JPS6168391A - Apparatus for producing belt-like silicon crystal - Google Patents

Apparatus for producing belt-like silicon crystal

Info

Publication number
JPS6168391A
JPS6168391A JP19112884A JP19112884A JPS6168391A JP S6168391 A JPS6168391 A JP S6168391A JP 19112884 A JP19112884 A JP 19112884A JP 19112884 A JP19112884 A JP 19112884A JP S6168391 A JPS6168391 A JP S6168391A
Authority
JP
Japan
Prior art keywords
crystal
dies
shaped silicon
band
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19112884A
Other languages
Japanese (ja)
Other versions
JPH0154320B2 (en
Inventor
Michiya Kobayashi
道哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19112884A priority Critical patent/JPS6168391A/en
Publication of JPS6168391A publication Critical patent/JPS6168391A/en
Publication of JPH0154320B2 publication Critical patent/JPH0154320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To stabilize the growth of a crystal for a long period and to reduce the cost of production by inclining the respective opposite surfaces of a pair of dies for growing the crystal corresponding to the end of a belt-like silicon crystal in a vertical direction. CONSTITUTION:A silicon melt 12 is contained in a graphite crucible 11 and dies 13a, 13b for growing the crystal are installed above the crucible 11. The dies 13a, 13b are installed so as to incline in the vertical direction. The dies 13a, 13b are so constituted as to be made vertically and laterally movable. When a temp. rise arises owing to certain cause near the die 13a on the left side of the crystal, a solid-liquid boundary 19 moves further from the die 13a toward the right side in the figure and when the crystal growth is continued, the crystal width decreases. The die 13a is inclined and therefore even if the crystal width decreases, the stable boundary 19 can be formed again where the melt is slightly low on the left side 13a side. The continuation of the growth without disconnection is made possible.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は帯状シリコン結晶製造装置の改良に関する。[Detailed description of the invention] [Technical field of invention] TECHNICAL FIELD The present invention relates to improvements in an apparatus for producing band-shaped silicon crystals.

[発明の技術的背景1 近来、太陽光発電コストの減少のための一環として太陽
電池用シリコン基板の価格低下が望まれており、帯状シ
リコン結晶は、インゴット結晶を切断・加工する際に生
じるような材料損失がなく、加工費も安いことから有望
視されている。
[Technical Background of the Invention 1 In recent years, there has been a desire to lower the price of silicon substrates for solar cells as part of efforts to reduce solar power generation costs. It is viewed as promising because there is no significant material loss and processing costs are low.

本発明者らは、結晶成長が容易で長時間、安定に成長を
継続できる新規な帯状シリコン結晶製造装置を提案した
く特願昭58−53534号など)。第4図は上記帯状
シリコン結晶製造装置の概略構成図である。図中11は
グラファイト製のルツボであり、このルツボ11内には
シリコン融液12が収容されている。ルツボ11の上方
には結晶成長用ダイ13a、13bがそれぞれ設置され
ている。
The inventors of the present invention would like to propose a new belt-shaped silicon crystal manufacturing apparatus that can easily grow crystals and can continue to grow stably for a long time (Japanese Patent Application No. 58-53534, etc.). FIG. 4 is a schematic diagram of the apparatus for producing band-shaped silicon crystals. In the figure, 11 is a crucible made of graphite, and a silicon melt 12 is accommodated in this crucible 11. Crystal growth dies 13a and 13b are installed above the crucible 11, respectively.

ダイ13a、13bがはルツボ11の外部に5σけられ
た固定部14a、14bにそれぞれ取り付けられている
。また、ルツボ11の底面下部にはルツボ11を加熱す
るヒータ(図示せず)が設けられ、これとは別にダイ1
3a、13bをそれぞれ独立に加熱するヒータ15a、
15bが上記固定部14a、14bに設けられている。
The dies 13a and 13b are attached to fixing parts 14a and 14b, respectively, which are cut outside the crucible 11 by 5σ. Further, a heater (not shown) for heating the crucible 11 is provided at the bottom of the crucible 11, and a die 1
a heater 15a that independently heats 3a and 13b;
15b is provided on the fixing portions 14a, 14b.

図中16はヒータ15a、15bの側部からの熱放射に
よりルツボ温度が乱されないようにするための熱シール
ドである。また、以上述べた全ての構成要素はアルゴン
ガスを充満させた金属容器(図示せず)の中に収納され
ており、さらに該容器の上方には帯状シリコン結晶を上
方に引上げるための引上げ駆動部(図示せず)が配設さ
れる。
In the figure, 16 is a heat shield for preventing the crucible temperature from being disturbed by heat radiation from the sides of the heaters 15a, 15b. Furthermore, all of the above-mentioned components are housed in a metal container (not shown) filled with argon gas, and above the container there is a pulling drive for pulling the band-shaped silicon crystal upward. (not shown) is provided.

