JPS6111916B2 - - Google Patents

Info

Publication number
JPS6111916B2
JPS6111916B2 JP15264183A JP15264183A JPS6111916B2 JP S6111916 B2 JPS6111916 B2 JP S6111916B2 JP 15264183 A JP15264183 A JP 15264183A JP 15264183 A JP15264183 A JP 15264183A JP S6111916 B2 JPS6111916 B2 JP S6111916B2
Authority
JP
Japan
Prior art keywords
silicon
crystal
ribbon crystal
manufacturing
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15264183A
Other languages
Japanese (ja)
Other versions
JPS6046995A (en
Inventor
Naoaki Maki
Masanaru Abe
Toshiro Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15264183A priority Critical patent/JPS6046995A/en
Publication of JPS6046995A publication Critical patent/JPS6046995A/en
Publication of JPS6111916B2 publication Critical patent/JPS6111916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ダイを使用したシリコン・リボン
結晶の製造方法。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to a method of manufacturing silicon ribbon crystal using a die.

〔発明の技術的背景とその問題点〕 従来、シリコン・リボン結晶は第1図に示すよ
うな方法で連続的に製造されていた。即ち、石英
ガラスで形成されたルツボ1内に、多結晶シリコ
ン原料を収納し、この多結晶シリコン原料を加熱
源(抵抗加熱、高周波加熱等)で融解し、シリコ
ン融液2を作る。このシリコン融液2中にグラフ
アイトで形成されたスリツト3を有する2枚1組
のダイ4a,4bを立設する。するとグラフアイ
トはシリコン融液2に濡れる材料のため、シリコ
ン融液2はダイ4a,4b中のスリツト3を毛細
管現象により上昇し、ダイ4a,4bの先端まで
到達する。この上昇したシリコン融液2に種子結
晶を接触し、種子結晶を徐々に矢印方向に引上げ
る。同時に顆粒状多結晶シリコン原料5を供給装
置6によりルツボ1中に引上げ量と同量補給する
ことにより、上記ダイ4a,4bのスリツト3で
規定された幅と厚さのシリコン・リボン結晶7が
連続的に成長する。
[Technical background of the invention and its problems] Conventionally, silicon ribbon crystals have been continuously manufactured by a method as shown in FIG. That is, a polycrystalline silicon raw material is stored in a crucible 1 made of quartz glass, and this polycrystalline silicon raw material is melted using a heat source (resistance heating, high frequency heating, etc.) to form a silicon melt 2. A set of two dies 4a, 4b each having a slit 3 made of graphite is set upright in the silicon melt 2. Then, since graphite is a material that gets wet with the silicon melt 2, the silicon melt 2 rises through the slits 3 in the dies 4a, 4b by capillary action and reaches the tips of the dies 4a, 4b. A seed crystal is brought into contact with this rising silicon melt 2, and the seed crystal is gradually pulled up in the direction of the arrow. At the same time, by supplying the granular polycrystalline silicon raw material 5 into the crucible 1 in an amount equal to the amount pulled up by the supply device 6, a silicon ribbon crystal 7 having a width and thickness specified by the slits 3 of the dies 4a and 4b is formed. grow continuously.

ところで、従来のダイ4a,4bは第2図a,
bに示すように構成されており、先端(結晶成長
部)は水平で且つナイフエツジ状に形成されてい
る。そして、上記のような顆粒状多結晶シリコン
原料5の供給では、顆粒状固体の多結晶シリコン
が液体に相変化する場合、潜熱を吸収する。この
ため、ルツボ1内のシリコン融液2の温度低下が
観察され、この温度低下は引上げ領域(ダイ先端
8)両端部のシリコン融液2の温度低下として顕
著に現われ、極端な場合、ダイ先端両端部のシリ
コン融液2が融点(1420℃)以下になり固化す
る。従つて、この現象はシリコン・リボン結晶7
の成長を困難にし、且つ中断を多発させる。又、
ダイ先端(結晶成長領域)両端部の液温低下のた
め、固相(結晶)と液相(シリコン融液)の界面
(以下、固液界面9と呼ぶ)の形状は第2図bの
ように中央部が高い凸型になり、この結果中央部
が薄く、両端部が厚いという不均一な肉厚を有す
るシリコン・リボン結晶が成長する。例えば0.5
mm厚のシリコン・リボン結晶を得るために、ダイ
4a,4bのスリツト3の幅を0.5mmにすると、
極端な場合、両端部で0.5〜0.6mm、中央部で0.2mm
〜0.3mmとなる。
By the way, the conventional dies 4a and 4b are as shown in FIG.
It is constructed as shown in b, and the tip (crystal growth part) is formed horizontally and in the shape of a knife edge. In supplying the granular polycrystalline silicon raw material 5 as described above, when the granular solid polycrystalline silicon undergoes a phase change to liquid, it absorbs latent heat. For this reason, a decrease in the temperature of the silicon melt 2 in the crucible 1 is observed, and this temperature decrease appears conspicuously as a decrease in the temperature of the silicon melt 2 at both ends of the pulling region (die tip 8). The silicon melt 2 at both ends becomes below the melting point (1420°C) and solidifies. Therefore, this phenomenon is caused by silicon ribbon crystal 7
This makes growth difficult and causes frequent interruptions. or,
Due to the drop in liquid temperature at both ends of the die tip (crystal growth region), the shape of the interface between the solid phase (crystal) and liquid phase (silicon melt) (hereinafter referred to as solid-liquid interface 9) is as shown in Figure 2b. As a result, a silicon ribbon crystal with non-uniform thickness is grown, being thinner in the center and thicker at both ends. For example 0.5
In order to obtain a silicon ribbon crystal with a thickness of mm, the width of the slits 3 of the dies 4a and 4b is set to 0.5 mm.
In extreme cases, 0.5-0.6mm at both ends and 0.2mm in the middle
~0.3mm.

