JPS6163543A - Quartz-based optical fiber - Google Patents

Quartz-based optical fiber

Info

Publication number
JPS6163543A
JPS6163543A JP59183483A JP18348384A JPS6163543A JP S6163543 A JPS6163543 A JP S6163543A JP 59183483 A JP59183483 A JP 59183483A JP 18348384 A JP18348384 A JP 18348384A JP S6163543 A JPS6163543 A JP S6163543A
Authority
JP
Japan
Prior art keywords
quartz
fluorine
germanium
optical fiber
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59183483A
Other languages
Japanese (ja)
Inventor
Isataka Gotou
後藤 勇隆
Sueo Hagiwara
萩原 末男
Kenichi Muta
健一 牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP59183483A priority Critical patent/JPS6163543A/en
Publication of JPS6163543A publication Critical patent/JPS6163543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide a quartz-based optical fiber having broad transmission range and excellent radiation resistance, by doping fluorine to a germanium- doped quartz core. CONSTITUTION:The objective quartz-based optical fiber has a graded index-type fiber structure composed of a quartz core doped with about 10mol% germanium and about 30ppm of fluorine, and a quartz clad doped with about 30ppm of fluorine. The structural defects of germanium caused by irradiation can be compensated with fluorine by the use of the core having the above composition. Furthermore, germanium can be stabilized by fluorine, and the conversion of hydrogen in the fiber to OH group can be suppressed. A quartz-based optical fiber enabling the stable transmission of light for a long period and having high reliability can be produced by this process.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、ゲルマニウムがドープされている石英コアと
フッ素がドープされている石英クラッドとを有する石英
系光ファイ、バに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a silica-based optical fiber having a quartz core doped with germanium and a quartz cladding doped with fluorine.

(発明の技術的背景) 従来、純石英コアと、低屈折率ドーパントであるフッ素
を含む石英クラッドとを有する石英系光ファイバが知ら
れており、耐放射線用光ファイバ等として用いられてい
る。
(Technical Background of the Invention) Conventionally, quartz-based optical fibers having a pure quartz core and a quartz cladding containing fluorine, which is a low refractive index dopant, are known, and are used as radiation-resistant optical fibers and the like.

そして、最近では、光ファイバの広帯域化を図るために
純石英コアに高屈折率ドーパントであるゲルマニウムを
ドープしてグレーデッド型の屈折率分布を持つ石英系光
ファイバが提案されている。
Recently, silica-based optical fibers have been proposed in which a pure quartz core is doped with germanium, which is a high refractive index dopant, to have a graded refractive index distribution in order to widen the bandwidth of optical fibers.

(背景技術の問題点) しかし、かかるゲルマニウムをドープした石英系光ファ
イバでは、放射線照射によってゲルマニウムが電子捕獲
中心として大きく作用するため、紫外域に大きな吸収帯
を生じ、その裾の影響で光伝送損失が著しく増加してし
まう、従って、このゲルマニウムをドープした石英系光
ファイバは耐放射線用光ファイバとしては不適である。
(Problems in the Background Art) However, in such germanium-doped silica optical fibers, germanium acts largely as an electron trapping center when irradiated with radiation, resulting in a large absorption band in the ultraviolet region, which causes light transmission due to the influence of its tail. The loss increases significantly, and therefore, this germanium-doped silica-based optical fiber is unsuitable as a radiation-resistant optical fiber.

(発明の目的) 本発明の目的は、広帯域でありながら耐放射線特性が優
れている石英系光ファイバを提供することにある。
(Objective of the Invention) An object of the present invention is to provide a silica-based optical fiber that has a wide band and has excellent radiation resistance characteristics.

(発明の概要) 本発明は、ゲルマニウムがドープされている石英コアと
、フッ素がドープされている石英クラッドとを有する石
英系光ファイバにおいて、前記ゲルマニウムがドープさ
れている石英コアにフッ素を更にドープしたことを特徴
とする。
(Summary of the Invention) The present invention provides a quartz-based optical fiber having a quartz core doped with germanium and a quartz cladding doped with fluorine, in which the quartz core doped with germanium is further doped with fluorine. It is characterized by what it did.

(発明の実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Embodiments of the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る石英系光ファイバは、第1図に示すように
、石英製のコアlと石英製のクラッド2とを備えるグレ
ーデッドインデックス型ファイバ構造を有し、石英コア
lは50gm径に、又石英クラッド2はl 25 p、
m外径に形成されている。
As shown in FIG. 1, the silica-based optical fiber according to the present invention has a graded index fiber structure comprising a quartz core l and a quartz cladding 2, and the quartz core l has a diameter of 50 gm. Also, quartz cladding 2 is l 25 p,
It is formed with an outer diameter of m.

そして、石英クラッド2はフッ素が30PpHドープさ
れて屈折率が低下しており、石英コアlはゲルマニウム
がlOmo1%、フッ素が30pp■それぞれドープさ
れて屈折率が上昇している。
The quartz cladding 2 is doped with 30 ppph of fluorine to lower its refractive index, and the quartz core 1 is doped with 10 mo of germanium and 30 pp of fluorine to increase its refractive index.

さて、石英コアlにゲルマニウムの他にフッ素をドープ
した本発明の石英系光ファイバに放射線を照射してその
光伝送損失増加を調べたところ、第2図の(A)で示す
ように、低損失特性を示した。即ち1本発明の石英系光
ファイバに、1,02XIO4R/hrの照射線量率で
放射線を照射しつつLED光源により0.85ILm波
iの光を入射したところ、その伝送損失増加は照射時間
に略比例して増加したが、60分の照射でも約8 d 
B / K mの低損失増加に抑えることができた。
Now, when we irradiated the silica-based optical fiber of the present invention, in which the quartz core L was doped with fluorine in addition to germanium, and investigated the increase in optical transmission loss, we found that the increase in optical transmission loss was low, as shown in (A) in Figure 2. The loss characteristics are shown. That is, when the silica-based optical fiber of the present invention was irradiated with radiation at a dose rate of 1,02XIO4R/hr and 0.85 ILm wave i was incident on it from an LED light source, the increase in transmission loss was approximately equal to the irradiation time. It increased proportionally, but even after 60 minutes of irradiation, about 8 d
It was possible to suppress the increase in loss to a low level of B/K m.

これは、石英コア1のSiOの抜けた欠陥やGeO2の
0(酸素)が抜けた欠陥に、電子ではなくフッ素が捕獲
され、紫外域での吸収帯の増加が抑制されたことによる
と考えられる。
This is thought to be due to the fact that fluorine, rather than electrons, was captured in the defects of SiO in quartz core 1 and the defects of GeO2 in which 0 (oxygen) was missing, suppressing the increase in the absorption band in the ultraviolet region. .

比較のために、ゲルマニウムが10w01%ドープされ
た直径50 p、、taの石英コアと、フッ素が30 
PPI ドープされた外径125gmの石英クラッドと
から成るグレーデッドインデックス型光ファイバを用意
し、上述したと同一条件でその光伝送損失増加を調べた
ところ、第2図の(E)に示すように、40分の放射線
照射で約8dB/ K mの損失増加を示し、60分の
照射では約10.5dB/Kmの大きな損失増加を示し
た。
For comparison, a quartz core of diameter 50 p,,ta doped with 10w01% germanium and a quartz core doped with fluorine 30
A graded-index optical fiber consisting of a PPI-doped quartz cladding with an outer diameter of 125 gm was prepared, and the increase in optical transmission loss was investigated under the same conditions as described above, as shown in Figure 2 (E). , showed a loss increase of about 8 dB/Km after 40 minutes of radiation irradiation, and a large loss increase of about 10.5 dB/Km after 60 minutes of irradiation.

ところで、上述したように、石英コア1にゲルマニウム
の他にフッ素をドープすると、ゲルマニウムにフッ素が
結合し、ゲルマニウムを安定化するので、光フアイバ中
に拡散している水素がその後に0(酸素)と結びついて
OH基に変換する割合が減少する。従って、OH基の増
加による光吸収損失の増加も有効に防止することができ
る。
By the way, as mentioned above, when the quartz core 1 is doped with fluorine in addition to germanium, the fluorine bonds to the germanium and stabilizes the germanium, so that the hydrogen diffused into the optical fiber becomes 0 (oxygen). The rate of conversion into OH groups decreases. Therefore, an increase in light absorption loss due to an increase in OH groups can also be effectively prevented.

第3図(A)には本発明をW型のシングルモード光ファ
イバに応用した例が示されている。即ち、 この応用例
では1石英コア1上にフッ素が多量にドープされている
石英クラッド2が設けられ、このクラッド2上にはフッ
素が少量ドープされている石英層3が設けられ、更にそ
の上に石英管4がジャケットされている。そして、石英
コアlにはゲルマニウム及びフッ素の両者がドープされ
ている。従って、この光ファイバの屈折率分布は、第3
図CB)に示すように1石英コアlの屈折率が最も大き
く、石英クラッド2の屈折率が最も小さいW字状になる
FIG. 3(A) shows an example in which the present invention is applied to a W-type single mode optical fiber. That is, in this application example, a quartz cladding 2 doped with a large amount of fluorine is provided on a quartz core 1, a quartz layer 3 doped with a small amount of fluorine is provided on the cladding 2, and a quartz layer 3 doped with a small amount of fluorine is provided on the cladding 2. A quartz tube 4 is jacketed inside. The quartz core l is doped with both germanium and fluorine. Therefore, the refractive index distribution of this optical fiber is
As shown in Figure CB), the refractive index of one quartz core l is the largest, and the refractive index of the quartz cladding 2 is the smallest, forming a W-shape.

このWy!1シングルモード光ファイバは、帯域が広い
だけでなく、石英コアlにフッ素がドープされているこ
とから、上述したように、放射線雰囲気中であっても紫
外域での吸収帯の増加が少なく、又OH基のその後に拒
する割合も小さい。
This Wy! 1 Single mode optical fiber not only has a wide band, but also has a quartz core doped with fluorine, so as mentioned above, the absorption band in the ultraviolet region does not increase much even in a radiation atmosphere. Furthermore, the proportion of OH groups rejected afterwards is also small.

(発明の効果) 本発明によれば、ゲルマニウムがドープされている石英
コアにフッ素をドープしたことで、放射線照射によって
生じるゲルマニウムの構造欠陥等をフッ素により補償す
ることができる上にゲルマニウムをフッ素にて安定化し
、ファイバ中の水素のOH基への変換を抑制することが
できる。従って、広帯域でありながら耐放射線特性に優
れ、かつ長期間に亘って安定的に光伝送を行うことがで
きる信頼性を有する石英系光ファイバを提供することが
できる。
(Effects of the Invention) According to the present invention, by doping fluorine into a quartz core doped with germanium, structural defects of germanium caused by radiation irradiation can be compensated for by fluorine, and germanium can be replaced with fluorine. It is possible to stabilize the fiber by suppressing the conversion of hydrogen into OH groups in the fiber. Therefore, it is possible to provide a silica-based optical fiber that has a wide band, has excellent radiation resistance, and is reliable enough to stably transmit light over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る石英系光ファイバの断面図、第2
図は放射線による光伝送損失増加の変化を示す特性図、
第3図(A)及び(B)は本発明の応用例に係る石英系
光ファイバの断面図と屈折率分布図である。 1−−−−−一−−−石英コア、 2−−−−−−−−一石英クラッド、 3−−−−−−−−一石英層、 4−−−−−−−−一石英管。 第1図 第2図 照射時間 IJT11rll
FIG. 1 is a cross-sectional view of a silica-based optical fiber according to the present invention, and FIG.
The figure is a characteristic diagram showing changes in optical transmission loss increase due to radiation.
FIGS. 3A and 3B are a cross-sectional view and a refractive index distribution diagram of a silica-based optical fiber according to an applied example of the present invention. 1-------1 quartz core, 2----------1 quartz cladding, 3----------1 quartz layer, 4----------1 quartz tube. Figure 1 Figure 2 Irradiation time IJT11rll

Claims (1)

【特許請求の範囲】[Claims] ゲルマニウムがドープされている石英コアと、該石英コ
ア上に設けられ、フッ素がドープされている石英クラッ
ドとを有する石英系光ファイバであって、前記石英コア
にフッ素がドープされていることを特徴とする石英系光
ファイバ。
A quartz-based optical fiber having a quartz core doped with germanium and a quartz cladding provided on the quartz core and doped with fluorine, characterized in that the quartz core is doped with fluorine. Silica-based optical fiber.
JP59183483A 1984-09-01 1984-09-01 Quartz-based optical fiber Pending JPS6163543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183483A JPS6163543A (en) 1984-09-01 1984-09-01 Quartz-based optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183483A JPS6163543A (en) 1984-09-01 1984-09-01 Quartz-based optical fiber

Publications (1)

Publication Number Publication Date
JPS6163543A true JPS6163543A (en) 1986-04-01

Family

ID=16136597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183483A Pending JPS6163543A (en) 1984-09-01 1984-09-01 Quartz-based optical fiber

Country Status (1)

Country Link
JP (1) JPS6163543A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPH03247536A (en) * 1990-02-27 1991-11-05 Furukawa Electric Co Ltd:The Entirely fluorine-doped optical fiber
JPH04349147A (en) * 1991-05-22 1992-12-03 Fujikura Ltd Radiation-resistant optical fiber and its production
JPH06211544A (en) * 1992-08-28 1994-08-02 American Teleph & Telegr Co <Att> System with doped optical fiber
CN110346866A (en) * 2019-06-12 2019-10-18 烽火通信科技股份有限公司 A kind of panda type polarization-preserving fiber
US20230020384A1 (en) * 2021-07-01 2023-01-19 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222940A (en) * 1985-03-29 1986-10-03 Furukawa Electric Co Ltd:The Optical fiber
JPH03247536A (en) * 1990-02-27 1991-11-05 Furukawa Electric Co Ltd:The Entirely fluorine-doped optical fiber
JPH04349147A (en) * 1991-05-22 1992-12-03 Fujikura Ltd Radiation-resistant optical fiber and its production
JPH06211544A (en) * 1992-08-28 1994-08-02 American Teleph & Telegr Co <Att> System with doped optical fiber
CN110346866A (en) * 2019-06-12 2019-10-18 烽火通信科技股份有限公司 A kind of panda type polarization-preserving fiber
CN110346866B (en) * 2019-06-12 2020-08-25 烽火通信科技股份有限公司 Panda type polarization maintaining optical fiber
US20230020384A1 (en) * 2021-07-01 2023-01-19 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform
US11680007B2 (en) * 2021-07-01 2023-06-20 Shin-Etsu Chemical Co., Ltd. Optical fiber glass preform and method for manufacturing optical fiber glass preform

Similar Documents

Publication Publication Date Title
JP4699267B2 (en) Radiation-resistant optical fiber and manufacturing method thereof
AU529144B2 (en) High bandwidth optical waveguide
US5681365A (en) Radiation resistant optical waveguide fiber
US4846867A (en) Method for producing glass preform for optical fiber
JPH044988B2 (en)
JPS636500B2 (en)
JPS6163543A (en) Quartz-based optical fiber
JPS62176941A (en) Optical fiber
JPH11237514A (en) Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform
US20020197005A1 (en) Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
JP2002082250A (en) Low non-linear single mode optical fiber
JPS6280606A (en) Single mode optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
CN106249347B (en) Bending insensitive photosensitive fiber for on-line preparation of weak grating array and preparation method
JPH0425682Y2 (en)
JPS62116902A (en) Wide-band low dispersion optical fiber
JPH01160840A (en) Preform for dispersion-shift optical fiber and production thereof
JPS61132531A (en) Production of optical fiber
JPS62270441A (en) Light-transmission material
JPH01102507A (en) Optical fiber
JP3300233B2 (en) Optical fiber
JPS61167907A (en) Optical fiber for radiation resistance
JPS638706A (en) Polarization maintaining optical fiber
KR830001299B1 (en) Optical fiber
JPH0362659B2 (en)