第5図は上記装置による帯状シリコン結晶成長の概念図
である。結晶成長用ダイ13a、13bの間隔よりやや
幅のせまい種結晶17をシリコン融液12に接触させる
と種結晶17付近のシリコン融液が持上げられ図中ハツ
チングで示したメニスカス18が形成され、固液界面1
9は凹形となる。種結晶17を引上げるとその下に結晶
成長用ダイ13a、13bの間隔で規定された幅をもつ
帯状シリコン結晶20が成長する。メニスカス18の高
さくシリコン融液12の自由液面から固液界面19の底
部まで)は約7〜8M、ダイ13a。
FIG. 5 is a conceptual diagram of band-shaped silicon crystal growth using the above-mentioned apparatus. When the seed crystal 17, whose width is slightly narrower than the interval between the crystal growth dies 13a and 13b, is brought into contact with the silicon melt 12, the silicon melt near the seed crystal 17 is lifted up, forming a meniscus 18 shown by hatching in the figure, and solidifying. liquid interface 1
9 is concave. When the seed crystal 17 is pulled up, a band-shaped silicon crystal 20 with a width defined by the interval between the crystal growth dies 13a and 13b grows below it. The height of the meniscus 18 (from the free liquid surface of the silicon melt 12 to the bottom of the solid-liquid interface 19) is about 7 to 8 M, and the height of the die 13a.

13bとfl I晶17の側部との間のメニスカス18
の幅は約1#である。
Meniscus 18 between 13b and the side of fl I crystal 17
The width of is approximately 1#.

上述の帯状シリコン結晶製造装置によれば、メニスカス
18の高さ、及びダイ13a、13bと固液界面19と
の距離が大きいため(例えばE dge−de4ine
d F ilm−fed GrOWth法(EFG法)
においては、キャピラリダイ頂上のメニスカス高さは0
.25M程度)多少の温度変動が生じても結晶成長用ダ
イ13a、13bと帯状シリコン結晶20が固着したり
、帯状シリコン結晶20がメニスカス18と離れ結晶が
切れたりすることが少なく、安定に長時間成長が継続で
きることが特徴である。
According to the above-mentioned belt-shaped silicon crystal manufacturing apparatus, since the height of the meniscus 18 and the distance between the dies 13a, 13b and the solid-liquid interface 19 are large (for example, Edge-de-4ine
d Film-fed GrOWth method (EFG method)
, the meniscus height at the top of the capillary die is 0.
.. (approximately 25M) Even if slight temperature fluctuations occur, crystal growth dies 13a and 13b and the band-shaped silicon crystal 20 are unlikely to stick together, or the band-shaped silicon crystal 20 separates from the meniscus 18 and the crystal is not cut, and the crystal growth can be performed stably for a long time. It is characterized by its ability to continue growing.

[背景技術の問題点] しかしながら、第4図に示した帯状シリコン結晶製造装
置においても、なんらかの原因によりシリコン融液温度
が変動すると、結晶切れや固着が生じるという問題点が
あった。即ち、液温の上昇で結晶切れが、液温の下降で
固着がそれぞれ起こり、結晶成長が中断してしまうので
ある。第6図(a)、(b)はそれぞれ左側のダイ13
aにおいて結晶切れが生じかけた時、生じた直後を模式
的に表わした図、第7図(a)(b)は同様に固着が生
じかけた時、生じた直後を模式的に表わした図である。
[Problems with Background Art] However, even in the belt-shaped silicon crystal production apparatus shown in FIG. 4, there is a problem in that crystal breakage or sticking occurs when the temperature of the silicon melt changes for some reason. That is, crystal breakage occurs when the liquid temperature rises, and fixation occurs when the liquid temperature falls, resulting in the interruption of crystal growth. FIGS. 6(a) and 6(b) show the die 13 on the left side, respectively.
Fig. 7(a) and (b) are diagrams schematically showing when crystal breakage is about to occur and immediately after it occurs in Fig. 7a, and Fig. 7 (a) and (b) are diagrams schematically showing when crystal breakage is about to occur and immediately after it has similarly occurred. It is.