上記のように連続的なシリコン・リボン結晶の
引上げの中断は生産歩留りを極端に低下させ、且
つ肉厚の不均一化はリボンウエハの製作、太陽電
池素子化という後工程で、シリコン・リボン結晶
は破損する。
As mentioned above, interruption of the continuous pulling of silicon ribbon crystals will extremely reduce the production yield, and the non-uniformity of the thickness will cause the silicon ribbon crystals to be pulled in the subsequent processes of manufacturing ribbon wafers and converting them into solar cell elements. is damaged.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、顆粒状多結晶シリコン原料
を連続的にルツボ内に供給する際に発生するダイ
先端両端部の液温低下による帯状シリコン結晶の
成長の中断を防止し、高歩留りで安定に長時間成
長させると共に肉厚の均一なシリコン・リボン結
晶を得ることができるシリコン・リボン結晶の製
造方法を提供することである。
The purpose of this invention is to prevent the interruption of the growth of band-shaped silicon crystals due to the drop in liquid temperature at both ends of the die tip that occurs when granular polycrystalline silicon raw materials are continuously fed into a crucible, and to achieve a stable and high yield. An object of the present invention is to provide a method for manufacturing a silicon ribbon crystal, which can be grown for a long time and can obtain a silicon ribbon crystal with a uniform thickness.

〔発明の概要〕[Summary of the invention]

この発明は、シリコン融液を収容したルツボ内
にスリツトを有する板状にして2枚1組のダイを
立設し、上記スリツト内を上昇した上記シリコン
融液に種子結晶を接触させてシリコン・リボン結
晶を引上げると同時に、顆粒状多結晶シリコン原
料を連続的に上記ルツボ内に供給するシリコン・
リボン結晶の製造方法において、上記ダイの先端
は上記シリコン・リボン結晶の引上げ方向に凸型
の曲率半径で形成されているシリコン・リボン結
晶の製造方法である。
In this invention, a set of two plate-shaped dies having slits are set upright in a crucible containing a silicon melt, and a seed crystal is brought into contact with the silicon melt rising inside the slit to form a silicon melt. At the same time as pulling the ribbon crystal, granular polycrystalline silicon raw material is continuously fed into the crucible.
In the method for manufacturing a silicon ribbon crystal, the tip of the die is formed with a convex radius of curvature in the pulling direction of the silicon ribbon crystal.

〔発明の実施例〕[Embodiments of the invention]

発明者は、顆粒状多結晶シリコン原料5を連続
的にルツボ1内に供給する時に生じるシリコン・
リボン結晶7の引上げの中断、肉厚の不均一化を
解決するため、研究を重ねた結果、上記原因は顆
粒状多結晶シリコン原料5がルツボ1内で固体か
ら液体に相変化する際に生じる融解潜熱の吸収に
よるものと判明した。そして、この潜熱の吸収の
ため、予めルツボ1内に存在したシリコン融液2
の温度が低下し、その影響はシリコン・リボン結
晶7の引上げにとつて、特にダイ先端(結晶成長
部)8の両端部に顕著に現われた。
The inventor has discovered that the silicon produced when the granular polycrystalline silicon raw material 5 is continuously fed into the crucible 1.
As a result of repeated research in order to solve the problem of the interruption of pulling of the ribbon crystal 7 and the non-uniformity of the wall thickness, we found that the above cause occurs when the granular polycrystalline silicon raw material 5 undergoes a phase change from solid to liquid in the crucible 1. It was determined that this was due to absorption of latent heat of fusion. In order to absorb this latent heat, the silicon melt 2 that was previously present in the crucible 1 is
The temperature of the silicon ribbon crystal 7 was lowered, and its influence was noticeable on the pulling of the silicon ribbon crystal 7, especially at both ends of the die tip (crystal growth area) 8.

そこで発明者は、ダイ4a,4bの温度勾配に
注目したところ、温度はダイ4a,4bの下部ほ
ど高く、先端8に近づくにつれて低下している。
従つて、この発明の製造方法で用いるダイ10
a,10bは第3図aに示すように構成され、ダ
イ10a,10bの先端の形状は、シリコン・リ
ボン結晶7(第1図参照)の引上げ方向に凸型の
曲率半径で形成され、中央部11a,11bが高
く両端部12a,12bが低くなつている。尚、
図中の13はスリツトである。この構成による温
度分布は両端部12a,12bが高温で、中央部
11a,11bが低温の凹型となる。そして、こ
のダイ10a,10bを使用して製造すると、シ
リコン・リボン結晶7の引上げを開始し、所定の
幅(通常10mm程度)に拡幅した後、顆粒状多結晶
シリコン原料5を連続的に供給する。すると、ル
ツボ1中のシリコン融液2の温度低下により、特
にダイ先端両端部12a,12bのシリコン融液
2の温度が低下し、第3図bに示す固液界面14
となる。この固液界面14の形状は、従来見られ
た第2図bの固液界面9の形状と異なり、均一に
形成されるため、シリコン・リボン結晶両端部1
2a,12bでの固着を防止することができ、顆
粒状多結晶シリコン原料5が存在する限り、連続
的に引上げることが可能である。
Therefore, the inventor paid attention to the temperature gradient of the dies 4a, 4b, and found that the temperature is higher at the lower part of the dies 4a, 4b, and decreases as the temperature approaches the tip 8.
Therefore, the die 10 used in the manufacturing method of the present invention
dies 10a and 10b are constructed as shown in FIG. The portions 11a, 11b are high, and both end portions 12a, 12b are low. still,
13 in the figure is a slit. The temperature distribution with this configuration has a concave shape with high temperatures at both ends 12a and 12b and low temperatures at the center portions 11a and 11b. When manufactured using these dies 10a and 10b, the silicon ribbon crystal 7 is pulled up and expanded to a predetermined width (usually about 10 mm), and then the granular polycrystalline silicon raw material 5 is continuously supplied. do. Then, as the temperature of the silicon melt 2 in the crucible 1 decreases, the temperature of the silicon melt 2 particularly at both ends 12a and 12b of the die tip decreases, and the solid-liquid interface 14 shown in FIG. 3b decreases.
becomes. The shape of this solid-liquid interface 14 is different from the conventional shape of the solid-liquid interface 9 shown in FIG.
As long as the granular polycrystalline silicon raw material 5 exists, it is possible to prevent the particles 2a and 12b from sticking together, and it is possible to continuously pull the polycrystalline silicon raw material 5.

更に、この発明では第3図aから明らかなよう
にダイ10a,10bの先端の両端部12a,1
2bはナイフエツジ状に鋭利に形成され、中央部
11a,11bのみ約0.1mm程度の肉厚を有する
エツジが形成されている。そして、ダイ・10
a,10bのスリツト13の幅を0.5mmに構成し
てシリコン・リボン結晶の引上げを行なつた結
果、シリコン・リボン結晶の肉厚は両端部12
a,12bも中央部11a,11bも0.4mm〜0.5
mmとなり、肉厚の均一なシリコン・リボン結晶が
得られた。
Furthermore, in this invention, as is clear from FIG.
2b is sharply formed in the shape of a knife edge, and only the central portions 11a and 11b have an edge having a wall thickness of approximately 0.1 mm. And die 10
As a result of pulling the silicon ribbon crystal by configuring the width of the slits 13 of a and 10b to 0.5 mm, the thickness of the silicon ribbon crystal is equal to that at both ends 12.
a, 12b and central portions 11a, 11b are 0.4mm to 0.5
mm, and a silicon ribbon crystal with a uniform wall thickness was obtained.

尚、この発明の製造方法は、上記ダイ10a,
10b以外は従来例(第1図参照)と同様構成ゆ
え、詳細な説明を省略する。
Incidentally, the manufacturing method of the present invention includes the above-mentioned die 10a,
Since the configuration other than 10b is the same as that of the conventional example (see FIG. 1), detailed explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ダイ10a,10bの先端
を、引上げ方向に凸型の曲率半径を有する構成と
し、予めダイ先端両端部12a,12bの温度を
上昇させ、且つ両端部12a,12bはナイフエ
ツジ状に鋭利に加工し、中央部11a,11bは
約0.1mm程度のエツジ構成としているので、顆粒
状多結晶シリコン原料を連続的にルツボ1内に供
給しても、固液界面14の高さは略均一に保持さ
れるため、シリコン・リボン結晶の連続成長は顆
粒状多結晶シリコン原料が存在する限り継続し、
且つ内厚が均一なシリコン・リボン結晶を連続的
に引上げることができる。
According to this invention, the tips of the dies 10a, 10b are configured to have a convex radius of curvature in the pulling direction, the temperature of both ends 12a, 12b of the die tips is raised in advance, and both ends 12a, 12b are shaped like knife edges. Since the central portions 11a and 11b have an edge structure of about 0.1 mm, even if the granular polycrystalline silicon raw material is continuously fed into the crucible 1, the height of the solid-liquid interface 14 will be small. Since it is maintained approximately uniformly, the continuous growth of silicon ribbon crystals continues as long as the granular polycrystalline silicon raw material is present.
In addition, silicon ribbon crystals with uniform inner thickness can be continuously pulled up.

尚、第4図a,bにダイ15a,15bの変形
例を示すが、aは斜視図、bは側面図である。図
示のようにダイ15a,15bの先端の両端部1
6a,16bを中央部17a,17bより寸法×
(0.1〜0.2mm)だけ低くし、且つ両端部16a,
16bをテーパー状に形成されている。この構成
にすると、ダイ15a,15b先端の温度は、中
央部17a,17bで低温となり、テーパー状の
両端部16a,16bで高温となり凹型となる。
この状況下で顆粒状多結晶シリコン原料をルツボ
内に連続的に供給すると、固液界面は第3図bの
14と同様に均一となり、同一な作用効果を達成
することが可能である。
FIGS. 4a and 4b show modified examples of the dies 15a and 15b, where a is a perspective view and b is a side view. As shown in the figure, both ends 1 of the tips of the dies 15a and 15b
6a, 16b from the center part 17a, 17b
(0.1 to 0.2 mm), and both ends 16a,
16b is formed into a tapered shape. With this configuration, the temperature at the tips of the dies 15a, 15b is low at the center portions 17a, 17b, and high at both tapered end portions 16a, 16b, resulting in a concave shape.
If the granular polycrystalline silicon raw material is continuously supplied into the crucible under this condition, the solid-liquid interface becomes uniform like 14 in FIG. 3b, and it is possible to achieve the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシリコン・リボン結晶の製造方
法を示す斜視図、第2図a,bは従来の製造方法
で用いるダイを示す斜視図と正面図、第3図a,
bはこの発明の一実施例に係るシリコン・リボン
結晶の製造方法で用いるダイの一例を示す斜視図
と正面図、第4図a,bは同じくダイの変形例を
示す斜視図と正面図である。 1……ルツボ、2……シリコン融液、3……ス
リツト、4a,4b……ダイ、5……多結晶シリ
コン原料、7……シリコン・リボン結晶、8……
ダイ先端、10a,10b……ダイ、11a,1
1b……ダイ先端の中央部、12a,12b……
ダイ先端の両端部、13……スリツト。
Figure 1 is a perspective view showing a conventional method for manufacturing silicon ribbon crystals, Figures 2a and b are perspective views and front views of a die used in the conventional manufacturing method, and Figures 3a,
4b is a perspective view and a front view showing an example of a die used in the method for manufacturing a silicon ribbon crystal according to an embodiment of the present invention, and FIGS. 4a and 4b are a perspective view and a front view showing a modified example of the die. be. 1... Crucible, 2... Silicon melt, 3... Slit, 4a, 4b... Die, 5... Polycrystalline silicon raw material, 7... Silicon ribbon crystal, 8...
Die tip, 10a, 10b...Die, 11a, 1
1b...Central part of die tip, 12a, 12b...
Both ends of the die tip, 13... slit.

Claims (1)

【特許請求の範囲】 1 シリコン融液を収容したルツボ内にスリツト
を有する板状にして2枚1組のダイを立設し、上
記スリツト内を上昇した上記シリコン融液に種子
結晶を接触させてシリコン・リボン結晶を引上げ
ると同時に、顆粒状多結晶シリコン原料を連続的
に上記ルツボ内に供給するシリコン・リボン結晶
の製造方法において、 上記ダイの先端は、上記シリコン・リボン結晶
の引上げ方向に凸型の曲率半径で形成されている
ことを特徴とするシリコン・リボン結晶の製造方
法。 2 上記ダイ先端の両端部はナイフエツジ状に鋭
利に形成され、且つ中央部は肉厚を有するエツジ
状に形成されている特許請求の範囲第1項記載の
シリコン・リボン結晶の製造方法。 3 上記ダイ先端のエツジ状中央部の肉厚は0.1
mmである特許請求の範囲第2項記載のシリコン・
リボン結晶の製造方法。
[Claims] 1. A set of two plate-shaped dies having slits is set upright in a crucible containing silicon melt, and a seed crystal is brought into contact with the silicon melt rising through the slits. In the method for manufacturing a silicon ribbon crystal, in which a silicon ribbon crystal is pulled by a silicon ribbon crystal, and at the same time, a granular polycrystalline silicon raw material is continuously supplied into the crucible, the tip of the die is directed in the pulling direction of the silicon ribbon crystal. A method for manufacturing a silicon ribbon crystal, characterized in that it is formed with a convex radius of curvature. 2. The method of manufacturing a silicon ribbon crystal according to claim 1, wherein both ends of the die tip are sharply formed into a knife edge shape, and the center portion is formed into a thick edge shape. 3 The wall thickness of the edge-shaped central part of the die tip is 0.1
The silicon according to claim 2, which is mm.
Method for manufacturing ribbon crystals.
JP15264183A 1983-08-22 1983-08-22 Preparation of silicon ribbon crystal Granted JPS6046995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15264183A JPS6046995A (en) 1983-08-22 1983-08-22 Preparation of silicon ribbon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15264183A JPS6046995A (en) 1983-08-22 1983-08-22 Preparation of silicon ribbon crystal

Publications (2)

Publication Number Publication Date
JPS6046995A JPS6046995A (en) 1985-03-14
JPS6111916B2 true JPS6111916B2 (en) 1986-04-05

Family

ID=15544842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15264183A Granted JPS6046995A (en) 1983-08-22 1983-08-22 Preparation of silicon ribbon crystal

Country Status (1)

Country Link
JP (1) JPS6046995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134085U (en) * 1989-04-13 1990-11-07
JPH0319515U (en) * 1989-07-10 1991-02-26
JPH0525511Y2 (en) * 1988-04-08 1993-06-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090199A (en) * 1999-05-03 2000-07-18 Evergreen Solar, Inc. Continuous melt replenishment for crystal growth
JP2012229134A (en) * 2011-04-25 2012-11-22 Fujikura Ltd Method for producing oxide eutectic body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525511Y2 (en) * 1988-04-08 1993-06-28
JPH02134085U (en) * 1989-04-13 1990-11-07
JPH0319515U (en) * 1989-07-10 1991-02-26

Also Published As

Publication number Publication date
JPS6046995A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
US4382838A (en) Novel silicon crystals and process for their preparation
US4121965A (en) Method of controlling defect orientation in silicon crystal ribbon growth
JPS6111916B2 (en)
US3977934A (en) Silicon manufacture
US4157373A (en) Apparatus for the production of ribbon shaped crystals
JPH0139998B2 (en)
US4469552A (en) Process and apparatus for growing a crystal ribbon
US3162507A (en) Thick web dendritic growth
US4721688A (en) Method of growing crystals
JPS6111914B2 (en)
US3413098A (en) Process for varying the width of sheets of web material
JPS5973492A (en) Apparatus for preparation of silicon strip crystal
JPS598688A (en) Preparation of thin film crystal
JPS609000B2 (en) Band-shaped silicon crystal growth device
JP3674736B2 (en) Method for producing plate-like single crystal
JPS5932436B2 (en) Band-shaped silicon crystal growth device
JPS5932434B2 (en) Band-shaped silicon crystal production equipment
JPS59182292A (en) Production of silicon crystal band
JPS62113792A (en) Production unit for band silicon crystal
JPS6033799B2 (en) Capillary dice for crystal growth
JPS5932430B2 (en) Manufacturing equipment for band-shaped silicon crystals
JPS5850960B2 (en) How to grow band-shaped silicon crystals
JPH0154320B2 (en)
JPS6140639B2 (en)
JP2773441B2 (en) Method for producing GaAs single crystal