JPH11183157A - Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece - Google Patents

Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece

Info

Publication number
JPH11183157A
JPH11183157A JP36590597A JP36590597A JPH11183157A JP H11183157 A JPH11183157 A JP H11183157A JP 36590597 A JP36590597 A JP 36590597A JP 36590597 A JP36590597 A JP 36590597A JP H11183157 A JPH11183157 A JP H11183157A
Authority
JP
Japan
Prior art keywords
diameter
measured
measuring
workpiece
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36590597A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kuriyama
和俊 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP36590597A priority Critical patent/JPH11183157A/en
Publication of JPH11183157A publication Critical patent/JPH11183157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a diameter of an object to be measured without being affected by a roundness shape of a workpiece and correctly stably manage a size of the workpiece by bringing a measurement element into touch with the object at respective outer circumferences and operating from a rotation angle of the measurement element measures after rotating once the object. SOLUTION: A turning arm 5 and a turning servo motor 18 are set concentrically at a leading end of a lift arm 4. A measurement element arm 6 is also set at the leasing end of the lift arm, which has a turn axis in parallel to a turn center of the turning arm 5. A rotation angle detection servo motor 21 is mounted at the measurement element arm 6. A rotation angle of a measurement element 3 kept in touch with an object 7 to be measured is measured when the turning arm 5 is held stationary and a circular table 1 rotates by 360 deg. or when the circular table 1 is held stationary and the turning arm 5 rotates by 360 deg.. Data of the measured rotation angle are input to an operation circuit. Data of a diameter of the circumferential object are operated from the input rotation angle data and data stored in a memory circuit beforehand, and output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加工物の自動直径測
定装置並びに加工物の寸法管理方法に関するものであ
り、更に詳しくは一定の周長を有する測定子を用いて被
測定物の円周に沿って計測した周長さと検出時の測定子
の回転角度とから演算により加工物の直径を算出して求
めるものでる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for automatically measuring the diameter of a workpiece and a method for controlling the dimensions of the workpiece, and more particularly to a method for measuring the diameter of a workpiece by using a measuring element having a constant circumference. The diameter of the workpiece is calculated and obtained from the circumference measured along the axis and the rotation angle of the tracing stylus at the time of detection.

【0002】[0002]

【従来技術】従来、加工物の直径計測装置としては測定
器,マイクロメータ或いはエアマイクロや電気マイクロ
等を用いて基準ゲージ(ブロックゲージ)と比較するこ
とによって直接的に直径を計測する方法が使用されてい
る。これらの方法で計測したデータには、被測定物の真
円度の程度により測定誤差にばらつきを生ずるので、真
円度の悪い被測定物に対しては複数ポイントを測定して
平均径又は各測定ポイントでの最大・最小値から平均径
を求めて被測定物直径とする方式を採用している場合が
ある。このような従来型の測定方法では、測定物の真円
度形状に起因する測定誤差を含むため直径の直接測定を
数回計測し平均値径を求めて寸法管理を行うこととな
る。
2. Description of the Related Art Conventionally, as a device for measuring the diameter of a workpiece, a method of directly measuring the diameter by using a measuring instrument, a micrometer, an air micrometer, an electric micrometer, or the like to compare with a reference gauge (block gauge) has been used. Have been. In the data measured by these methods, the measurement error varies depending on the degree of roundness of the object to be measured. In some cases, a method is employed in which the average diameter is determined from the maximum and minimum values at the measurement point and is used as the diameter of the measured object. In such a conventional measuring method, direct measurement of the diameter is performed several times to obtain a mean error due to a measurement error due to the roundness shape of the measured object, and dimensional control is performed.

【0003】[0003]

【発明が解決しようとする課題】従来技術で述べた円形
状加工物の直径を直接計測する場合には、加工物の真円
度にもとづく測定誤差が含まれるので正確な寸法管理が
困難となる。また、測定装置で測定できる直径の範囲に
は制約があるため、被測定物の径の範囲が広いときは同
一測定ベッドでは測定できないという問題を有してい
る。また加工途中で被加工物を繰り返し位置を変えて計
測したり機外へ被加工物を搬出して計測する場合には、
機械の稼働率の低下につながり無視できない無駄時間と
なる。本発明は従来技術の有するこのような問題に鑑み
なされたものであり、その目的とするところは、加工物
の真円度形状による影響を受けないで被測定物直径を計
測する装置と本発明の測定方法に基づいて機内計測する
ことにより加工物の正確且つ安定した寸法管理を行う方
法を提供するものである。
In the case of directly measuring the diameter of a circular workpiece as described in the prior art, a measurement error based on the roundness of the workpiece is included, so that accurate dimensional control becomes difficult. . In addition, since there is a restriction on the range of diameters that can be measured by the measuring device, there is a problem that measurement cannot be performed with the same measurement bed when the range of the diameter of the object to be measured is wide. Also, when performing measurement while repeatedly changing the position of the workpiece during processing or carrying out the workpiece outside the machine for measurement,
This leads to a reduction in the operating rate of the machine, which is a considerable waste time. The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide an apparatus for measuring the diameter of an object to be measured without being affected by the roundness shape of a workpiece and the present invention. The present invention provides a method for performing accurate and stable dimensional control of a workpiece by performing in-machine measurement based on the measurement method described above.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明の被測定物直径計測装置は、円筒状被測定物の
直径を間接的に測定する計測装置であって、テーブルの
1回転が検出可能な円テーブルと該テーブル上に載置さ
れた被測定物に内接又は外接して回転し円周長さLoを
有する円板状測定子と、被測定物が一回転したときの該
測定子の回転角θ°を測定する計測手段と、前記円周長
さLoを予め記憶する記憶回路と、前記測定子の回転角
θ°と予め記憶回路に記憶された該測定子の円周長Lo
とからLo・(θ/360°)/πを演算して前記測定
物の径を算出する演算回路とを含んでなり、被測定物の
直径を演算して求めるようになしたものである。本発明
の測定装置は被測定物に被測定子を近づけて各々の外周
を接触させ被測定物を1回転させて計測した測定子の回
転角から演算することにより被測定物の直径を求める測
定装置であり、測定を繰り返さないので寸法管理上の工
数が削減でき、円テーブルを有する数値制御工作機械の
機内計測にも適用できる。
In order to achieve the above object, an object diameter measuring apparatus according to the present invention is a measuring apparatus for indirectly measuring the diameter of a cylindrical object to be measured. A circular table having a detectable circular table, a disc-shaped probe having a circumference length Lo that is inscribed or circumscribed with the object placed on the table, Measuring means for measuring the rotation angle θ ° of the tracing stylus; a storage circuit for storing the circumferential length Lo in advance; and a rotation angle θ ° of the tracing stylus and a circle of the tracing stylus previously stored in the storage circuit. Perimeter Lo
And an arithmetic circuit for calculating Lo · (θ / 360 °) / π to calculate the diameter of the measured object, thereby calculating the diameter of the measured object. The measuring device of the present invention measures the diameter of the DUT by bringing the DUT closer to the DUT, making contact with the respective outer circumferences, rotating the DUT one turn, and calculating from the rotation angle of the DUT. Since it is a device and measurement is not repeated, the number of man-hours for dimension management can be reduced, and it can be applied to in-machine measurement of a numerically controlled machine tool having a circular table.

【0005】また、円筒状被測定物の直径を間接的に測
定する計測装置であって、1回転が計測可能に設けられ
た旋回アームと、該旋回アームに前記被測定物に内接又
は外接して回転し円周長さLoを有する円板状測定子と
前記回転アームが一回転したときの該測定子の回転角θ
°を測定する計測手段と、前記円周長さLoを予め記憶
する記憶回路と、前記測定子の回転角θ°と予め記憶回
路に記憶された該測定子の円周長さLoとからLo・
(θ/360°)/πを演算して前記被測定物の径を算
出する演算回路とを含んでなり、被測定物の直径を演算
して求めるようにしたものである。本発明の測定装置
は、被測定物を心出し可能な爪に把持させ位置決め固定
した後測定子を接触させ被測定物の外周を1回転させて
計測して得た測定子の回転角から被測定物の直径を演算
して求める装置であり、測定回数を繰り返さないので寸
法管理上の工数が短縮化できる測定装置である。
[0005] A measuring device for indirectly measuring the diameter of a cylindrical object to be measured, comprising: a turning arm provided so as to be able to measure one rotation; And the rotation angle θ of the measuring element when the rotating arm makes one rotation.
° measuring means, a storage circuit for storing the circumference length Lo in advance, and Lo from the rotation angle θ ° of the measurement element and the circumference length Lo of the measurement element stored in the storage circuit in advance.・
(Θ / 360 °) / π to calculate the diameter of the object, and to calculate the diameter of the object. The measuring device of the present invention is characterized in that the object to be measured is gripped and positioned and fixed by a centerable claw, then the measuring element is brought into contact with the measuring element, and the outer circumference of the object to be measured is rotated once to measure the measuring object. It is a device that calculates and calculates the diameter of the object to be measured, and is a measurement device that does not repeat the number of measurements and can reduce the number of steps in dimensional management.

【0006】また、請求項1又は2記載の被測定物直径
計測装置を機内に設けた数値制御工作機械において、前
記直径計測装置で測定した前記回転子の回転角を演算し
て求めた加工物の直径のテータを前記加工物の加工デー
タに帰還して、加工物の寸法管理を行うようにしたもの
である。本発明の機内寸法管理方法を、円テーブルを有
する数値制御工作機械の機内で実施することにより加工
物の直径寸法の広い範囲で測定可能であり、直径測定に
要する時間の削減も可能となり工程管理上有効な方法と
なる。
Further, in a numerical control machine tool provided with an object diameter measuring device according to claim 1 or 2 in a machine, a workpiece obtained by calculating a rotation angle of the rotor measured by the diameter measuring device. Is returned to the machining data of the workpiece to manage the dimension of the workpiece. By performing the in-machine dimension management method of the present invention in a machine of a numerically controlled machine tool having a circular table, it is possible to measure a wide range of the diameter of the workpiece, and it is possible to reduce the time required for the diameter measurement and to manage the process. This is an effective method.

【0007】以下に本発明の実施の形態を図面にもとづ
いて説明する。図1において、本発明の被測定物直径測
定装置の主たる構成要素である円テーブル1と測定子2
を支えるアーム関連部材4,5,6はいずれもベース3
上に設けられている。ベース3上に設けられた円テーブ
ル1は、円筒状の被測定物7を旋回中心に位置決め可能
なチャック爪8と、円テーブル1を位置決めするサーボ
モータ9及び伝導機構を内部に有する円テーブル外筐1
1とから構成されている。測定子を支えるアーム関連部
材4,5,6は昇降アーム部4,旋回アーム部5,測定
子アーム部とからなっている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a circular table 1 and a tracing stylus 2 which are main components of a device for measuring a diameter of an object to be measured according to the present invention.
The arm-related members 4, 5, and 6 that support the
It is provided above. The circular table 1 provided on the base 3 has a chuck claw 8 capable of positioning a cylindrical object 7 at the center of rotation, a servomotor 9 for positioning the circular table 1, and a circular table having a transmission mechanism inside. Case 1
And 1. The arm-related members 4, 5, and 6 that support the tracing stylus include a lifting arm 4, a turning arm 5, and a tracing stylus arm.

【0008】昇降アーム4は、ベース3上に固定された
下部支え12に鉛直に嵌着されてコラム13の外周に嵌
装され、コラム13の外周にキー着されたガイドレール
14により滑動可能に案内されている。そして昇降アー
ム4はコラム13の上部支え15と下部支え12に支承
されアーム昇降モータ17で駆動される送りねじ軸16
によって上下動される。昇降アームの先端に、円テーブ
ルの回転中心軸上に旋回中心を有する旋回アーム5と旋
回用サーボモータ18が同心上にあり、円テーブル1の
被測定物7が固定されている際に被測定物7に測定子2
を接触させたまま旋回アーム5を1回転させたとき旋回
アーム5の先端に軸受によって回転可能に設けられた旋
回アーム5の旋回中心と平行な軸を旋回中心軸とする測
定子アーム6が設けられている。この測定子アーム6は
旋回アーム5上に設けた測定子旋回用モータ19によ
り、旋回中心軸が回転されることにより旋回される。
The elevating arm 4 is vertically fitted on a lower support 12 fixed on the base 3 and is fitted on the outer periphery of the column 13, and is slidable by a guide rail 14 keyed on the outer periphery of the column 13. You are being guided. The lifting arm 4 is supported by an upper support 15 and a lower support 12 of a column 13, and is driven by an arm lifting motor 17 by a feed screw shaft 16.
Is moved up and down. The rotating arm 5 having a rotating center on the rotation center axis of the rotary table and the rotating servomotor 18 are concentric with the tip of the lifting arm, and the measurement is performed when the DUT 7 of the rotary table 1 is fixed. Probe 2 on object 7
When the swivel arm 5 is rotated by one rotation while keeping the contact, a probe arm 6 is provided at the tip of the swivel arm 5 so as to be rotatable by a bearing and has an axis parallel to the swivel center of the swivel arm 5 as a swivel center axis. Have been. The tracing stylus arm 6 is turned by the tracing stylus motor 19 provided on the turning arm 5 so that the turning center axis is rotated.

【0009】測定子アーム6の先端に設けたタッチセン
サ機能を有する測定子2が円テーブル1上の被測定物7
に接触するまで測定子アーム6を旋回させ停止する。こ
こで測定子2のタッチセンサ機能とは図2で示す測定子
ローラ22が被測定物7に接触したときに信号を発して
測定ローラの移動を停止させることができるセンサとし
ての機能をいう。被測定物7の形状により測定子アーム
の長さとの関係で測定子アーム6の旋回中心,測定子ロ
ーラ22と被測定物の接触点及び被測定物中心の3点が
形成する角度が90°近傍で使用するのが加圧力の点か
ら望ましいので測定子アーム6のアーム長さを選定する
のが望ましい。
A tracing stylus 2 having a touch sensor function provided at the tip of a tracing stylus arm 6 is provided on a workpiece 7 on a rotary table 1.
The probe arm 6 is turned and stopped until it comes into contact with. Here, the touch sensor function of the tracing stylus 2 means a function as a sensor capable of stopping the movement of the measuring roller by generating a signal when the tracing stylus roller 22 shown in FIG. Depending on the shape of the DUT 7, the angle formed by the three points of the rotation center of the DUT arm 6, the contact point of the DUT roller 22 with the DUT, and the center of the DUT is 90 ° in relation to the length of the DUT arm. Since it is desirable to use the probe in the vicinity from the viewpoint of the pressing force, it is desirable to select the arm length of the probe arm 6.

【0010】次に測定子2が被測定物7に接触した状態
で、旋回アーム5を静止させて円テーブル1が360°
回転する場合又は円テーブル1を静止させて旋回アーム
5が360°回転する場合の測定子2の回転角が測定可
能に測定子アーム6には回転角検出用サーボモータ21
が設けられている。測定した測定子2の回転角データθ
は図3に示す演算回路25に入力され、測定子2の周長
さが予めマニュアル又はテープ等で入力されている記憶
回路24のテータLoとでが演算回路24で演算され円
筒状被測定物の直径データが出力される。
Next, with the tracing stylus 2 in contact with the object 7 to be measured, the turning arm 5 is stopped and the rotary table 1 is rotated 360 °.
The rotation angle of the tracing stylus 2 can be measured when rotating or when the rotary arm 5 rotates 360 ° while the rotary table 1 is stationary.
Is provided. Rotation angle data θ of the measured probe 2
Is input to the arithmetic circuit 25 shown in FIG. 3, and the data Lo of the storage circuit 24 in which the circumference of the tracing stylus 2 has been input manually or by tape or the like is calculated by the arithmetic circuit 24, and the cylindrical object to be measured is Is output.

【0011】被測定物7に接して回転し、回転角を検出
する測定子2は、被測定物7の内周又は外周に接するの
でそれぞれの場合に応じ測定子ローラ22の直径を選定
する。測定子ローラ22を測定子アーム6の旋回により
被測定物7に接触させるための測定子アーム旋回用サー
ボモータは接触圧を繰り返し計測において等しくするた
め若しくは再度の測定に際して接触圧条件を同一にする
ために位置決め可能な機能を備えている。
The measuring element 2 which rotates in contact with the measured object 7 and detects the rotation angle is in contact with the inner or outer circumference of the measured object 7, so that the diameter of the measuring element roller 22 is selected in each case. A servomotor for turning the probe arm for contacting the probe roller 22 with the workpiece 7 by turning the probe arm 6 makes the contact pressure equal in repeated measurement or the same contact pressure condition in re-measurement. It has a function that allows positioning.

【0012】図2(a)に示すように測定子2のローラ
部分の構成を金属体からなる測定子ローラ22と滑りを
防止する弾性体ローラ22とすることも可能で該測定子
が被測定物に接するときはまず弾性体ローラ22部分が
接触し測定子の押さえ力が一定レベルに達したとき弾性
体が変形して金属体ローラ22が被測定物に接触する程
度に微小な段差をもうけて測定子と被測定物間の滑りを
生じないようにしている。測定子の有する前述のタッチ
センサ機能は、弾性体ローラ22が加圧されて変形後金
属体ローラ23が被測定物7に接触しない時に機能させ
るよう測定子アーム旋回用サーボモータ19で測定子2
を位置決めできる。
As shown in FIG. 2A, the configuration of the roller portion of the tracing stylus 2 may be a tracing stylus roller 22 made of metal and an elastic roller 22 to prevent slippage. When contacting the object, the elastic roller 22 first comes into contact, and when the pressing force of the tracing stylus reaches a certain level, the elastic body is deformed and a minute step is formed so that the metal roller 22 comes into contact with the object to be measured. This prevents slippage between the probe and the DUT. The above-described touch sensor function of the tracing stylus is provided by the tracing stylus arm rotating servomotor 19 so that the elastic roller 22 is pressed and deformed so that the metal roller 23 functions when the metal roller 23 does not contact the workpiece 7.
Can be positioned.

【0013】次に本発明の実施例の作用について説明す
る。説明に先立ち本発明の間接測定を行う理由と測定子
の滑りについて説明する。そこで本発明の内周長から演
算して間接的に求めた直径が従来の直接測定値を平均し
て求めた直径に替えて使用できることを次に説明する。
Next, the operation of the embodiment of the present invention will be described. Prior to the description, the reason for performing the indirect measurement of the present invention and the sliding of the tracing stylus will be described. Therefore, it will be described below that the diameter calculated indirectly from the inner circumference according to the present invention can be used in place of the conventional diameter obtained by averaging the direct measurement values.

【0014】真円度は、被測定物の円形部分を二つの同
心の幾何学的円で挟んだとき、両円の間隔が最小となる
場合の半径の差で示すものである。いま真円度が0.0
05であるときは前記二つの幾何学的円の直径差が0.
01であることを意味している。例えば加工物直径の指
令寸法が100mmであるとき要求される加工物の仕上
がり直径寸法は100±0.01であり、99.99≦
仕上げ加工物寸法≦100.01を意味する。
The roundness is represented by a difference in radius when a space between two circles is minimized when a circular portion of an object to be measured is sandwiched between two concentric geometric circles. Now roundness is 0.0
When 05, the diameter difference between the two geometric circles is 0.
01. For example, when the commanded diameter of the workpiece is 100 mm, the required finished diameter of the workpiece is 100 ± 0.01, and 99.99 ≦
Finished work dimensions ≦ 100.01.

【0015】この真円度を満足する精度内に加工されて
いると仮定した加工物の外周長さの理論値は最小径9
9.99のときの周長さは99.99π=314.12
758(πは3.14159とする)、最大径100.
01のときの周長さは100.01π=314.190
41、周長さの差は約0.06であり円周長さを測定し
て検出可能な範囲である。
The theoretical value of the outer peripheral length of the workpiece assumed to be processed within the accuracy satisfying the roundness is the minimum diameter 9
The perimeter at 9.99 is 99.99π = 314.12.
758 (π is 3.14159), maximum diameter 100.
The circumference at the time of 01 is 100.01π = 314.190.
41, the difference between the circumferential lengths is about 0.06, which is a range that can be detected by measuring the circumferential length.

【0016】次に加工物が示す一般的な形状として短軸
b=99.99/2,長軸a=100.01/2の楕円
形状であると仮定した場合の外周長さは第2種楕円積分
の公式を用いて計算すると次の数式(岩波書店刊・数学
公式1五章144頁)になる。
Next, assuming that the general shape of the workpiece is an elliptical shape having a minor axis b = 99.99 / 2 and a major axis a = 100.01 / 2, the outer peripheral length is the second type. Calculating using the elliptic integral formula gives the following formula (Iwanami Shoten, Mathematical Formulation 15, Chapter 144, page).

【数1】 (Equation 1)

【0017】この周長さから直径を求める直径は99.
999となる。これは前記真円度0.005であるとき
の最小径99.99、最大径100.01の範囲内に含
まれることがわかる。従って円形状被測定物の周長さを
1回計測し演算により求めた直径を当該測定物の直径と
して表示することが可能であることがわかる。
The diameter obtained from the circumference is 99.
999. It can be seen that this is included in the range of the minimum diameter 99.99 and the maximum diameter 100.01 when the roundness is 0.005. Therefore, it is understood that the diameter obtained by measuring the circumference of the circular measurement object once and calculating can be displayed as the diameter of the measurement object.

【0018】次に本発明においては測定子を被測定物の
円周に接触させて測定子の回転角を検出している。測定
子と被測定物間の接触における滑りは測定精度を低下さ
せる原因である。図2(b)において測定子を被測定物
に押し付けた状態での滑りの有無は、測定子の押し付け
力Fと測定子・被測定物間の摩擦係数μ測定子を回転さ
せるための回転力F1 等の相互関係により決まってく
る。
Next, in the present invention, the rotation angle of the probe is detected by bringing the probe into contact with the circumference of the object to be measured. Slippage in the contact between the tracing stylus and the object to be measured is a cause of lowering the measurement accuracy. In FIG. 2 (b), the presence or absence of slippage when the probe is pressed against the workpiece is determined by the pressing force F of the probe and the rotational force for rotating the friction coefficient μ probe between the probe and the workpiece. come determined by the mutual relationship, such as F 1.

【0019】滑りが生じない条件は次のとおりである。
測定子の負荷トルクT1 は被測定物が付加可能な回転駆
動トルクのT、滑りが発生しないためにはT>T1 であ
ることが必要である。しかしTは測定子を被測定物に押
し付けたとき生ずる力でありT=μFRの関係がある。
押しつけ力Fが一定の限度を超えると接触面で変形が生
じるので制限される。μ値は材料によって異なるが鉄系
の被加工物の計測時には測定子ローラ22を帯磁させる
ことも考えられる。
The conditions under which no slip occurs are as follows.
The load torque T 1 of the tracing stylus must be T, which is the rotational drive torque to which the DUT can be added, and T> T 1 in order to prevent slippage. However, T is a force generated when the probe is pressed against the object to be measured, and has a relation of T = μFR.
If the pressing force F exceeds a certain limit, deformation occurs on the contact surface, which is limited. Although the μ value differs depending on the material, it is conceivable to magnetize the tracing stylus roller 22 when measuring an iron-based workpiece.

【0020】測定子の負荷トルクT1 =r×F1 で表さ
れ、T1 は測定子と回転角検出系の負荷トルクである。
これは極力小なる方が滑りを生じない。滑りが生じない
条件は、μ・F・R>F1 ・rであり、測定子の押し付
け力Fについて、F>(1/μ)・(r/R)・F1
る関係を満たすようμ,r,R,F1 を選定する必要が
ある。今μ=0.1、r/R=0.5〜0.1に選ぶと
き測定子の回転力のF>(1〜5)F1 の関係から測定
子を回転力の3〜5倍の押し付け力があれば滑りを生ず
ることなく測定が可能であることを示している。
The load torque of the tracing stylus is represented by T 1 = r × F 1 , where T 1 is the load torque of the tracing stylus and the rotation angle detection system.
As for this, slip becomes less as much as possible. The condition under which the slip does not occur is μ · FR> F 1 · r, and the pressing force F of the tracing stylus is set so that the relation F> (1 / μ) · (r / R) · F 1 is satisfied. , it is necessary to select r, R, the F 1. Now μ = 0.1, r / a rotational force of the measuring element when choosing the R = 0.5~0.1 F> (1~5) from the relationship of F 1 3 to 5 times the rotational force measuring element This shows that the measurement can be performed without slippage if there is a pressing force.

【0021】次に具体的な本発明における測定子の回転
角の測定について2通りの測定手順を説明する。予め昇
降アーム4を上昇させ、続いて測定子2が被測定物7に
干渉しない程度に測定子2を円テーブル中心から離した
位置に旋回用モータ19で移動させる。被測定物7を円
テーブル1上のチャックの爪8に載せ爪を閉じて位置決
めを行う。第1の手順はアーム昇降モータ17を作用さ
せて測定子2が測定しようとする被測定物7の高さに達
するまで昇降アーム4を降下させる。
Next, two specific measurement procedures for measuring the rotation angle of the tracing stylus according to the present invention will be described. The elevating arm 4 is raised in advance, and then the tracing stylus 2 is moved by the turning motor 19 to a position away from the center of the circular table so that the tracing stylus 2 does not interfere with the DUT 7. The DUT 7 is placed on the chuck claw 8 on the rotary table 1 and the claw is closed to perform positioning. In the first procedure, the arm lifting motor 17 is operated to lower the lifting arm 4 until the tracing stylus 2 reaches the height of the DUT 7 to be measured.

【0022】続いて測定子アーム6を被測定物7に接す
る方向に旋回させる。第1の手順はまず被測定物を円テ
ーブル1上で1回転させて計測する場合である。測定子
2が被測定物7に測定子アーム旋回用のサーボモータ1
9で駆動されて接触しタッチセンサが作用した時点で測
定子アーム6と旋回用アーム5のサーボモータ18,1
9の回転を停止して固定し円テーブル1の原点と測定子
2の回転角原点を零復帰させる。その後で円テーブル1
を360°回転させたときの測定子2の回転角θを計測
し演算回路25に入力し予め記憶回路24に入力した測
定子2の円周長さLoとからLo・(θ°/360°)
/πを演算させ被測定物7の直径を求めるものである。
Subsequently, the tracing stylus arm 6 is turned in a direction in contact with the DUT 7. The first procedure is a case where an object to be measured is first rotated on the circular table 1 for measurement. The stylus 2 is attached to the DUT 7 by a servomotor 1 for turning the stylus arm.
When the touch sensor is actuated by being driven by the touch sensor 9, the servomotors 18 and 1 of the tracing stylus arm 6 and the turning arm 5 are actuated.
9 is stopped and fixed, and the origin of the rotary table 1 and the origin of the rotation angle of the tracing stylus 2 are returned to zero. After that, circular table 1
Is rotated 360 °, the rotation angle θ of the tracing stylus 2 is measured, input to the arithmetic circuit 25, and obtained from the circumferential length Lo of the tracing stylus 2 previously input to the storage circuit 24 to obtain Lo · (θ ° / 360 °). )
/ Π is calculated to determine the diameter of the DUT 7.

【0023】第2の手順は、旋回アーム5を1回転させ
て測定子2を被測定物7の外周に接して回転させ被測定
物の周長さを計測する場合である。測定子2が被測定物
7に接して前述と同様にサーボモータ19で駆動し測定
子2のタッチセンサが作用した時点で測定子アーム6と
円テーブル1のサーボモータ19,9の回転を停止し固
定し、旋回用アーム5のサーボモータ18原点と測定子
2のサーボモータ21の回転角原点を零復帰させる。そ
の後に旋回アーム5を360°回転させたときの測定子
2の回転角θを計測し演算回路25に入力し予め記憶回
路24に入力した測定子2の円周長さLoとからLo・
(θ°/360°)/πを演算させ被測定物7の直径を
求めるものである。
The second procedure is for measuring the circumference of the object to be measured by rotating the turning arm 5 once and rotating the tracing stylus 2 in contact with the outer periphery of the object to be measured 7. When the tracing stylus 2 comes into contact with the DUT 7 and is driven by the servomotor 19 in the same manner as described above and the touch sensor of the tracing stylus 2 operates, the rotation of the tracing stylus arm 6 and the servomotors 19 and 9 of the rotary table 1 are stopped. Then, the origin of the servo motor 18 of the turning arm 5 and the origin of the rotation angle of the servo motor 21 of the tracing stylus 2 are returned to zero. Thereafter, the rotation angle θ of the tracing stylus 2 when the swivel arm 5 is rotated by 360 ° is measured, input to the arithmetic circuit 25, and obtained from the circumferential length Lo of the tracing stylus 2 previously input to the storage circuit 24.
(Θ ° / 360 °) / π is calculated to determine the diameter of the DUT 7.

【0024】次に前述の2種類の測定装置による直径測
定の方法を機内加工物の寸法管理に使用する場合につい
て説明する。円筒形状の加工をする数値制御工作機械に
おいて、例えばマシニングセンタや旋盤においては円筒
状加工物を機内計測により計測時間を短縮すること、又
計測数値を制御系に帰還して加工をすることは作業能率
の向上や精度管理上にも効果が認められている。請求項
1又は請求項2記載の計測を行う構成要素のすべてを機
内に設けて計測を行う場合と、数値制御工作機械の構成
要素又は周辺装置である円テーブルや自動工具交換装置
を使用して機内計測を行う場合が考えられる。
Next, a description will be given of a case where the above-described method of measuring the diameter by the two types of measuring devices is used for controlling the dimensions of the in-machine work. In a numerically controlled machine tool that processes a cylindrical shape, for example, in a machining center or a lathe, shortening the measurement time of a cylindrical workpiece by in-machine measurement and returning the measured value to the control system to process it are work efficiency. The effect has also been recognized in terms of quality improvement and quality control. A case in which all of the components for performing the measurement according to claim 1 or 2 are provided in the machine to perform the measurement, and a case in which the component or a peripheral device of the numerically controlled machine tool is a circular table or an automatic tool changer. It is conceivable to perform in-flight measurement.

【0025】ここでは最も適用が容易の請求項1の場合
について周辺機器を使用する場合の実施例を説明する。
位置決め可能な円テーブルを有する数値制御工作機械に
あっては円テーブル上で被加工物の1回転検出が可能で
あり測定子と回転角検出用サーボモータを一体化してユ
ニット化し工具と同一の形態で加工の過程で主軸に嵌着
し、被測定物に接触させる位置に移動させ円テーブル上
の加工物に測定ローラを接触させて加工物を1回転させ
その時の測定子の回転角を計測することにより被測定物
の直径を演算させるものである。本発明に係る円周測定
による直径計測を機内計測に採用することにより計測器
の種類を少なくして効率的な工程管理が可能となる。
Here, an embodiment in which a peripheral device is used will be described with respect to the case of claim 1 which is the easiest to apply.
A numerically controlled machine tool having a positionable circular table can detect one rotation of a workpiece on the circular table, and integrates a measuring element and a rotation angle detection servomotor into a unit to form the same form as a tool In the process of processing, the workpiece is fitted to the main shaft, moved to a position where it comes into contact with the workpiece, the measurement roller is brought into contact with the workpiece on the rotary table, the workpiece is rotated once, and the rotation angle of the measuring element at that time is measured. Thus, the diameter of the object to be measured is calculated. By adopting the diameter measurement by the circumference measurement according to the present invention for in-machine measurement, the number of types of measuring instruments can be reduced and efficient process management can be performed.

【0026】[0026]

【発明の効果】本発明の円周測定による被測定物直径測
定装置と加工物の寸法管理方法は以下に記載する効果を
奏する。請求項1,2は、測定物の断面において複数個
測定することなく平均値に近い直径を一回の測定で求め
ることができ、本測定装置によれば同一測定ヘッドで幅
広い測定物の測定が可能となる。請求項3は、機内計測
に取り入れることにより効率的な被加工物の寸法管理が
可能となる。
According to the present invention, the apparatus for measuring the diameter of an object to be measured by the circumference measurement and the method for managing the dimension of a workpiece have the following effects. Claims 1 and 2 can measure the diameter close to the average value in one measurement without measuring a plurality of cross-sections of the measured object, and according to the present measuring apparatus, a wide range of measured objects can be measured with the same measuring head. It becomes possible. According to the third aspect, the dimension control of the workpiece can be efficiently performed by incorporating it into the in-machine measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒状被測定仏の直径計測装置を示す
説明図である。
FIG. 1 is an explanatory view showing a diameter measuring device of a cylindrical measured Buddha of the present invention.

【図2】(a)は測定子と被測定物間の滑りを防止する
ための測定子側の表面形状を示す説明図、(b)は測定
子と被測定物間の滑りを生じさせないために測定子に加
える押し付け力Fに関する説明図である。
FIG. 2A is an explanatory view showing a surface shape of a measuring element side for preventing slippage between a measuring element and an object to be measured, and FIG. 2B is a view for preventing a slippage between the measuring element and an object to be measured. FIG. 6 is an explanatory diagram related to a pressing force F applied to a tracing stylus.

【図3】本発明の測定子の回転角θから直径を演算する
ブロック線図である。
FIG. 3 is a block diagram for calculating a diameter from a rotation angle θ of the tracing stylus of the present invention.

【符号の説明】[Explanation of symbols]

1 円テーブル 2 測定子 5 旋回アーム 6 測定子アーム 7 被測定物 9 円テーブル用サーボモータ 18 旋回アーム用サーボモータ 19 測定子アーム旋回用サーボモータ 21 測定子回転角検出用サーボモータ 24 記憶回路 25 演算回路 1 Rotary table 2 Stylus 5 Swivel arm 6 Stylus arm 7 Object to be measured 9 Servo motor for rotary table 18 Servo motor for swivel arm 19 Servo motor for swivel arm 21 Sensor servo motor for detecting stylus rotation angle 24 Storage circuit 25 Arithmetic circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 円筒状被測定物の直径を間接的に測定す
る計測装置であって、テーブルの1回転が検出可能な円
テーブルと該テーブル上に載置された被測定物に内接又
は外接して回転し円周長さLoを有する円板状測定子
と、被測定物が一回転したときの該測定子の回転角θ°
を測定する計測手段と、前記円周長さLoを予め記憶す
る記憶回路と、前記測定子の回転角θ°と予め記憶回路
に記憶された該測定子の円周長LoとからLo・(θ/
360°)/πを演算して前記測定物の径を算出する演
算回路とを含んでなり、被測定物の直径を演算して求め
ることを特徴とする円周測定による被測定物直径計測装
置。
1. A measuring device for indirectly measuring the diameter of a cylindrical object to be measured, wherein the measuring device includes a circular table capable of detecting one rotation of the table and an object inscribed in or attached to the object mounted on the table. A disk-shaped measuring element having a circumferential length Lo that is circumscribed and rotated, and a rotation angle θ ° of the measuring element when the object to be measured makes one rotation
, A storage circuit that stores the circumferential length Lo in advance, and Lo · (from the rotation angle θ ° of the probe and the circumferential length Lo of the probe stored in the storage circuit in advance. θ /
An arithmetic circuit for calculating the diameter of the measured object by calculating 360 °) / π, wherein the diameter of the measured object is calculated by calculating the diameter of the measured object. .
【請求項2】 円筒状被測定物の直径を間接的に測定す
る計測装置であって、1回転が計測可能に設けられた旋
回アームと、該旋回アームに前記被測定物に内接又は外
接して回転し円周長さLoを有する円板状測定子と前記
回転アームが一回転したときの該測定子の回転角θ°を
測定する計測手段と、前記円周長さLoを予め記憶する
記憶回路と、前記測定子の回転角θ°と予め記憶回路に
記憶された該測定子の円周長さLoとからLo・(θ/
360°)/πを演算して前記被測定物の径を算出する
演算回路とを含んでなり、被測定物の直径を演算して求
めることを特徴とする被測定物直径計測装置。
2. A measuring device for indirectly measuring the diameter of a cylindrical object to be measured, comprising: a swing arm provided so as to be able to measure one rotation; Measuring means for measuring the rotation angle θ ° of the measuring element when the rotating arm makes one rotation, and the circumferential length Lo are stored in advance. From the rotation angle θ ° of the tracing stylus and the circumferential length Lo of the tracing stylus stored in the storage circuit in advance, Lo · (θ /
An arithmetic circuit for calculating the diameter of the DUT by calculating (360 °) / π, and calculating and calculating the diameter of the DUT.
【請求項3】 請求項1又は2記載の被測定物直径計測
装置を機内に設けた数値制御工作機械において、前記直
径計測装置で演算して求めた加工物の直径のデータによ
り加工物の寸法管理を行うことを特徴とする加工物の寸
法管理方法。
3. A numerically controlled machine tool provided with an apparatus for measuring a diameter of an object to be measured according to claim 1 or 2, wherein the dimensions of the workpiece are calculated by using data on the diameter of the workpiece calculated by the diameter measuring apparatus. A dimension control method for a workpiece, characterized by performing control.
JP36590597A 1997-12-22 1997-12-22 Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece Pending JPH11183157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36590597A JPH11183157A (en) 1997-12-22 1997-12-22 Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36590597A JPH11183157A (en) 1997-12-22 1997-12-22 Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece

Publications (1)

Publication Number Publication Date
JPH11183157A true JPH11183157A (en) 1999-07-09

Family

ID=18485415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36590597A Pending JPH11183157A (en) 1997-12-22 1997-12-22 Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece

Country Status (1)

Country Link
JP (1) JPH11183157A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232697A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Device and method for inspecting roundness of inner circumference of cylindrical body
CN100412505C (en) * 2003-12-22 2008-08-20 株式会社三丰 Width measuring method and surface property measuring equipment
CN102147235A (en) * 2011-01-13 2011-08-10 马鞍山钢铁股份有限公司 Device for automatically measuring outer diameter of vehicle wheel on line and measurement method thereof
CN109719402A (en) * 2018-12-29 2019-05-07 武汉天琪激光设备制造有限公司 A kind of bracket control mechanism for special-shaped workpiece processing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100412505C (en) * 2003-12-22 2008-08-20 株式会社三丰 Width measuring method and surface property measuring equipment
JP2007232697A (en) * 2006-03-03 2007-09-13 Asmo Co Ltd Device and method for inspecting roundness of inner circumference of cylindrical body
JP4673239B2 (en) * 2006-03-03 2011-04-20 アスモ株式会社 Cylindrical inner circumference roundness inspection device and cylindrical inner circumference roundness inspection method
CN102147235A (en) * 2011-01-13 2011-08-10 马鞍山钢铁股份有限公司 Device for automatically measuring outer diameter of vehicle wheel on line and measurement method thereof
CN109719402A (en) * 2018-12-29 2019-05-07 武汉天琪激光设备制造有限公司 A kind of bracket control mechanism for special-shaped workpiece processing

Similar Documents

Publication Publication Date Title
US4563824A (en) Method and apparatus for disc position centering
JP3687896B2 (en) Measuring device for pulley for continuously variable transmission
JP4081596B2 (en) Machine Tools
WO2009004872A1 (en) Surface shape measuring device, and surface shape measuring method
JP6459638B2 (en) Groove grinding apparatus, groove processing method, and ball bearing manufacturing method
CN113524039B (en) Grinding wheel profile in-situ measurement device and method for numerically controlled grinder
US20030088991A1 (en) Single-side measuring devices and methods
JP2001141444A (en) Method and instrument for measuring shape of v-groove
JPH11183157A (en) Apparatus for measuring diameter of object by circumference measurement and method for controlling size of workpiece
US4417490A (en) Lathe tool calibrator and method
JPH08197381A (en) Automatic measuring device of cutting tool
JP4940904B2 (en) Bulk quantity measuring device
US20220241924A1 (en) Contact detection method
JP2001264048A (en) Method and device for measuring shape of v-groove
JP3660920B2 (en) Machine tool and processing method
JPH08118103A (en) Centering device for tool
JP7360591B2 (en) Workpiece diameter measurement method and roundness measuring machine
JP3748866B2 (en) Tool measuring apparatus and method
JP3085352B2 (en) Method and apparatus for automatically recognizing a measuring object of a roundness measuring machine
JPH0749955B2 (en) Tool inspection device and tool inspection method
JPH0343135A (en) Measuring method for size of machine tool
JP2551698B2 (en) Method and device for measuring average diameter of roundness measuring machine
JP2557200B2 (en) Rotation angle measurement method
JPS60177848A (en) Correction of original point in nc machine tool
JPH1133880A (en) Measuring device of nc lathe