注目すべき点は、ダイ13aと結晶20との間のメニス
カス18の幅または高さが微妙に変化する点である。
What should be noted is that the width or height of the meniscus 18 between the die 13a and the crystal 20 changes slightly.

これらの中断現象を物理的に説明すると次のようになる
。自由融液面より帯状シリコン結晶を引上げる場合メニ
スカス18の高さは通常7〜8 mmとなる。固液界面
はシリコンの融点(1420℃)の等温線(等濡面)と
考えることができ、この高さは液温の影響を受け、高温
の場合高く、低温では低くなるが、表面張力に関するラ
プラスの差圧方程式を解くと上記の7〜8間のメニスカ
ス高となる。帯状結晶の本製造方法において固液界面1
つか凹形になっているのは左右のダイ13a。
A physical explanation of these interruption phenomena is as follows. When a band-shaped silicon crystal is pulled up from the free melt surface, the height of the meniscus 18 is usually 7 to 8 mm. The solid-liquid interface can be thought of as an isothermal line (isowetting surface) at the melting point of silicon (1420°C), and this height is affected by the liquid temperature, being higher at high temperatures and lower at low temperatures, but it is related to surface tension. Solving Laplace's differential pressure equation results in a meniscus height between 7 and 8 as described above. In this method for producing band-shaped crystals, the solid-liquid interface 1
The left and right dies 13a are concave.

13bを加熱しているため等混線が凹形となるためであ
り、同時に、ダイ13a、13bと結晶20との間で毛
細管現象の効果があり、融液は7〜8胴より高くまで上
がる。さて、結晶左側のダイ13a付近で温度上昇が生
じた場合、第合図(a)の如く、左側ダイ138近くの
固液界面19(すなわち1420°Cの等混線)が図の
右側による。
This is because the isomixing becomes concave because the dies 13b are heated, and at the same time, there is an effect of capillarity between the dies 13a, 13b and the crystal 20, and the melt rises to a higher level than the 7th and 8th cylinders. Now, when a temperature rise occurs near the die 13a on the left side of the crystal, the solid-liquid interface 19 near the left die 138 (i.e., the isomixture line at 1420° C.) is caused by the right side of the figure, as shown in the second figure (a).

引上げを続けると結晶20の幅が狭くなり左側ダイ13
aと結晶20の距離が大きくなる。このため上述した毛
細管効果が小さくなり、左側ダイ13aの部分にはもは
や融液が張られず同図(b)のように結晶切れとなる。
As the pulling continues, the width of the crystal 20 becomes narrower and the left die 13
The distance between a and the crystal 20 increases. For this reason, the capillary effect mentioned above is reduced, and the melt is no longer spread over the left die 13a, resulting in crystal breakage as shown in FIG. 13(b).

これとは逆に左利ダイ13a付近で温度が下がると、第
7図(a)の如く左側ダイ13a近くの固液界面19が
図の左側による。ダイ13aの温度が1420’C以下
にならなければ結晶幅がやや広くなるだけで結晶成長は
継続するが、温度が下がりすぎると同図(b)のように
ダイ13aと結晶20が固着する。ただしダイの鉛直方
向の温度は下方で高くなっているため、固着現象は結晶
切れに比べれば発生率が低い。
On the contrary, when the temperature decreases near the left-hand die 13a, the solid-liquid interface 19 near the left-hand die 13a shifts to the left side of the figure, as shown in FIG. 7(a). If the temperature of the die 13a does not fall below 1420'C, the crystal width will only become slightly wider and the crystal growth will continue, but if the temperature drops too much, the die 13a and the crystal 20 will stick together as shown in FIG. However, since the temperature in the vertical direction of the die is higher at the bottom, the occurrence rate of the sticking phenomenon is lower than that of crystal breakage.

