19290084A
Other languages
Japanese (ja)
Inventor
Ryoichi Yamada
良一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP19290084A priority Critical patent/JPS6170401A/en
Publication of JPS6170401A publication Critical patent/JPS6170401A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • G01B5/16Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures
    • G01B5/166Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures of gear teeth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure displacement over a given number of teeth automatically by automatically measuring a distance between the center of a steel ball and a center position of a gear when a stylus having the steel ball on it point is contacted with the surfaces of both teeth. CONSTITUTION:A means for detecting the center of steel ball 1 is arranged so that the detecting reference position of the steel ball 1 is separated from the center position of a gear 15 to be measured by a prescribed distance and the moving direction of the steel ball 1 coincides with the normal direction of the gear 15. The stylus 2 is straight moved and the steel ball 1 is pressed against the gear 15 with a prescribed pressure to rotate the gear 15. Consequently, the center position of the steel ball 1 at the simultaneous contact of the steel ball 1 with both teeth is measured by a measuring device 25, the distance between the center of the gear 15 to be measured and the center position of the steel ball is calculated on the basis of the detecting position and the displacement over both the teeth of the gear 15 can be calculated from the calculated distance, a prescribed diameter of the steel ball 1, the radius of the basic circle of the gear 15, the number of teeth, the number of teeth to be displaced, a reference pressure angle, and a module.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯車のマタギ歯厚を自動的に測定するーための
歯厚自動計測方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic tooth thickness measurement method for automatically measuring the tooth thickness of gears.

〔従来技術〕[Prior art]

近年、歯車を切削加工するホブ盤には数値制御されたも
のが出現しており(以下NCホブ盤と称す)、高い精度
の歯車を多数加工することを容易にしていた。し力)し
、このようなNCホブ盤でも加工工程途中で行うマタギ
歯厚の測定およびこのマタギ歯厚にもとづいて行うホブ
の切込量の調整を人手に頼っており、これらの事柄が障
害となって歯車加工の無人自動化は実現しなかった。
In recent years, numerically controlled hobbing machines for cutting gears have appeared (hereinafter referred to as NC hobbing machines), making it easy to process a large number of gears with high accuracy. However, even with this type of NC hobbing machine, the measurement of the tooth thickness during the machining process and the adjustment of the cutting depth of the hob based on this tooth thickness are dependent on humans, and these problems can cause problems. As a result, unmanned automation of gear processing was not realized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記実情に鑑みてなされたもので、平行測定片
で何枚かの歯をまたいで測ったときの歯厚(マタギ歯厚
)を、平行測定片を用いずに自動的に測定する歯厚自動
計測方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is capable of automatically measuring tooth thickness (matagi tooth thickness) when measured across several teeth with a parallel measuring piece without using a parallel measuring piece. The purpose of this paper is to provide an automatic tooth thickness measurement method.

〔問題点を解決するための手段および作用〕本発明では
、軸支した歯車から所定距離を離して予め配置しておい
た所定直径の鋼球を直線的lこ該歯車の中心に向けて移
行して該歯車の歯面に押圧し、該歯車を回動することに
よって該鋼球が該歯車の歯と歯の間の最も奥に入ったと
きの該鋼球さと、該鋼球の所定直径と、予め定めた基礎
円半径、歯数、マタギ歯数、基準圧力角、モジュールと
から該歯車のマタギ歯厚を算出するようlこしている。
[Means and effects for solving the problem] In the present invention, a steel ball of a predetermined diameter, which has been placed in advance at a predetermined distance from a pivotally supported gear, is moved linearly toward the center of the gear. the steel ball when it enters the innermost part between the teeth of the gear by pressing it against the tooth surface of the gear and rotating the gear, and the predetermined diameter of the steel ball. The gear tooth thickness of the gear is calculated from the predetermined base circle radius, number of teeth, number of gear teeth, reference pressure angle, and module.

したがりて、例えばNCホブ盤と組み合わせ、NCホブ
盤で荒加工の後、上記マタギ歯厚を測定し、このマタギ
歯厚と予め定めたマタギ歯厚の目標値とを比較して、仕
上げ加工におけるホブの切込み量を算出することにより
ホブの切込み景を自動調整することができ、NCホブ盤
での歯車切削工程を無人自動化することができる。
Therefore, for example, in combination with an NC hobbing machine, after rough machining with the NC hobbing machine, the thickness of the mating tooth is measured, and this thickness is compared with a predetermined target value for the tooth thickness of the mating gear, and finishing processing is performed. By calculating the depth of cut of the hob in , the depth of cut of the hob can be automatically adjusted, and the gear cutting process with the NC hobbing machine can be automated in an unmanned manner.

し実施例〕 以下、本発明の実施例を添付図面を参照して詳細に説明
する。
Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の歯厚自動計測方法を適用したNCホブ
盤の一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an NC hobbing machine to which the automatic tooth thickness measurement method of the present invention is applied.

この実施例のNCホブ盤ではホブ盤21の制御をNCコ
ントローラ27ζこよって行っており、歯車15を取り
付けた支持体23を所定速度で回動し、これに連動して
ホブ22を回動しかつ歯車15の切削位置に移行し、歯
車15を切削して歯を形成する。
In the NC hobbing machine of this embodiment, the hobbing machine 21 is controlled by the NC controller 27ζ, which rotates the support 23 to which the gear 15 is attached at a predetermined speed, and rotates the hob 22 in conjunction with this. Then, the gear 15 is moved to the cutting position, and the gear 15 is cut to form teeth.

そして、切削工程の途中例えば仕上工程で歯車15の検
査を行う場合は、ホブ22を歯車15から離し、支持体
23の回動を停止したのち、本発明に係る歯厚自動測定
方法にもとづいて歯厚を測定する。
When inspecting the gear 15 during the cutting process, for example during the finishing process, the hob 22 is separated from the gear 15 and the rotation of the support body 23 is stopped, and then the tooth thickness is automatically measured based on the automatic tooth thickness measurement method according to the present invention. Measure tooth thickness.

上記歯厚測定は計測装置25を用いて行われる。The tooth thickness measurement described above is performed using the measuring device 25.

第2図はこの計測装置25の構造を示しており、鋼球1
は直径が歯車15のピンチの1/2にほぼ等しく、この
鋼球1とスタイラス2 とガラススケール13とが一体
化している。このスタイラス13はポールブツシュ3を
多数設けた穴に挿入されて滑らかに左右方向に移行する
。ガラススケール13は目盛が形成され、また支柱6が
固定されており、ローラガイド8によって摺動可能に支
持されている。支柱6の上部には糸7が係止され、糸7
は滑車4.9.10に張設されている。滑車10はトル
クモータ11の軸1こ固定されており、トルクモータ1
1が回動すると、糸7は引っばられて左右方向いずれか
に移行し、糸7の移行にともなって支柱6、ガラススケ
ール13、スタイラス2、鋼球1が移行する。このとき
、ローラガイド8に固定した発光ダイオード12は発光
しており、この光はガラススケール13を介してローラ
ガイド8に固定しられた回数を受光ダイオード5の出力
信号の変化にもとづいて計数することによって、ガラス
スケール13が移行した距離を測定することができる。
FIG. 2 shows the structure of this measuring device 25, in which the steel ball 1
The diameter is approximately equal to 1/2 of the pinch of the gear 15, and the steel ball 1, stylus 2, and glass scale 13 are integrated. The stylus 13 is inserted into a hole provided with a large number of pole bushes 3 and smoothly moves from side to side. The glass scale 13 has graduations formed thereon, has a column 6 fixed thereto, and is slidably supported by a roller guide 8. A thread 7 is secured to the upper part of the support column 6.
is tensioned on pulley 4.9.10. The pulley 10 is fixed to the shaft 1 of a torque motor 11.
1 rotates, the thread 7 is pulled and moves in either the left or right direction, and as the thread 7 moves, the support 6, the glass scale 13, the stylus 2, and the steel ball 1 also move. At this time, the light emitting diode 12 fixed to the roller guide 8 is emitting light, and the number of times this light is fixed to the roller guide 8 via the glass scale 13 is counted based on the change in the output signal of the light receiving diode 5. By doing this, the distance traveled by the glass scale 13 can be measured.

すなわち、計測装置25は鋼球1を直線的に移行すると
ともにこの移行した距離を測定する。なお、この計測装
置25は、鋼球1を最も引き込んだときの鋼球中心位置
と歯車中心位置とが距離りだけ離間し、かつ鋼球1の移
動方向が歯車の法線方向と一致するようにホブ盤21に
設置されている。
That is, the measuring device 25 moves the steel ball 1 linearly and measures the distance traveled. Note that this measuring device 25 is designed so that the steel ball center position when the steel ball 1 is pulled in the most and the gear center position are separated by a certain distance, and the moving direction of the steel ball 1 matches the normal direction of the gear. It is installed on the hobbing machine 21.

次に、第3図に示すフローチャートおよび第4図に示す
歯厚測定時における鋼球1と歯車15との位置関係を示
す図を参照しなからマタギ歯厚の計測方法を説明する。
Next, a method for measuring the tooth thickness will be described with reference to the flowchart shown in FIG. 3 and the diagram shown in FIG. 4 showing the positional relationship between the steel ball 1 and the gear 15 when measuring the tooth thickness.

まず、歯車15のマタギ歯厚の計測に際し、マイクロコ
ンピュータ26から計測開始指令が計測装置25に加え
られるとともに、図示しない記憶装置から後述の計算で
用いる諸係数、すなわち目標のマタギ刃厚Srt+、基
礎円の半径rg、基準圧力角α。、対数Z、マタギ歯数
Zm、モジー−ルm等を入力する(第3図ステップ10
1,102に示す)。この計測装置25は、マイクロコ
ンピュータ26からの前記指令を入力すると、第4図■
に示すように鋼球1を計測装置25に最も引き込んで鋼
球1の中心と歯車15の中心位置との間隔が予しめ設定
した距離りである状態から、トルクモータ11を回動し
て鋼球1を歯車15の方に移行し、第4図■に示すよう
1こ鋼球1を歯車15の歯面の点Poに所定圧力で押圧
する(ステップ103)。なお、ここでトルクモータ1
1のトルクは一定に維持されるので、鋼球1の所定圧力
も維持される。このとき、鋼球1が移行した距離はyo
であり、計測装置25は距離y。を示す信号をマイクロ
コンピュータ26へ伝送し、マイクロコンピュータ26
はこの信号を入力すると(ステップ104)、歯車15
を正転することを示す信号をNCコントロール27に伝
送する。NCコントロール27はこの信号を入力すると
、ホブ盤21に歯車15の正転駆動を示す信号を伝送し
、ホブ盤21はこの信号を入力すると、支持体23を正
転して歯車15を正転する(ステップ105)。
First, when measuring the gear tooth thickness of the gear 15, a measurement start command is applied from the microcomputer 26 to the measuring device 25, and various coefficients used in the calculations described later are stored in a storage device (not shown), that is, the target gear tooth thickness Srt+, the basic Radius of circle rg, reference pressure angle α. , logarithm Z, number of matagi teeth Zm, module m, etc. (Step 10 in Figure 3)
1,102). When this measuring device 25 receives the command from the microcomputer 26, it
As shown in FIG. 2, when the steel ball 1 is drawn into the measuring device 25 the most and the distance between the center of the steel ball 1 and the center position of the gear 15 is a preset distance, the torque motor 11 is rotated to The ball 1 is moved toward the gear 15, and one steel ball 1 is pressed against a point Po on the tooth surface of the gear 15 with a predetermined pressure as shown in FIG. In addition, here, torque motor 1
Since the torque of steel ball 1 is maintained constant, the predetermined pressure of steel ball 1 is also maintained. At this time, the distance traveled by steel ball 1 is yo
, and the measuring device 25 measures the distance y. A signal indicating this is transmitted to the microcomputer 26 and the microcomputer 26
When inputting this signal (step 104), the gear 15
A signal indicative of normal rotation is transmitted to the NC control 27. When the NC control 27 receives this signal, it transmits a signal indicating normal rotation drive of the gear 15 to the hobbing machine 21, and when the hobbing machine 21 receives this signal, it rotates the support 23 in the normal direction and rotates the gear 15 in the normal direction. (Step 105).

このとき、第4図■ζこ示すように鋼球1は歯車15の
正転にともなりて距離y1まで移行し、計測装置25は
この距離Y+を示す信号をマイクロコンi      
e−−y26+ca送し、フイ、。、7ピーー、26は
この信号を入力すると(ステップ106)、距1?I 
y I と第3図ステップ104に示した距離y。
At this time, the steel ball 1 moves to a distance y1 as the gear 15 rotates normally, as shown in FIG.
Send e--y26+ca, fi. , 7P, 26 inputs this signal (step 106), and the distance 1? I
y I and the distance y shown in step 104 of FIG.

の比較を行い(ステップ107)、距myoが距離y1
よりも大きい場合はNCコントローラ27に歯車15を
正転から逆転に切換える信号を伝送しくステップ108
)、距[Y oが距離y1よりも小さい場合は歯車15
の正転を持続するのでNCコントローラ27に信号を伝
送しない。すなわち、鋼球1が歯車15の歯と歯の間の
奥の方に移行すると歯車15の正転を持続し、鋼球1が
計測装置25に近くなるように移行すると歯車15を逆
転して、鋼球1を歯車15の歯と歯の間の奥の方に移行
するようにする。ここで、第4図■に示す場合は歯車1
5を矢印方向に正転すると、鋼球1は歯車15の歯と歯
の間の奥の方に移行するので、これlこより歯車15の
正転を持続する。そして、鋼球1は移行し続け、計測装
e25は鋼球1の移行した距離y3を示す信号をマイク
ロコンピュータ26に伝送し、マイクロコンピュータ2
6はこの信号を入力する(ステップ109)。次1ζ、
計測装置25は鋼球1のさらに移行した距離y4を示す
信号をマイクロコンピュータ26に伝送し、マイクロコ
ンピュータ26はこの信号を入力する(ステップ110
)。さらに、マイクロコンピュータ26は第3図ステッ
プ109に示した距離y3と第3図ステップ110に示
した距M1y 4との比較を行い(ステップ112)、
距離y4が距m y sよりも大きい場合は距離y4を
距離y3に置き換えて(ステップ111)、計測装置2
5が伝送してきだ鋼球1のさらに移行した新たな距離y
4を示す信号を入力しくステップ110)、この新たな
距離y4と第3図ステップ111に示した距離y3との
比較を行う(ステップ112)。したがって、距離y4
が距離y3よりも大きい限りは第3図ステップ110、
ステップ112、ステップ111を繰り返し続ける。ま
た、距離y4が距離y3よりも小さくなった場合は鋼球
1は第4図■に示すように歯車15の歯と歯の奥に入っ
て両歯面の点Pm、Pm’に同時1こ接した後、第4図
■に示すように計測装置25に接近しつつあることにな
る。したがって、距41 y 3は最大値である(ステ
ップ113)。このように距1’il Y 3が最大と
なりたとき、鋼球1中心と歯車15の中心位置との距離
L′は最小値となり、マイクロコンビエータ26は距離
L′=距離り一距離y3の演算を行って、距離L′を算
出する。また、マイクロコンビエータ26は鋼球lを引
き込むことを示す信号を計測装置251こ伝送し、同時
に、歯車15の回転を停止することを示す信号をNCコ
ントローラ27に伝送する。計測装置25は鋼球1を引
き込むことを示す信号を入力すると、第4図■に示すよ
うに鋼球1を引き込み、また、NCコントロー227は
歯車15の回転を停止することを示す信号を入力すると
、ホブ盤21に支持体23の回転を停止することを示す
信号を伝送し、ホブ盤21はこの信号を入力すると、支
持体23の回転を停止して歯車15の回転を停止する(
ステップ114)。さらに、マイクロコンピュータ26
は算出した鋼球1中心と歯車15の中心16との距離L
′、第3図ステップ102で示した目標のマタギ歯厚S
m、基礎円の半径r g 、基礎圧力角α。、刃数Z、
マタギ歯数Zm、モジールn1、鋼球工の直径dから歯
車15のマタギ歯厚Sm′と歯車15を目標のマタギ歯
厚Smに加工するためのホブの切込みttとを算出する
(ステップ116)。
are compared (step 107), and the distance myo is the distance y1
If it is larger than , a signal to switch the gear 15 from normal rotation to reverse rotation is transmitted to the NC controller 27 in step 108.
), distance [If Y o is smaller than distance y1, gear 15
Since the normal rotation of the motor continues, no signal is transmitted to the NC controller 27. That is, when the steel ball 1 moves to the back between the teeth of the gear 15, the gear 15 continues to rotate in the normal direction, and when the steel ball 1 moves closer to the measuring device 25, the gear 15 is rotated in the reverse direction. , the steel ball 1 is moved to the back between the teeth of the gear 15. Here, in the case shown in Figure 4 ■, gear 1
When the steel ball 5 is rotated in the normal direction in the direction of the arrow, the steel ball 1 moves to the back between the teeth of the gear 15, so that the gear 15 continues to rotate in the normal direction. Then, the steel ball 1 continues to move, and the measuring device e25 transmits a signal indicating the distance y3 that the steel ball 1 has moved to the microcomputer 26.
6 inputs this signal (step 109). Next 1ζ,
The measuring device 25 transmits a signal indicating the further distance y4 of the steel ball 1 to the microcomputer 26, and the microcomputer 26 inputs this signal (step 110).
). Furthermore, the microcomputer 26 compares the distance y3 shown in step 109 of FIG. 3 with the distance M1y4 shown in step 110 of FIG. 3 (step 112),
If the distance y4 is larger than the distance m y s, the distance y4 is replaced with the distance y3 (step 111), and the measuring device 2
The new distance y that steel ball 1 has moved further after being transmitted by 5
4 is input (step 110), and this new distance y4 is compared with the distance y3 shown in step 111 of FIG. 3 (step 112). Therefore, distance y4
is larger than the distance y3, step 110 in FIG.
Continue repeating steps 112 and 111. Furthermore, when the distance y4 becomes smaller than the distance y3, the steel ball 1 enters the depths of the teeth of the gear 15 and hits points Pm and Pm' on both tooth surfaces at the same time, as shown in Fig. 4 (■). After coming into contact with it, it is approaching the measuring device 25 as shown in FIG. 4 (2). Therefore, the distance 41 y 3 is the maximum value (step 113). In this way, when the distance 1'il Y3 becomes the maximum, the distance L' between the center of the steel ball 1 and the center position of the gear 15 becomes the minimum value, and the micro combinator 26 A calculation is performed to calculate the distance L'. Furthermore, the micro combinator 26 transmits a signal indicating that the steel ball 1 is to be drawn in to the measuring device 251, and at the same time transmits a signal indicating that the rotation of the gear 15 is to be stopped to the NC controller 27. When the measuring device 25 inputs a signal indicating that the steel ball 1 is to be pulled in, it pulls in the steel ball 1 as shown in FIG. Then, a signal indicating that the rotation of the support body 23 is to be stopped is transmitted to the hobbing machine 21, and when the hobbing machine 21 receives this signal, it stops the rotation of the support body 23 and the rotation of the gear 15 (
Step 114). Furthermore, the microcomputer 26
is the calculated distance L between the center of the steel ball 1 and the center 16 of the gear 15
', target matagi tooth thickness S shown in step 102 in Fig. 3
m, radius of the base circle r g , base pressure angle α. , number of blades Z,
Calculate the gear tooth thickness Sm' of the gear 15 and the cutting depth tt of the hob for machining the gear 15 to the target gear tooth thickness Sm from the number of gear teeth Zm, module n1, and diameter d of the steel ball mill (step 116). .

ここで、これらのマタギ歯厚Sm’、ホブの切込みit
を算出するための演算方法を次に述べる。
Here, these matagi tooth thickness Sm', hob cutting depth it
The calculation method for calculating is described below.

すなわち、第5図に示すように半径rgの基礎円と歯車
15の歯面とが交わる点B、歯車15の中心を示す点O
1鋼球1中心と歯車15中心との距離がL′のときの鋼
球1の中心を示す点01によって形成された BOOl
(=ψ)はホブの切込み量1こ対応して変化するもので
ある。この角度ψを算出した後、この角度ψにもとづい
てマタギ歯厚Sm′とホブの切込みitを算出すること
ができる。まず、歯車15の歯はインボリュート曲線に
もとづいて形成されているので、マタギ歯厚Sm′を示
す点Pm、Qを結ぶ直線と基礎円が接する点Aと、鋼球
1と歯とが接する点Pmとを結ぶ線分A P mは次の
(1)式で表わせる。
That is, as shown in FIG. 5, a point B where the base circle of radius rg intersects with the tooth surface of the gear 15, and a point O indicating the center of the gear 15.
BOOl formed by point 01 indicating the center of steel ball 1 when the distance between the center of steel ball 1 and the center of gear 15 is L'
(=ψ) changes corresponding to the cutting depth of the hob. After calculating this angle ψ, the mating tooth thickness Sm' and the cutting depth it of the hob can be calculated based on this angle ψ. First, since the teeth of the gear 15 are formed based on an involute curve, a point A where the base circle touches a straight line connecting points Pm and Q indicating the mating tooth thickness Sm', and a point where the steel ball 1 and the teeth touch. A line segment A P m connecting Pm can be expressed by the following equation (1).

三角形A00.は直角三角形であるから、となる。線分
AO,は絆分A P mと線分0 、 P亀の和である
Triangle A00. Since is a right triangle, The line segment AO, is the sum of the bond segment A P m and the line segments 0 and P kame.

したがって、式(2) 、 (3ンよりとなる。式(4
)より乙AOB(=φ)を求めると、g となる。一方、 AOI = r g tan (φ+ψ’)     
 −・・(6)なので、 となり、さらに、 となる。
Therefore, from equation (2), (3).Equation (4
) to find AOB (=φ), we get g. On the other hand, AOI = r g tan (φ+ψ')
−...(6), so , and furthermore, .

この(8)式で求めた角度ψを次の一般式(9)に代入
すると歯車15の転位係数Xを算出することができる。
By substituting the angle ψ obtained by this equation (8) into the following general equation (9), the shift coefficient X of the gear 15 can be calculated.

ただし、Zは歯数、α0は基準圧力角である。そして、
この転位係数Xを次の一般式(10)に代入すると歯車
15のマタギ歯厚Sm′を算出することができる。
However, Z is the number of teeth and α0 is the reference pressure angle. and,
By substituting this shift coefficient X into the following general formula (10), the mating tooth thickness Sm' of the gear 15 can be calculated.

8 m’ =−mcosa(、(rr (Zm−Q、5
 ) +Z(tanα0−αo )、) + 2m x
sinα0    ・・・・・・(1■ただし、mはモ
ジー−ル、Zmはマタギ歯数である。そこで、マタギ歯
厚の目標値をSmとするとホブが切削する切込みitは
次の一般式(11)でこのよう番こして、マイクロコン
ピュータ26は歯車15のマタギ歯厚Sm’とホブの切
込み量tを算出した後、これらのマタキ附厚8 m’ 
と切込みfjを図示しない表示装置に表示する(ステッ
プ116)とともに切込み量tを示す信号をNCコント
ローラ27に伝送する。NCコントローラ27はこの信
号を入力すると、前記切込み17ctにもとづいた制御
信号を形成してこれをホブ盤21(こ伝送する。ホブ盤
21はこの信号を入力すると、ホブ22を該切込みit
に対応して移行するとともにホブ22と支持体23を回
動して歯車15の切削を行う。こうして、歯車15の仕
上工程を終了する(ステップ117)。なお、繰り返し
第3図に示したフローチャートに従って歯車15の測定
および切削を行ってもよく、この場合は予めマタギ歯厚
の許容範囲を定めておき、マタギ歯厚がこの許容範囲に
入るようζこする。また、計測装置25の鋼球1は所望
に応じて取り換ることができるようにしておけば、歯車
のピッチがどのようであっても対応することができる。
8 m' = -mcosa(, (rr (Zm-Q, 5
) +Z(tanα0−αo),) +2m x
sin α0 ...... (1■ However, m is the module and Zm is the number of teeth of the gear tooth. Therefore, if the target value of the tooth thickness of the gear gear is Sm, the cutting depth it of the hob is calculated by the following general formula ( 11), the microcomputer 26 calculates the tooth thickness Sm' of the gear 15 and the cutting depth t of the hob, and then calculates the thickness Sm' of the gear teeth 8 m'.
and the depth of cut fj are displayed on a display device (not shown) (step 116), and a signal indicating the depth of cut t is transmitted to the NC controller 27. When the NC controller 27 receives this signal, it forms a control signal based on the cutting depth 17ct and transmits it to the hobbing machine 21. When the hobbing machine 21 receives this signal, it controls the hob 22 according to the cutting depth.
The hob 22 and the support body 23 are rotated to cut the gear 15. In this way, the finishing process of the gear 15 is completed (step 117). Note that the measurement and cutting of the gear 15 may be repeated according to the flowchart shown in FIG. do. Further, if the steel ball 1 of the measuring device 25 is made replaceable as desired, it is possible to cope with any gear pitch.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、両歯面に接触した
ときの鋼球の中心と歯車中心位置との距離を自動的に測
定することができ、この測定した距離から歯車のマタギ
歯厚を算出てきる。しだがって、この方法を例えばNC
ホブ盤に適用すれば、NCホブ盤での歯車の切削工程を
無人自動化することができる。
As explained above, according to the present invention, it is possible to automatically measure the distance between the center of the steel ball and the gear center position when it comes into contact with both tooth surfaces, and from this measured distance, the gear tooth thickness can be calculated. Therefore, this method can be applied to e.g.
If applied to a hobbing machine, it is possible to automate the gear cutting process using an NC hobbing machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の歯厚自動測定方法を適用したNCホブ
盤の一実施例を示すブロック図、第2図は第1図に示し
た実施例の部分図、第3図は第1図ζこ示した実施例を
説明するためのフローチャート、第4図、第5図は第1
図に示した実施例を説明するための概略図である。 ■・・・銅球、2・・スタイラス、3・・・ポールブツ
シュ、4・・・滑車、5・・・受光ダイオード、6・・
・支柱、7・・・糸、8・・・ローラガイド、9,10
・・・?W車、11・・・トルクモータ、12・・・発
光ダイオード、13・・ガラススケール、15・・・歯
車、21・・・ホブ盤、221     ・・・ホブ、
23・・・支持体、25・・・計測装置、26・・・マ
イクロコンビエータ、27・、、 N C’コントロー
ラ第1図 第2図 第 3図 第4図
Fig. 1 is a block diagram showing an embodiment of an NC hobbing machine to which the automatic tooth thickness measurement method of the present invention is applied, Fig. 2 is a partial diagram of the embodiment shown in Fig. 1, and Fig. 3 is a diagram similar to that shown in Fig. 1. ζA flowchart for explaining the illustrated embodiment, FIGS. 4 and 5 are
FIG. 2 is a schematic diagram for explaining the embodiment shown in the figure. ■...Copper ball, 2...Stylus, 3...Pole bush, 4...Pulley, 5...Light receiving diode, 6...
・Strut, 7... Thread, 8... Roller guide, 9, 10
...? W wheel, 11...torque motor, 12...light emitting diode, 13...glass scale, 15...gear, 21...hobbing machine, 221...hob,
23...Support body, 25...Measuring device, 26...Micro combinator, 27... NC' controller Fig. 1 Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 先端に所定直径の鋼球が設けられたスタイラスを直動さ
せ該鋼球の中心位置を検出する手段を、軸支した被測定
歯車の中心位置に対して前記鋼球の検出基準位置が既知
の距離離間し、かつ前記鋼球の移動方向が該被測定歯車
の法線方向と一致するように配置し、前記スタイラスを
直動させ鋼球を被測定歯車の歯面に所定の圧力で押し当
てるとともに、被測定歯車を回動させ、前記鋼球が同時
に両歯面に接触したときの該鋼球の中心位置を検出し、
この検出位置に基づいて被測定歯車の中心位置と鋼球の
中心位置との距離を算出し、この算出した距離および鋼
球の所定直径と、被測定歯車の基礎円半径、歯数、マタ
ギ歯数、基準圧力角、モジュールとから被測定歯車のマ
タギ歯厚を算出することを特徴とする歯厚自動計測方法
A means for linearly moving a stylus having a steel ball of a predetermined diameter at the tip and detecting the center position of the steel ball is provided, the detection reference position of the steel ball being known with respect to the center position of a gear to be measured which is pivotally supported. The steel ball is placed a distance apart and the moving direction of the steel ball matches the normal direction of the gear to be measured, and the stylus is moved directly to press the steel ball against the tooth surface of the gear to be measured with a predetermined pressure. At the same time, rotating the gear to be measured and detecting the center position of the steel ball when the steel ball contacts both tooth surfaces at the same time,
Based on this detected position, the distance between the center position of the gear to be measured and the center position of the steel ball is calculated, and the calculated distance, the predetermined diameter of the steel ball, the base circle radius of the gear to be measured, the number of teeth, and the mating teeth are calculated. An automatic tooth thickness measurement method characterized by calculating the tooth thickness of a gear to be measured from a number, a reference pressure angle, and a module.
JP19290084A 1984-09-14 1984-09-14 Automatic measuring method of tooth thickness Pending JPS6170401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19290084A JPS6170401A (en) 1984-09-14 1984-09-14 Automatic measuring method of tooth thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19290084A JPS6170401A (en) 1984-09-14 1984-09-14 Automatic measuring method of tooth thickness

Publications (1)

Publication Number Publication Date
JPS6170401A true JPS6170401A (en) 1986-04-11

Family

ID=16298844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19290084A Pending JPS6170401A (en) 1984-09-14 1984-09-14 Automatic measuring method of tooth thickness

Country Status (1)

Country Link
JP (1) JPS6170401A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886907A (en) * 2010-06-13 2010-11-17 大同齿轮(昆山)有限公司 Backlash detecting device
CN106092023A (en) * 2016-08-29 2016-11-09 纽尚(宁波)汽车轴承制造有限公司 The device of ball diameter detection on bearing
CN106123828A (en) * 2016-08-29 2016-11-16 纽尚(宁波)汽车轴承制造有限公司 The device that ball diameter detects automatically on bearing
CN106123744A (en) * 2016-08-29 2016-11-16 纽尚(宁波)汽车轴承制造有限公司 The equipment of ball diameter detection on bearing
CN106152913A (en) * 2016-08-29 2016-11-23 纽尚(宁波)汽车轴承制造有限公司 The mechanism that ball diameter detects automatically on bearing
CN106370143A (en) * 2016-08-29 2017-02-01 纽尚(宁波)汽车轴承制造有限公司 Bearing ball diameter automatic detection device
CN106370144A (en) * 2016-08-29 2017-02-01 纽尚(宁波)汽车轴承制造有限公司 Bearing ball diameter detection device
EP3228973A1 (en) * 2016-04-06 2017-10-11 Jtekt Corporation Gear measurement method and gear measurement apparatus
JP2017191087A (en) * 2016-04-06 2017-10-19 株式会社ジェイテクト Gear measuring method and measuring apparatus
CN112797932A (en) * 2020-12-30 2021-05-14 綦江齿轮传动有限公司 Method for detecting gear position degree of intermediate shaft

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886907A (en) * 2010-06-13 2010-11-17 大同齿轮(昆山)有限公司 Backlash detecting device
EP3228973A1 (en) * 2016-04-06 2017-10-11 Jtekt Corporation Gear measurement method and gear measurement apparatus
JP2017191087A (en) * 2016-04-06 2017-10-19 株式会社ジェイテクト Gear measuring method and measuring apparatus
CN107449604A (en) * 2016-04-06 2017-12-08 株式会社捷太格特 The assay method and measure device of toothed portion part
US10288404B2 (en) 2016-04-06 2019-05-14 Jtekt Corporation Gear measurement method and gear measurement apparatus
CN106092023A (en) * 2016-08-29 2016-11-09 纽尚(宁波)汽车轴承制造有限公司 The device of ball diameter detection on bearing
CN106123828A (en) * 2016-08-29 2016-11-16 纽尚(宁波)汽车轴承制造有限公司 The device that ball diameter detects automatically on bearing
CN106123744A (en) * 2016-08-29 2016-11-16 纽尚(宁波)汽车轴承制造有限公司 The equipment of ball diameter detection on bearing
CN106152913A (en) * 2016-08-29 2016-11-23 纽尚(宁波)汽车轴承制造有限公司 The mechanism that ball diameter detects automatically on bearing
CN106370143A (en) * 2016-08-29 2017-02-01 纽尚(宁波)汽车轴承制造有限公司 Bearing ball diameter automatic detection device
CN106370144A (en) * 2016-08-29 2017-02-01 纽尚(宁波)汽车轴承制造有限公司 Bearing ball diameter detection device
CN112797932A (en) * 2020-12-30 2021-05-14 綦江齿轮传动有限公司 Method for detecting gear position degree of intermediate shaft

Similar Documents

Publication Publication Date Title
US4329096A (en) Gear cutter
US20110247436A1 (en) Gear measurement method
US4663721A (en) Gear cutter
JP2001030112A (en) Method and device for automatically measuring working and product material characteristics at the time of grinding gear
JPS6170401A (en) Automatic measuring method of tooth thickness
JP7321665B2 (en) Method for automatic measurement of external dimensions of gear cutting machine tools
US6575812B2 (en) Setting up process for a tool or workpiece on a gear making machine
KR100189672B1 (en) Device for detecting bend angle of press brake
CN1453103A (en) In-situ trimming method for shaping abrasive wheel
JPS61146454A (en) Method of positioning work of nc control machine and nc control machine for executing said method
CN2618725Y (en) On-line repairing device for formed grinding emery wheel
JPH0647620A (en) Processing method for gears
JP3385039B2 (en) Thickness measuring method and measuring device in bender
JPS598493B2 (en) Distance adjustment device between cutter and workpiece
US4218825A (en) Method and apparatus for determining axes of cylindrical blanks
JPH02109683A (en) Automatic measuring device for grindstone dimension in numerical control grinder
SU629040A1 (en) Cutting tool position automatic correction device
JPH0515209B2 (en)
US5283751A (en) Control device and method for an incremental numerical axis in a machining station
JPS63191553A (en) Method of diagnosing machine condition
JP2953765B2 (en) Spiral shaped object shape measuring method, spiral shaped object processing system, and worm inspection method
KR200379079Y1 (en) The automatic crank pin measuring device for crankshaft grinding machine
JPS6318684B2 (en)
JPS63191552A (en) Numerically controlled (nc) machine tool equipped with measurement probe error compensation function
JPH11183157A (en) Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece