JPS6167129A - Parallel multiplication circuit - Google Patents

Parallel multiplication circuit

Info

Publication number
JPS6167129A
JPS6167129A JP18756984A JP18756984A JPS6167129A JP S6167129 A JPS6167129 A JP S6167129A JP 18756984 A JP18756984 A JP 18756984A JP 18756984 A JP18756984 A JP 18756984A JP S6167129 A JPS6167129 A JP S6167129A
Authority
JP
Japan
Prior art keywords
circuit
multiplier
unit
unit circuit
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18756984A
Other languages
Japanese (ja)
Inventor
Tamotsu Hiwatari
樋渡 有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18756984A priority Critical patent/JPS6167129A/en
Publication of JPS6167129A publication Critical patent/JPS6167129A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5332Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by skipping over strings of zeroes or ones, e.g. using the Booth Algorithm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To speed up the operating time by combining circuits comprising two transmission gates at each unit circuit, inputting a multiplier yi to the preceding unit while skipping the 1st unit circuit when the yi is 0 to reduce the number of pass of unit circuits. CONSTITUTION:The transmission gates G1, G2 are added to each unit circuit 4 to each unit circuit to which a sum output of the preceding unit circuit is inputted. A G3 is an inverting gate to control the transmission gates G1, G2 in response to the multiplier yi (i=1, 2-4). Thus, the transmission gate G1 is conducted when the multiplier y1 is 0, acting like a bypass to couple the preceding sum output to each unit circuit MFA to the unit circuit of the next stage. When the multiplier yi is 1, the transmission gate G1 is not conducted and the transmission gate G2 is conductive to form the circuit constitution equivalent to a conventional constitution. The signal is inputted to the preceding unit circuit at the row having the multiplier yi with 0 while the 1st row of unit circuits is skipped, and it is required to pass through the G1 only. Thus, the number of pass of unit circuits is decreased and high speed of operating time is realized.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、並列乗算回路に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to parallel multiplication circuits.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

2進数の演算装置として、全加算器(フルアダー)とア
ンドゲートY組合せた単位回路を桁数X桁数だけ行列状
に配置して乗算を行う、並列乗算回路がある。
As a binary number arithmetic device, there is a parallel multiplication circuit that performs multiplication by arranging unit circuits, each of which is a combination of a full adder and an AND gate Y, in a matrix of X digits.

第2図は従来の並列乗算回路を示す。これは。FIG. 2 shows a conventional parallel multiplier circuit. this is.

4桁の2進数の並列乗算回路であり、4行4列に配置さ
れた16個の単位回路MFAで構成されている。4桁の
乗数、被乗数をそれぞれ。
This is a 4-digit binary parallel multiplication circuit, and is composed of 16 unit circuits MFA arranged in 4 rows and 4 columns. 4-digit multiplier and multiplicand, respectively.

74s73*)’t+3’I  ; )C4v”3t”
!會xl  とし・その乗算結果をP8 、P7 、P
6 、P5 、P4 。
74s73*)'t+3'I;)C4v"3t"
! Let xl be xl, and the multiplication results are P8, P7, P
6, P5, P4.

P3 、P2 、PIで表わしている。They are represented by P3, P2, and PI.

第鷺図は第淘図の単位回路MFAの構成と入出力信号関
係を示す。単位回路は全加算器FAとアンドゲートGと
から構成されている。CI。
Fig. 3 shows the configuration of the unit circuit MFA shown in Fig. 1 and the relationship between input and output signals. The unit circuit is composed of a full adder FA and an AND gate G. C.I.

Coは各単位回路の桁上は入出力であり、X。Co is the input/output of each unit circuit, and X.

Yはそれぞれ被乗数1乗数の1桁であり、8I。Y is each one digit of the multiplicand 1 multiplier, and is 8I.

SOはそれぞれ和の入出力である。これらの信号の間に
は次のような論理式が成立つ。
SO is the input and output of the sum, respectively. The following logical formula holds between these signals.

この方式では1桁上は乞いわゆるリップルキャリ一方式
により行う ので1桁上は信号が最終段のP7 、P8
f2r:出力する・単位回路MFAに到達するまでに、
その前の全ての単位回路MFAを通ることになる。第2
図の場合、4桁の乗算回路であるため1桁上は信号は1
0個の単位回路MFAを通るが、一般にn桁の乗算回路
では3n−2個の単位回路を通過しなければならない。
In this method, one digit higher is carried out using the so-called ripple carry one-way method, so the signal one digit higher is the final stage P7, P8.
f2r: Output ・By the time it reaches the unit circuit MFA,
It passes through all the unit circuits MFA before that. Second
In the case of the figure, since it is a 4-digit multiplication circuit, the signal one digit higher is 1.
The signal passes through 0 unit circuits MFA, but generally in an n-digit multiplication circuit, it must pass through 3n-2 unit circuits.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点1:鑑み1乗算回路のゲート数を徒ら
に増加させることなく、各単位回路に規則的な回路を付
加して演算速度の向上を図った並列乗算回路を提供する
こと・を目的とする。
The present invention is directed to the above point 1: In view of the above, it is an object of the present invention to provide a parallel multiplier circuit that improves the calculation speed by adding regular circuits to each unit circuit without unnecessarily increasing the number of gates in the multiplier circuit. ·With the goal.

〔発明の概要〕[Summary of the invention]

本発明は、行列状に配置される各単位回路に。 The present invention applies to each unit circuit arranged in a matrix.

この回路への入力である乗数がOである場合に前段の和
の出力をこの回路を通過することなくバイノクスさせる
伝送ゲートを付加したことを特徴とする。
The circuit is characterized in that, when the multiplier input to this circuit is O, a transmission gate is added which causes the output of the sum of the previous stage to be binoxed without passing through this circuit.

〔発明の効果〕〔Effect of the invention〕

本発明に係る並列乗算回路では、ある行の単位回路の乗
数入力が0である場合、和の入力はこの単位回路導通る
ことなく伝送ゲートでパイ、?スされて次段の単位回路
に入力される。この場合、単位回路の桁上は信号がそ、
の行の左端の単位回路に到達するのを待つことなく1次
段の単位(ロ)路での演算が開始される。即ち乗数にO
がある桁では、単位回路を通過することなく伝送ゲート
だけを通過して信号が伝播される。
In the parallel multiplier circuit according to the present invention, when the multiplier input of a unit circuit in a certain row is 0, the sum input is pi, ? at the transmission gate without conduction in this unit circuit. and input to the next stage unit circuit. In this case, the signal on the unit circuit is
The operation in the unit circuit of the first stage is started without waiting for the unit circuit at the left end of the row to be reached. In other words, the multiplier is O
At a certain digit, the signal is propagated through only the transmission gate without passing through the unit circuit.

従って本発明によれば1乗数C二含まれる0の個数が多
い場合には乗算時間の短縮化が可能となる。
Therefore, according to the present invention, when the number of zeros included in the first multiplier C2 is large, the multiplication time can be shortened.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例により具体的に説I!―する。 The present invention will be explained in detail below using examples. -do.

第1図は、第2図の回路に本発明を適用した実施例の並
列乗算回路である。第1行を除く各行の単位回路、伸ち
前段の単位回路の和出力が入力される各単位回路に、伝
送ゲートGI、G2を付加している点で第2図と異なる
。G、は反転ゲートであり、乗数yi(i=2.3.4
)に応じて伝送ゲー)G、、G、を制御するよう1ユな
っている。即ち伝送ゲートG1は1乗数ylがOの場合
に導通して各単位回路MFAへの前段の和出力を次段の
単位回路へ直結させるバイパスとなる。乗数y1が1の
場合には、この伝送ゲートG、は非導通で伝送ゲートG
、が導通状態となり、従来の第2図と等価な回路となる
FIG. 1 shows a parallel multiplier circuit according to an embodiment in which the present invention is applied to the circuit shown in FIG. This differs from FIG. 2 in that transmission gates GI and G2 are added to each unit circuit in each row except the first row and to each unit circuit into which the sum output of the unit circuit in the previous stage of expansion is input. G is an inversion gate, and the multiplier yi (i=2.3.4
) to control the transmission game )G, ,G, according to the That is, the transmission gate G1 becomes conductive when the first multiplier yl is O, and serves as a bypass that directly connects the sum output of the previous stage to each unit circuit MFA to the next stage unit circuit. When the multiplier y1 is 1, this transmission gate G is non-conductive and the transmission gate G is non-conductive.
, becomes conductive, resulting in a circuit equivalent to the conventional circuit shown in FIG.

このような回路が実現できる遅出を以下、論理式を用い
て説明する。いま1乗数y、がOでとなる。ここで第2
行の右端の単1位回路MFAにおいて、Cに〇であるか
ら、C0=0である。そして各単位回路のCOは左に隣
接する単位回路のCIであるから、結局、第2行の4つ
の単位回路において、全てCI=Qとなる。ゆえに。
The delay output that can be realized by such a circuit will be explained below using a logical formula. Now, the 1st multiplier y is O. Here the second
In the single-digit circuit MFA at the right end of the row, C is 0, so C0=0. Since the CO of each unit circuit is the CI of the unit circuit adjacent to the left, CI=Q in all four unit circuits in the second row. therefore.

80=81■CI=8I       ・・・(3)が
成り立ち1乗数y2が0であれば、第2行の4つの単位
回路においてSIとSOを直結させてよいことになる。
80=81■CI=8I If (3) holds true and the 1 multiplier y2 is 0, it is possible to directly connect SI and SO in the four unit circuits in the second row.

この1乗数y、が0のときに8IとSOを直結させるの
が伝送ゲートG1である。第3行、第4行の単位回路に
ついても同様である。
When this 1 multiplier y is 0, the transmission gate G1 connects 8I and SO directly. The same applies to the unit circuits in the third and fourth rows.

このように本実施例によれば、2個の伝送ゲ−F GI
  + GIからなる回路ン各単位回路に組合わせるこ
とにより1乗数y1が0である場合は第1行の単位回路
を飛び越して前段の単位回路に入力される。単位回路を
信号が通過するには通常数段のゲートを通ることになる
が1本実施例では1乗数yiがOの行では1段の伝送ゲ
ートG、を通過するだけでよい。従って単位回路の通過
個数が減少し、演算時間の高速化が実現される。
As described above, according to this embodiment, two transmission games F GI
+ GI circuits are combined with each unit circuit, and when the 1 multiplier y1 is 0, the signal is inputted to the unit circuit in the previous stage by skipping the unit circuit in the first row. In order for a signal to pass through a unit circuit, it normally passes through several stages of gates, but in this embodiment, in a row where the first multiplier yi is O, the signal only needs to pass through one stage of transmission gate G. Therefore, the number of unit circuits passing through is reduced, and the calculation time is increased.

本発明は上記した実施例に限られるものではなく、その
趣旨を逸脱しない範囲で種々変形実施することが可能で
ある。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例C二係る並列乗算回路を示す
図、第2図は従来の並列乗算回路を示す図、第3図は並
列乗算回路における単位回路を示す図である。 MFA・・・単位回路−GI * Gz・・・伝送ゲー
ト。 G3・・・反転ゲート。
FIG. 1 is a diagram showing a parallel multiplication circuit according to Embodiment C2 of the present invention, FIG. 2 is a diagram showing a conventional parallel multiplication circuit, and FIG. 3 is a diagram showing a unit circuit in the parallel multiplication circuit. MFA...Unit circuit-GI*Gz...Transmission gate. G3...Reversal gate.

Claims (1)

【特許請求の範囲】[Claims] 全加算器とアンドゲートを組合せた複数の単位回路を行
列状に配置して構成され2進数の乗算を行う並列乗算回
路において、前段の和出力が入力される各単位回路に、
その行に入力される乗数が0のときに前記・前段の和出
力を次段の単位回路の和入力端へバイパスさせる伝送ゲ
ートを付加したことを特徴とする並列乗算回路。
In a parallel multiplication circuit that multiplies binary numbers and is configured by arranging multiple unit circuits in a matrix that combine full adders and AND gates, each unit circuit to which the sum output of the previous stage is input,
A parallel multiplier circuit characterized in that a transmission gate is added that bypasses the sum output of the previous stage to the sum input terminal of the next stage unit circuit when the multiplier input to that row is 0.
JP18756984A 1984-09-07 1984-09-07 Parallel multiplication circuit Pending JPS6167129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18756984A JPS6167129A (en) 1984-09-07 1984-09-07 Parallel multiplication circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18756984A JPS6167129A (en) 1984-09-07 1984-09-07 Parallel multiplication circuit

Publications (1)

Publication Number Publication Date
JPS6167129A true JPS6167129A (en) 1986-04-07

Family

ID=16208389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18756984A Pending JPS6167129A (en) 1984-09-07 1984-09-07 Parallel multiplication circuit

Country Status (1)

Country Link
JP (1) JPS6167129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533617A (en) * 2005-03-17 2008-08-21 クゥアルコム・インコーポレイテッド Method for multiplying two operands and array multiplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533617A (en) * 2005-03-17 2008-08-21 クゥアルコム・インコーポレイテッド Method for multiplying two operands and array multiplier

Similar Documents

Publication Publication Date Title
JP3244506B2 (en) Small multiplier
US20040139131A1 (en) Method and system for performing calculation operations and a device
US4611305A (en) Digital signal processing circuit
JPH0456339B2 (en)
US5161119A (en) Weighted-delay column adder and method of organizing same
US5343417A (en) Fast multiplier
JP3556950B2 (en) Structure and method for reducing the number of carry look-ahead adder stages in high speed arithmetic devices
US4700325A (en) Binary tree calculations on monolithic integrated circuits
US5586071A (en) Enhanced fast multiplier
US4882698A (en) Cell based ALU with tree structured carry, inverting logic and balanced loading
JPS6167129A (en) Parallel multiplication circuit
EP0147836A2 (en) Precharge-type carry chained adder circuit
JPH06195201A (en) High-speed adder using varied carry scheme and method related to it
EP0344226B1 (en) High-speed digital adding system
JPH08152994A (en) Multiplier and digital filter
JPH03228122A (en) Addition circuit
JP3139137B2 (en) Digital signal processing circuit that performs filter operation of digital filter processing
JP2608600B2 (en) Apparatus for calculating parity bit of sum of two numbers
Patil et al. RCA with conditional BEC in CSLA structure for area-power efficiency
JPH03228297A (en) Shift register circuit
JP2885402B2 (en) Carry propagation circuit of parallel type full adder
JP4408727B2 (en) Digital circuit
JPH07141148A (en) Pipeline parallel multiplier
JPH04227534A (en) Array multiplier
Privat et al. Design of digital filters for video circuits