このような中断現雫を防ぐには従来次のような手法によ
っていた。つまり、結晶切れが起こりそうな場合、ヒー
タ入力を減少せしめルツボ温度もしくはダイ13a、1
3bの温度を下げるか、あるいは引上げ速度を遅くする
ことにより中断現象を避け、ダイと結晶とが固着しそう
な場合、逆にルツボ温度もしくはダイ温度を上げるか、
あるいは引上げ速度を速くして固着を防いだ。ところが
ルツボやダイの温度の増減、は、系の熱容量の関係で応
答に時間がかかり、中断現象にまにあわないことがまま
あり、−万引上げ速度の加減は結晶の厚さに温度による
以上に大きな影響を与えるという不利な点があった。ま
た他にダイ13a、13bを左右に移動させ、両ダイの
間隔を変えるという手段により中断現象を防ぐこともあ
る程度可能であるが、移動させる距離が微妙で、例えば
固着現象を防ごうとしてダイ間隔を広げると逆に結晶切
れが生じるなど熟練を要する方法である。
Conventionally, the following methods have been used to prevent such interruptions. In other words, if crystal breakage is likely to occur, reduce the heater input to increase the crucible temperature or die 13a, 1.
Avoid the discontinuation phenomenon by lowering the temperature of 3b or slowing down the pulling speed, and if the die and crystal are likely to stick together, conversely raise the crucible temperature or die temperature, or
Alternatively, the pulling speed was increased to prevent sticking. However, when the temperature of the crucible or die increases or decreases, it takes time to respond due to the heat capacity of the system, and the interruption phenomenon is often not met. It had the disadvantage of having an impact. In addition, it is possible to prevent the interruption phenomenon to some extent by moving the dies 13a and 13b left and right and changing the interval between the two dies, but the distance to be moved is delicate and, for example, the interval between the dies may be changed to prevent the sticking phenomenon. This is a method that requires skill, as spreading the crystals can cause crystal breakage.

上述した中断現象は、±3℃程度の温度変動により生じ
るもので、EFG法において同様の現象が±1℃以内の
温度変動によっても生じるのに比べればまだ欠点として
は小さいが、結晶の連続成長、ひいてはシリコン基板の
低コスト化に向けては克服すべき点であった。
The above-mentioned interruption phenomenon occurs due to temperature fluctuations of about ±3°C, and although it is still a small drawback compared to the EFG method, where a similar phenomenon occurs due to temperature fluctuations within ±1°C, it does not affect the continuous growth of crystals. This was a point that needed to be overcome in order to lower the cost of silicon substrates.

[発明の目的] 本発明は上述の問題点に鑑みて成されたものであり、本
発明の目的は、帯状シリコン結晶成長の際に生じ得る温
度変動の許容幅を大きくでき、従って結晶成長の長時間
安定化及び製造コストの低減化をはかり得る帯状シリコ
ン結晶製造装置を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to increase the allowable range of temperature fluctuations that may occur during the growth of band-shaped silicon crystals, and therefore to improve the speed of crystal growth. An object of the present invention is to provide a belt-shaped silicon crystal manufacturing apparatus that can be stabilized for a long time and reduce manufacturing costs.

[発明の慨要] 上記目的を達成し得る本発明の骨子は、前述した1対の
結晶成長用ダイの相対するそれぞれの面を鉛直方向に対
し傾斜させることにある。
[Summary of the Invention] The gist of the present invention, which can achieve the above object, is that the opposing surfaces of the pair of crystal growth dies described above are inclined with respect to the vertical direction.

すなわち、本発明は、ルツボ内に収容されたシリコン融
液に種結晶を接触させ、この種結晶を引上げることによ
り帯状シリコン結晶を成長せしめる装置において、成長
すべき帯状シリコン結晶の幅方向両端部の外側に、該端
部と対向するよう配置された一対の結晶成長用ダイと、
これらのダイを加熱する手段とを具備し、上記一対の結
晶成長用ダイが成長すべき帯状シリコン結晶の端部に対
応する上記一対の結晶成長用ダイの相対するそれぞれの
面が鉛直方向に対し傾斜して成ることを特徴とする。
That is, the present invention provides an apparatus for growing a band-shaped silicon crystal by bringing a seed crystal into contact with a silicon melt housed in a crucible and pulling up the seed crystal. a pair of crystal growth dies disposed outside the end so as to face the end;
means for heating these dies, and each of the opposing surfaces of the pair of crystal growth dies corresponding to the ends of the band-shaped silicon crystal to be grown by the pair of crystal growth dies are perpendicular to the vertical direction. It is characterized by being sloped.

[発明の実施例1 第1図は本発明の一実施例を示す模式図である。[Embodiment 1 of the invention FIG. 1 is a schematic diagram showing an embodiment of the present invention.

グラフフィト製ルツボ11にシリコン融液12が収容さ
れており、ルツボ11の上方には結晶成長用ダイ13a
、13bが10口の間隔でそれぞれ設置されている。そ
の他、ルツボ加熱用ヒータ(図示せず)、ダイを加熱す
るヒータ(図示せず)などの構成や、成長装置の全体的
な構成は第4図の説明において述べたものと同様である
。第1図における本発明の特徴はダイ13a、13bが
それぞれ鉛直方向に対して傾斜して設置された点であり
、本実施例では、鉛直方向に対してそれぞれ5°の傾斜
で1対のダイ13a、13bが上方で広く、下方で狭く
なるようにgQNされている。またこれらのダイ13a
、13bはそれぞれ上下、左右方向に移動できるように
しである。
A silicon melt 12 is contained in a graphite crucible 11, and a crystal growth die 13a is placed above the crucible 11.
, 13b are installed at intervals of 10 ports. In addition, the configurations of the crucible heating heater (not shown), the die heating heater (not shown), and the overall configuration of the growth apparatus are the same as those described in the explanation of FIG. 4. The feature of the present invention in FIG. 1 is that the dies 13a and 13b are installed at an angle with respect to the vertical direction, and in this embodiment, a pair of dies are installed at an angle of 5° with respect to the vertical direction. 13a and 13b are gQNd so that they are wide at the top and narrow at the bottom. Also, these dies 13a
, 13b are movable in the vertical and horizontal directions, respectively.

上記装置により帯状シリコン結晶を製造した場合の安定
性について第2図を参考にして述べる。
The stability of band-shaped silicon crystals produced using the above apparatus will be described with reference to FIG.

第2図(a)は定常的に結晶成長がなされている場合で
あり、第5図に示した場合と同様である。
FIG. 2(a) shows a case where crystal growth is performed steadily, and is similar to the case shown in FIG. 5.

同図(b)は結晶の左側ダイ13aの付近でなんらかの
要因により温度上昇が生じた場合であり、第6図で説明
したように固液界面19がダイ13aから遠ざかり図の
右側の方へ移り、結晶成長を続けると結晶幅が狭くなる
。従来の装置では前述した如くこのままでは左側ダイ1
3aと結晶20との間隔が広くなりこの間にもはや融液
が張られなくなり結晶切れが生じたのであるが、本発明
の装置によればダイ13aが傾斜しているため結晶幅が
狭くなっても同図(C)のように左側ダイ13a側の融
液がやや低くなったところで再び安定した固液界面1つ
を形成することができ、結晶切れは起こらず成長を継続
することができる。この際、ヒータの加熱量を変化させ
たり、ダイを移動させる必要がなく、極めて成長が容易
になった。
Figure (b) shows a case where a temperature rise occurs due to some reason in the vicinity of the die 13a on the left side of the crystal, and as explained in Figure 6, the solid-liquid interface 19 moves away from the die 13a and moves toward the right side of the figure. , as the crystal continues to grow, the crystal width becomes narrower. In the conventional device, as mentioned above, the left die 1
The distance between the die 13a and the crystal 20 becomes wider, and the melt is no longer stretched between them, causing crystal breakage.However, according to the device of the present invention, the die 13a is inclined, so even if the crystal width becomes narrow, When the melt on the left side of the die 13a becomes slightly lower as shown in FIG. 3C, one stable solid-liquid interface can be formed again, and crystal breakage does not occur and growth can be continued. At this time, there was no need to change the heating amount of the heater or move the die, making growth extremely easy.

このように本実施例の装置によれば、結晶幅の変動が±
0.4mMとはなるものの原料シリコンの連続供給を行
いながらの結晶成長のN続時間が従来の装置によった場
合、平均3時間であったものが10RIJ以上にのびた
In this way, according to the device of this embodiment, fluctuations in crystal width can be reduced to ±
Although the concentration was 0.4 mM, the N duration of crystal growth while continuously supplying raw material silicon was 3 hours on average when using a conventional device, but increased to more than 10 RIJ.

ところで上述の如き一対の結晶成長用ダイを上方で広く
、下方で狭くなるように傾斜させた場合は結晶とダイの
固着現象に、とっては従来装置より有利というわけでは
なかった。しかしながら、固着現象の発生は結晶切れよ
りまれであるため、上述の実施例で結晶の連続成員にと
ってかなりの効果があった。そうはいっても固着現象が
生じることがあったため、発明者は以下の如き装置を考
え実施した。即ち、第3図がその装置により結晶成長を
行っている模式図で、改良点は結晶成長用ダイ13a、
13bが中央部で狭く、かつ、上方部及び下方部で広く
なっているところである。この実施例では、ダイ13a
、13bの傾斜は上方。
Incidentally, when a pair of crystal growth dies as described above are tilted such that they are wide at the top and narrow at the bottom, this is not more advantageous than the conventional apparatus in terms of the phenomenon of sticking of the crystal and the die. However, since the occurrence of sticking phenomena is rarer than crystal breakage, the above-described embodiments had a considerable effect on the continuous membership of crystals. Even so, the sticking phenomenon sometimes occurred, so the inventor conceived and implemented the following device. That is, FIG. 3 is a schematic diagram showing crystal growth performed by the apparatus, and the improvements include the crystal growth die 13a,
13b is narrow at the center and wide at the upper and lower parts. In this embodiment, die 13a
, 13b slopes upward.

下方とも鉛直方向に対して5°とし、中央部には曲率を
もたせた。同図(a)は定常的に結晶が成長している場
合であり、固液界面1つの底部がダイ13a、13bの
鉛直方向のほぼ中央部にくるように系を調整した。即ち
、成長中に連続供給する原料シリコンの量を成長した結
晶の1と同じくなるように設定し、シリコン融液面を一
定に保った。同図(b)は、左側ダイ13aの近(で濃
度上昇が生じた場合の図であり、この場合は、前述の実
施例と全く同一の効果により結晶成長は継続する。また
同図(C)は左側ダイ13aの近くで温度下降が起った
場合であるが、結晶20とダイ13aとの間隔が下方に
向かって広がっているため、固着は生じにくい。
The lower part was set at 5° with respect to the vertical direction, and the center part had a curvature. Figure (a) shows the case where crystals are growing steadily, and the system was adjusted so that the bottom of one solid-liquid interface was located approximately in the vertical center of the dies 13a, 13b. That is, the amount of raw material silicon continuously supplied during growth was set to be equal to 1 of the grown crystal, and the silicon melt surface was kept constant. FIG. 3(b) is a diagram showing a case where a concentration increase occurs in the vicinity of the left die 13a. In this case, crystal growth continues due to the same effect as in the above-mentioned embodiment. ) is a case where a temperature drop occurs near the left die 13a, but since the distance between the crystal 20 and the die 13a widens downward, sticking is less likely to occur.

この第2の実施例で説明した装置により成長継続時間は
更に長くなり24時間成長を続けても中断現象は生じな
かった。
With the apparatus described in this second example, the growth duration was even longer, and no interruption occurred even after 24 hours of growth.

なお、本発明の帯状シリコン結晶製造装置の構成はこれ
までに述べたのに限定されるものではない。例えば、1
対の結晶成長用ダイの間隔を上方で狭く下方で広くなる
ように傾斜させると、結晶向上する。また、前述の実施
例ではダイの傾斜角を鉛直方向に対して5°としたが、
傾斜角はこれに限定されるものではない。また本発明で
は、成長中断現象を防止する為、従来技術と何重のダイ
を移動させるという操作を併用することもできる。
Note that the configuration of the belt-shaped silicon crystal manufacturing apparatus of the present invention is not limited to that described above. For example, 1
If the distance between a pair of crystal growth dies is inclined so that it is narrower at the top and wider at the bottom, crystallization is improved. In addition, in the above embodiment, the inclination angle of the die was 5° with respect to the vertical direction.
The angle of inclination is not limited to this. Further, in the present invention, in order to prevent the growth interruption phenomenon, the conventional technique and the operation of moving several layers of dies can be used together.

その池水発明の趣旨を逸脱しない範囲でさまざまに変形
して実施することができる。
The invention can be modified and implemented in various ways without departing from the spirit of the invention.

[発明の効果コ 以上述べたように、本発明による帯状シリコン結晶製造
装置を用いれば結晶成長中の温度変動の許容範囲が従来
の装置による場合より広くなり、結晶成長の中断現象の
発生率が極めて低くなるため、成長継続時間が向上する
という効果がある。
[Effects of the Invention] As described above, by using the belt-shaped silicon crystal manufacturing apparatus according to the present invention, the allowable range of temperature fluctuations during crystal growth is wider than when using a conventional apparatus, and the incidence of interruption of crystal growth is reduced. This has the effect of improving the growth duration since it becomes extremely low.

また同時に従来装置で必要であった成長中断現象を防止
するための熟練を要する操作が、不要もしくは簡単にな
り成長技術が容易になるという利点もある。
At the same time, there is also the advantage that operations that require skill to prevent growth interruption phenomena, which were necessary in conventional apparatuses, are unnecessary or simplified, and the growth technique becomes easier.

一方、本発明の特に第2の実施例に示した装置によれば
ルツボに収容したシリコン融液の温度を下げても固着減
少が生じにクク、融液温度を下げられる分だけ成長速度
が向上するという効果がある。
On the other hand, according to the apparatus shown in the second embodiment of the present invention, even if the temperature of the silicon melt contained in the crucible is lowered, the adhesion decreases, and the growth rate is improved by the amount that the melt temperature can be lowered. It has the effect of

また、本発明の装置は、結晶成長用ダイの間隔を成長中
にも変更でき結晶の幅を任意に変えられるのであるが本
発明によるダイ形状を用いればこの操作が容易になると
いう利点がある。
In addition, the apparatus of the present invention can change the interval between the crystal growth dies even during growth, and the width of the crystal can be changed arbitrarily, and the use of the die shape according to the present invention has the advantage that this operation becomes easy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実′施例を示す模式図、第2図は本
発明の一実施例による結晶成長の様子を説明する模式図
、第3図は本発明の他の実施例を示す模式図、第4図は
従来の帯状シリコン結晶製造装置の概略構成図、第5図
は従来の装置による結晶成長の概念図、第6図及び第7
図は従来の装置における結晶成長の中断現象を説明する
。模式図である。 11・・・ルツボ、12・・・シリコン融液、13a。 13b・・・結晶成長用ダイ、14a、14b・・・固
定部、15a、15b・・・ダイ加熱用ヒータ、16・
・・熱シールド、17・・・f!結晶、18・・・メニ
スカス、19・・・固液界面、20・・・帯状シリコン
結晶。 出願人代理人 弁理士 鈴江武彦 第1図 ■ 第2図 第3図 第4図 第7図
FIG. 1 is a schematic diagram showing one embodiment of the present invention, FIG. 2 is a schematic diagram explaining the state of crystal growth according to one embodiment of the present invention, and FIG. 3 is a schematic diagram showing another embodiment of the present invention. 4 is a schematic diagram of a conventional band-shaped silicon crystal manufacturing apparatus, FIG. 5 is a conceptual diagram of crystal growth using a conventional apparatus, and FIGS. 6 and 7 are schematic diagrams.
The figure illustrates the phenomenon of interruption of crystal growth in a conventional apparatus. It is a schematic diagram. 11... Crucible, 12... Silicon melt, 13a. 13b...Crystal growth die, 14a, 14b...Fixing part, 15a, 15b...Die heating heater, 16.
...Heat shield, 17...f! Crystal, 18... Meniscus, 19... Solid-liquid interface, 20... Band-shaped silicon crystal. Applicant's agent Patent attorney Takehiko Suzue Figure 1 ■ Figure 2 Figure 3 Figure 4 Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)ルツボ内に収容されたシリコン融液に種結晶を接
触させ、この種結晶を引上げることにより帯状シリコン
結晶を成長せしめる装置において、成長すべき帯状シリ
コン結晶の幅方向両端部の外側に、該端部と対向するよ
う配置された一対の結晶成長用ダイと、これらのダイを
加熱する手段とを具備し、上記一対の結晶成長用ダイが
成長すべき帯状シリコン結晶の端部に対応する上記一対
の結晶成長用ダイの相対するそれぞれの面が鉛直方向に
対し傾斜をして成ることを特徴とする帯状シリンコ結晶
製造装置。
(1) In an apparatus that grows a band-shaped silicon crystal by bringing a seed crystal into contact with a silicon melt contained in a crucible and pulling up the seed crystal, the outside of both ends in the width direction of the band-shaped silicon crystal to be grown is , comprising a pair of crystal growth dies arranged to face the ends and means for heating these dies, the pair of crystal growth dies corresponding to the ends of the band-shaped silicon crystal to be grown. A belt-shaped silinco crystal manufacturing apparatus characterized in that the opposing surfaces of the pair of crystal growth dies are inclined with respect to the vertical direction.
(2)成長すべき帯状シリコン結晶の端部に対応する上
記一対の結晶成長用ダイの相対するそれぞれの面は、そ
れら面の間隔が上方で広く、下方で狭くなるように、傾
斜して成ることを特徴とする特許請求の範囲第1項記載
の帯状シリコン結晶製造装置。
(2) The opposing surfaces of the pair of crystal growth dies corresponding to the ends of the band-shaped silicon crystal to be grown are inclined such that the distance between the surfaces is wide at the top and narrow at the bottom. An apparatus for manufacturing band-shaped silicon crystals according to claim 1, characterized in that:
(3)成長すべき帯状シリコン結晶の端部に対応する上
記一対の結晶成長用ダイの相対するそれぞれの面は、そ
れら面の間隔が上方で狭く、下方で広くなるように、傾
斜して成ることを特徴とする特許請求の範囲第1項記載
の帯状シリコン結晶製造装置。
(3) The opposing surfaces of the pair of crystal growth dies corresponding to the ends of the band-shaped silicon crystal to be grown are inclined such that the distance between the surfaces is narrow at the top and wide at the bottom. An apparatus for manufacturing band-shaped silicon crystals according to claim 1, characterized in that:
(4)成長すべき帯状シリコン結晶の端部に対応する上
記一対の結晶成長用ダイの相対するそれぞれの面は、そ
れら面の間隔が中央部で狭く、上方部及び下方部で広く
なるように傾斜して成ることを特徴とする特許請求の範
囲第1項記載の帯状シリコン結晶製造装置。
(4) The opposing surfaces of the pair of crystal growth dies corresponding to the ends of the band-shaped silicon crystal to be grown are arranged such that the distance between the surfaces is narrow in the center and wide in the upper and lower portions. 2. The belt-shaped silicon crystal manufacturing apparatus according to claim 1, wherein the belt-shaped silicon crystal manufacturing apparatus is inclined.
(5)前記各ダイを加熱する手段は、前記ルツボ内のシ
リコンを加熱する加熱機構とは別の加熱機構により上記
ダイを加熱するものであることを特徴とする特許請求の
範囲第1項記載の帯状シリコン結晶製造装置。
(5) The means for heating each die is heated by a heating mechanism different from a heating mechanism that heats the silicon in the crucible. Band-shaped silicon crystal manufacturing equipment.
(6)前記一対の結晶成長用ダイがそれぞれ独立に上下
方向及び左右方向に移動自在に設けられていることを特
徴とする特許請求の範囲第1項記載の帯状シリコン結晶
製造装置
(6) The belt-shaped silicon crystal manufacturing apparatus according to claim 1, wherein the pair of crystal growth dies are each independently movable in the vertical and horizontal directions.
JP19112884A 1984-09-12 1984-09-12 Apparatus for producing belt-like silicon crystal Granted JPS6168391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19112884A JPS6168391A (en) 1984-09-12 1984-09-12 Apparatus for producing belt-like silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19112884A JPS6168391A (en) 1984-09-12 1984-09-12 Apparatus for producing belt-like silicon crystal

Publications (2)

Publication Number Publication Date
JPS6168391A true JPS6168391A (en) 1986-04-08
JPH0154320B2 JPH0154320B2 (en) 1989-11-17

Family

ID=16269334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19112884A Granted JPS6168391A (en) 1984-09-12 1984-09-12 Apparatus for producing belt-like silicon crystal

Country Status (1)

Country Link
JP (1) JPS6168391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722750A (en) * 2022-10-21 2023-03-03 郑州机械研究所有限公司 Copper-aluminum wire clamp induction brazing device and brazing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115722750A (en) * 2022-10-21 2023-03-03 郑州机械研究所有限公司 Copper-aluminum wire clamp induction brazing device and brazing method thereof

Also Published As

Publication number Publication date
JPH0154320B2 (en) 1989-11-17

Similar Documents

Publication Publication Date Title
US5102494A (en) Wet-tip die for EFG cyrstal growth apparatus
JPS60261130A (en) Method of producing foil of semiconductor and device therefor
US4121965A (en) Method of controlling defect orientation in silicon crystal ribbon growth
JP2006504613A (en) Method and apparatus for growing multiple crystal ribbons from a single crucible
US4322263A (en) Method for horizontal ribbon crystal growth
EP0491892B1 (en) Wet-tip die for efg crystal growth apparatus
US4299648A (en) Method and apparatus for drawing monocrystalline ribbon from a melt
US4944925A (en) Apparatus for producing single crystals
JPS6168391A (en) Apparatus for producing belt-like silicon crystal
US4469552A (en) Process and apparatus for growing a crystal ribbon
US11761119B2 (en) System for growing crystal sheets
US4721688A (en) Method of growing crystals
JP2587932B2 (en) Silicon ribbon manufacturing method
JPS6047236B2 (en) Band-shaped silicon crystal manufacturing equipment
JPS6111913B2 (en)
JPS5950640B2 (en) Manufacturing equipment for band-shaped silicon crystals
JPS6111916B2 (en)
JPS59121190A (en) Apparatus for preparation of ribbon crystal of silicon
JPS62167286A (en) Heating device
KR950013004B1 (en) Method for controlling temparature gradient in according with increasing the length of single crystil by vb
JPS62113792A (en) Production unit for band silicon crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JP2773441B2 (en) Method for producing GaAs single crystal
JPS62212292A (en) Equipment for making silicon crystal band
JPH09169592A (en) Method for growing single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees