JPS616218A - Powder metallurgical manufacture of electric contact piece of copper chromium solid solution for vacuum enclosed switch - Google Patents

Powder metallurgical manufacture of electric contact piece of copper chromium solid solution for vacuum enclosed switch

Info

Publication number
JPS616218A
JPS616218A JP60034292A JP3429285A JPS616218A JP S616218 A JPS616218 A JP S616218A JP 60034292 A JP60034292 A JP 60034292A JP 3429285 A JP3429285 A JP 3429285A JP S616218 A JPS616218 A JP S616218A
Authority
JP
Japan
Prior art keywords
chromium
copper
powder
particle size
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60034292A
Other languages
Japanese (ja)
Other versions
JPH0651892B2 (en
Inventor
ノルバート・クリンク
ペーター・フライ
カール・ゼーガー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doduco Solutions GmbH
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of JPS616218A publication Critical patent/JPS616218A/en
Publication of JPH0651892B2 publication Critical patent/JPH0651892B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明の対象は真空密閉型スイッチ用の銅・クロム・固
溶体製電気接点片の粉末冶金的製法である。
DETAILED DESCRIPTION OF THE INVENTION The object of the invention is a powder metallurgical production method for copper-chromium solid solution electrical contact pieces for vacuum-sealed switches.

***特許出願公開第2346179号からは、粉末粒度
10μm乃至250μmのクロム粉末ならびに銅粉末を
互いに混合し、この粉末混合物からプレスにより接点片
予備成形体を作り、予備成形体を流動相又は固体相にお
いて焼結し、引続いて少なくとも98チの相対密度(2
%未満の気孔度)達成のためプレス作業により仕上圧密
することにより真空密閉型スイッチ用接点片を作ること
がすでに公知である。これらの接点片中のクロムの割合
は40乃至65容積チであり、対応して銅の割合は60
乃至35容積チである。
From German Patent Application No. 2 346 179, chromium powder and copper powder with a powder particle size of 10 μm to 250 μm are mixed together, a contact piece preform is made from this powder mixture by pressing, and the preform is placed in a fluid or solid phase. sintering, followed by a relative density of at least 98 inches (2
It is already known to produce contact pieces for vacuum-sealed switches by final consolidation in a press operation in order to achieve a porosity of less than %. The proportion of chromium in these contact pieces is between 40 and 65% by volume, and the corresponding proportion of copper is 60% by volume.
35 to 35 volumes.

***特許出願公開第291.4186号からはさらに、
粉末粒度74乃至150μmのクロム粉末ならびに粒度
35乃至関μmの銅粉末を互いに混合し、この粉末混合
物から接点片・予備成形体をプレスし、これらの予備成
形体を真空中で固体相において焼結し、その際焼結温度
ならびに焼結時間を3%を超えない気孔度に対応した少
なくとも97チの相対密度に達するように選ぶことによ
って真空密閉型スイッチ用接点片を作ることも公知であ
る。
Further, from West German Patent Application No. 291.4186,
Chromium powder with a particle size of 74 to 150 μm and copper powder with a particle size of 35 to 150 μm are mixed together, contact pieces/preforms are pressed from this powder mixture, and these preforms are sintered in a solid phase in a vacuum. However, it is also known to produce contact pieces for vacuum-sealed switches by selecting the sintering temperature and the sintering time in such a way as to reach a relative density of at least 97 cm, corresponding to a porosity of not more than 3%.

これらの接点片ではクロムの割合が10乃至40重量%
、銅の割合は対応して頒乃至ω重量%である。
The proportion of chromium in these contact pieces is 10 to 40% by weight.
, the proportion of copper is correspondingly ω% by weight.

***特許第2822956号からは、粉末粒度100μ
m未満のクロム粉末ならびに粉末粒度5μm超の銅粉末
を互いに混合し、この粉末混合物から熱的顆粒化により
まずクロム−銅−にレットを作り、引続いて被レットか
らプレス作業によって接点片・予備成形体を作って、こ
れらを水素雰囲気中で固体相において10%を超えない
気孔度に対応した少なくとも90%の相対密度に到達す
るまで焼結することによって真空密閉型スイッチ用接点
片を作ることが公知である。これらの接点片ではクロム
の割合は加乃至閉重貴%、銅の割合は対応して閏乃至5
0重量%である。
From West German Patent No. 2822956, powder particle size 100μ
A chromium powder with a particle size of less than 5 μm and a copper powder with a powder particle size of more than 5 μm are mixed together, and from this powder mixture a chromium-copper pellet is first made by thermal granulation, and then a contact piece/preparation is made from the pellet by a pressing operation. Making contact pieces for vacuum-sealed switches by making compacts and sintering them in a hydrogen atmosphere until they reach a relative density of at least 90% corresponding to a porosity of not more than 10% in the solid phase. is publicly known. In these contact pieces, the proportion of chromium ranges from 1% to 5%, and the proportion of copper correspondingly ranges from 5% to 5%.
It is 0% by weight.

その#1か多数の出版物が他の方法すなわち流動相にお
ける銅−クロム−粉末混合物の焼結、又は焼結したクロ
ム骨格に鋼溶融物を浸みこますこと、又はクロム粉末を
鋼溶融物中に攪拌混入することによる銅及びクロムから
の真空密閉型スイッチ用接点片の製造を取扱っている。
The #1 or most publications have discussed other methods, namely sintering of copper-chromium-powder mixtures in the fluid phase, or infiltrating sintered chromium frameworks with steel melts, or chromium powders in steel melts. We manufacture contact pieces for vacuum-sealed switches from copper and chromium by stirring them into

これらの方法はここでは詳しくは考慮しない。固体相に
おける銅−クロム−粉末混合物の焼結による接点片の製
造がとぐによく適していることが判明したからである。
These methods will not be considered in detail here. The production of contact pieces by sintering a copper-chromium powder mixture in the solid phase has quickly proven to be well suited.

本発明はそれゆえ単に固体相における焼結で作業する方
法のみ言及する。
The invention therefore only refers to a method working with sintering in the solid phase.

本発明には、固体相における銅−クロム−粉末混合物の
焼結による真空密閉型スイッチ用電気接点片の粉末冶金
的製法であって、遮断容量、焼損、絶縁耐力及び溶着耐
性に関して最適の特性を備えた接点片へ導くものを提供
するという課題が根拠となっている。この課題は特許請
求の範囲第1項記載の特徴を備えた方法によって解決さ
れる。本発明の有利な実施態様は特許請求の範囲第2項
乃至第11項に記載しである。
The present invention relates to a powder metallurgical method for producing electrical contact strips for vacuum-sealed switches by sintering a copper-chromium-powder mixture in the solid phase, which provides optimum properties with respect to breaking capacity, burnout, dielectric strength and welding resistance. The problem is to provide a guide to the contact strips provided. This object is achieved by a method with the features of patent claim 1. Advantageous embodiments of the invention are defined in the claims 2 to 11.

クロム粉末は通常磨砕によって作られる。このようにし
て作られるクロム粉末は通常ガウス分布に類似した粒度
分布を呈する。公知の銅・クロム接点片製法によっては
磨砕から由来するクロム粉末から予め定められた粒度を
超える粗い粉末粒子を(***特許第2822956号)
、多くの場合には予め定められた粒度未満の微粒子部分
も(***特許出願公開第2914186号及び第234
6179号)篩分によって分離する。中はどの粒度区分
を篩分除去することさえもすでに提案されている。しか
しすべての場合において、粉末の粒度の元の正規分布を
再び認めることができる。この正規分布からいわばある
範囲のみが分離されているからである。
Chromium powder is usually made by grinding. The chromium powder produced in this way usually exhibits a particle size distribution similar to a Gaussian distribution. Some known methods of manufacturing copper-chromium contact pieces produce coarse powder particles exceeding a predetermined particle size from chromium powder derived from grinding (West German Patent No. 2822956).
, and in many cases also a particulate fraction of less than a predetermined particle size (West German Patent Application Nos. 2914186 and 234).
No. 6179) Separate by sieving. It has already been proposed to screen out which particle size categories are inside. However, in all cases the original normal distribution of the particle size of the powder can be observed again. This is because only a certain range is separated from this normal distribution.

これに反して本発明によると接点片予備成形体製造用に
、元の正規分布をもはや示さず、またもはや認識もさせ
ないクロム粉末を用いる。むしろある程度均等化した粒
度分布とするように努め、このことは通常のしかたで磨
砕により作られたクロム粉末を篩分過程によりさ捷ざま
な粒度のフラクションに分割し、引続いてこれらのフラ
クションを互いに混合して、新しい混合物においてはあ
る程度均等な粒度分布、すなわちその混合物においては
細かい粒度と粗い粒度とがガウス粒度分布を備えた原料
粉末におけるものより多くなっているようにする。理想
的に均等の粒度分布を達成しようとすると、もとのクロ
ム粉末を多数の篩分過程により極めて多数の、対応して
幅狭い粒度フラクションに分割して、次にこれらを特定
の比率で再び互いに混合しなくてはならない。しかし実
際においては磨砕によって得られたクロム粉末を比較的
幅広い粒度フラクションに分割することで十分足りる。
In contrast, according to the invention, a chromium powder is used for producing the contact piece preform, which no longer exhibits the original normal distribution and is no longer recognizable. Rather, an attempt is made to achieve a somewhat homogeneous particle size distribution, which means that the chromium powder produced by grinding is divided in the usual way into fractions of various particle sizes by a sieving process, and these fractions are then separated into fractions of different particle sizes. are mixed with each other so that in the new mixture there is a more or less uniform particle size distribution, ie there is more fine and coarse particle size in the mixture than in the raw powder with a Gaussian particle size distribution. Ideally, in order to achieve a uniform particle size distribution, the original chromium powder is divided into a very large number of correspondingly narrow particle size fractions by multiple sieving processes, and then these are re-divided in specific proportions. must be mixed with each other. However, in practice it is sufficient to divide the chromium powder obtained by grinding into relatively wide particle size fractions.

それで本発明によりそれぞれ加μm幅の粒度フラクショ
ンに分割することが提案される。
According to the invention, therefore, a division into particle size fractions each having a width of .mu.m is proposed.

本発明により提案された技術の水準から離れた比較的均
等な粒度分布は、一方では接点片の小さい溶着傾向にグ
ラスに、他方では遮断容量及び絶縁耐力にプラスに作用
し、クロムのある程度均等な粒度分布は、電弧作用によ
り不可避な接点片の組織乃至表面に影響を及ぼす長期間
の運転後の接点片への諸特性も加重的には変化しないよ
うに作用する。
The relatively uniform particle size distribution, apart from the state of the art proposed by the present invention, has a positive effect on the glass on the one hand on the small welding tendency of the contact pieces and on the other hand on the breaking capacity and dielectric strength, and on the other hand has a positive effect on the somewhat uniform particle size distribution of the chromium. The particle size distribution acts so that various properties of the contact piece after long-term operation, which inevitably affect the structure or surface of the contact piece due to electric arcing, do not change in a weighted manner.

特許請求の範囲第2項に示しである粉末粒度分布はとく
に適切と判明した。接点片予備成形体を作る粉末混合物
は望ましくはクロム35乃至40重量%を含んでおり残
部は銅となる。
The powder particle size distribution shown in claim 2 has proven to be particularly suitable. The powder mixture from which the contact strip preform is made preferably contains 35 to 40% by weight chromium, with the balance being copper.

粒度の選択は、銅粉末の場合はクロム粉末の場合より遥
かに容易である。好ましくは平均粒度が5μm未満の微
粒子銅粉末が用いられる。
Particle size selection is much easier for copper powder than for chromium powder. Preferably, fine-grained copper powder with an average particle size of less than 5 μm is used.

予定の割合の銅粉末とクロム粉末とを互いによく混合し
たなら、次にこれからプレス作業により接点片・予備成
形体を作る。適宜に粉末を冷間でプレスすると、クロム
を酸化させずに済む。ルス圧の高さは、達成しようとす
る予備成形体の密度によって定まる。予備成形体の密度
は、一方では後続の焼結過程において焼結時間を長くす
ることなしに目標の相対密度93乃至97%に達するよ
うに高くすべきである。また他方では予備成形体が焼結
過程中に脱ガスし得、かつ銅が(酸化されている限り)
なお還元され得るよう低く保たれなくてはならない。
After the copper powder and chromium powder are thoroughly mixed together in the predetermined proportions, a contact piece/preform is then formed by pressing. Appropriate cold pressing of the powder avoids oxidation of the chromium. The height of the Luss pressure is determined by the density of the preform to be achieved. The density of the preform should, on the one hand, be high enough to reach the target relative density of 93-97% in the subsequent sintering process without increasing the sintering time. On the other hand, the preform can degas during the sintering process and the copper (as long as it is oxidized)
It must also be kept low so that it can be returned.

予備成形体は、銅−クロム−材料の理論上到達可能の最
高密度(最高密度には接点片にもはや気孔容積がなくな
ったとき到達している)に対して75乃至85チの相対
密度を呈するように努めるべきである。
The preform exhibits a relative density of 75 to 85 inches with respect to the highest theoretically achievable density of the copper-chromium material (the highest density is reached when there is no more pore volume in the contact piece). We should strive to do so.

後続の焼結過程により予備成形体は93乃至97%の相
対密度に達すべきである。この処方をもって本発明は従
来専門業界において必要と見なされていたものから若干
離れることとなる。
Due to the subsequent sintering process, the preform should reach a relative density of 93-97%. With this formulation, the present invention departs somewhat from what has heretofore been considered necessary in the industry.

すなわち従来は銅−クロム−接点片の諸特性はその相対
密度が高ければ高いほど有利であると考えられていた。
That is, it was conventionally believed that the higher the relative density of the copper-chromium contact piece, the more advantageous the various properties of the copper-chromium contact piece.

それゆえ今まではつねに接点片の密度もできるだけ高く
するように努力した(***特許出願公開第291418
6号:少なくとも97%;第2346179号:少なく
とも98%参照)。また焼結過程のみによってはとくに
高い密度を達成することは困難であるので、従来は焼結
後の予備成形体を通常熱間プレス作業によって仕上圧密
して目標の高密度を達成するようにした。しかし本発明
者らは本発明によるクロム粉末粒度分布選択の処方に従
い、接点片の適切な仕上熱処理により銅中に析出するク
ロム粒子が1 μmより小さいままにするように配慮す
るときは、より低い密度でもすでに銅−クロム−接点片
の最適の緒特性が得られることを確認した。
Therefore, until now we have always tried to make the density of the contact pieces as high as possible (West German Patent Application No. 291418
No. 6: at least 97%; No. 2346179: at least 98%). In addition, it is difficult to achieve a particularly high density through the sintering process alone, so conventionally the preform after sintering was usually final consolidated by hot pressing to achieve the target high density. . However, when we follow the prescription for chromium powder particle size distribution selection according to the invention and take care to ensure that the chromium particles precipitated in the copper remain smaller than 1 μm by appropriate finishing heat treatment of the contact piece, the lower It has already been confirmed that the optimum properties of the copper-chromium contact piece can be obtained also in terms of density.

本発明により到達すべき93乃至97%の相対密度は冷
間プレスした予備成形体の焼結によって達成され得、熱
間プレス作業による仕上圧密の必要がない。しかし、そ
れにも拘わらず接点片のために目標とされた相対密度が
焼結過程によってなお達成されないように焼結条件が選
ばれたときは、焼結過程に熱間プレス作業による仕上圧
密を接続することもできよう。
The relative density of 93 to 97% to be reached according to the invention can be achieved by sintering a cold pressed preform, without the need for final consolidation by hot pressing operations. However, if the sintering conditions are chosen such that the relative density targeted for the contact piece is nevertheless still not achieved by the sintering process, the sintering process is combined with final consolidation by hot pressing. You could also do that.

焼結は固体相において、すなわち融点の低い方の成分(
銅)の融点より低い温度において実施すべきである。望
ましくは焼結を1030乃至1070°Cの温度におい
て行なうべきである。焼結時間は選ばれた焼結温度によ
って左右される。すなわち焼結温度を選ぶのが高ければ
高いほど焼結時間は短かくてすむ。磨砕過程から由来す
るクロム粉末粒子は極めて不規則な、ギザギザの多い形
状である。
Sintering occurs in the solid phase, i.e. in the component with the lower melting point (
should be carried out at a temperature below the melting point of copper). Preferably sintering should be carried out at a temperature of 1030-1070°C. The sintering time depends on the chosen sintering temperature. In other words, the higher the sintering temperature selected, the shorter the sintering time. The chromium powder particles resulting from the milling process are highly irregular and jagged in shape.

焼結過程によってクロム粒子のギザギザは漸進的に均さ
れるのが観察された。本発明者らは焼結過程の・卆うメ
ータ(焼結温度及び焼結時間)をクロム粒子が焼結過程
によってその形状を変えるのをできるだけ小さくするよ
うに選ぶことを推奨する。
It was observed that the jaggedness of the chromium particles was gradually smoothed out by the sintering process. The inventors recommend that the parameters of the sintering process (sintering temperature and sintering time) be chosen in such a way that the chromium particles change their shape as much as possible during the sintering process.

本発明者らの経験によると、このことは接点片のグラス
諸特性にとって著しく重要である。焼結過程中に予備成
形体を還元すべきである。それゆえ焼結過程を一時的に
水素雰囲気中において進行させるべきである。
According to our experience, this is extremely important for the glass properties of the contact piece. The preform should be reduced during the sintering process. Therefore, the sintering process should temporarily proceed in a hydrogen atmosphere.

望ましくは予備成形体を昇温位相中のみ水素雰囲気中に
保ち、一方本来の焼結過程は1030乃至1070°C
の温度において真空中で進行させ、よって予備成形体の
脱ガスが可能となる。
Preferably, the preform is kept in a hydrogen atmosphere only during the heating phase, while the actual sintering process is at 1030-1070°C.
The process is carried out in a vacuum at a temperature of , thereby allowing degassing of the preform.

クロムは銅中に少量しか溶解できない(上記の焼結温度
においては最大の溶解度がほぼ0.8重量%にある)。
Chromium can only be dissolved in copper in small quantities (maximum solubility is approximately 0.8% by weight at the above sintering temperatures).

温度が下ると銅中のクロムの溶解度は低下する。このこ
とから予備成形体の冷却の際には、先行の焼結過程中に
銅中に溶解したクロムが部分的に析出することとなる。
As the temperature decreases, the solubility of chromium in copper decreases. As a result, when the preform is cooled, the chromium dissolved in the copper during the previous sintering process partially precipitates out.

ここで適宜な仕上熱処理によって、銅中に析出するクロ
ム粒子が1 μmより小さいように配慮する。このよう
に細かいクロムの析出は接点片の極めて速かな冷却によ
って達成可能である。これを達成するには予定の焼結時
間の終りに焼結炉に冷い保護ガス、とくに水素を吹きこ
むことができよう。しかし焼結炉の高い熱容量に鑑みて
、接点片を焼結炉内において(焼結過程一般において通
常のとおり)漸次冷却させ、その代り焼結炉から取出し
た後に保護ガス中での溶解熱処理(望ましくは960乃
至1030°Cの温度)水素中におけるもの、及び引続
いての急冷による仕上処理を施こす方が有利である。急
冷は溶解熱処理を終えて連続炉から出て来る接点片を冷
却されている金属板上へ押しやり、その際に低温の保護
ガスを吹きつけることによって実施できる。
Here, care is taken to ensure that the chromium particles precipitated in the copper are smaller than 1 μm by appropriate finishing heat treatment. Such fine chromium deposition can be achieved by extremely rapid cooling of the contact piece. To achieve this, the sintering furnace could be flushed with cold protective gas, especially hydrogen, at the end of the scheduled sintering time. However, in view of the high heat capacity of the sintering furnace, the contact pieces are cooled gradually in the sintering furnace (as is customary in the sintering process in general) and are instead subjected to a melting heat treatment in a protective gas after removal from the sintering furnace. It is advantageous to carry out the finishing treatment in hydrogen (preferably at a temperature of 960 DEG to 1030 DEG C.) and subsequent rapid cooling. Rapid cooling can be carried out by forcing the contact piece that comes out of the continuous furnace after melting heat treatment onto a metal plate that is being cooled, and blowing a low-temperature protective gas at the same time.

金属板の高度に有効な冷却はたとえば液体窒素によって
行なうことができる。
Highly effective cooling of the metal plate can be carried out, for example, with liquid nitrogen.

選ばれた粒度フラクションを下記の割合で混合してクロ
ム粉末を作る。
The selected particle size fractions are mixed in the following proportions to form chromium powder.

0乃至 30μm    10重量% 30乃至60μm   15 〃 60乃至90μm   15 〃 90乃至120μm   15 〃 120乃至150/7m    15  //150乃
至180μm   15 〃 180乃至210μm   15 〃 100重量係 このクロム粉末混合物は平均の粉末粒度が約110μm
である。このクロム粉末混合物35重量部と平均粒度が
5μmを超えない微粒子の銅粉末65重量部とを互いに
約1時間の間強く混合して、添加物なしに冷間でプレス
して相対密度約80%(気孔容積20%に相当)の予備
成形体とする。それに必要なプレス圧は5500乃至6
500バール(550乃至650 MN/m2)である
。こうして作られた予備成形体を焼結炉へ移し、ここで
水素雰囲気中で1030乃至1070°Cの焼結温度に
加熱し、続いてこの温度に2時間の間保持し、次に焼結
炉の加熱を中断して漸次冷却させる。焼結した接点片は
相対密度約95%である。焼結炉から取出した後に連続
炉において水素雰囲気中温度1000°Cでの溶解熱処
理による仕上処理を、それも1時間の間流こす。引続い
て(連続炉から出て来るのを)低温の水素シャワーの作
用下に、冷却しである金属板上へ押しやって接点片を急
冷する。
0 to 30 μm 10% by weight 30 to 60 μm 15 〃 60 to 90 μm 15 〃 90 to 120 μm 15 〃 120 to 150/7 m 15 //150 to 180 μm 15 〃 180 to 210 μm m 15 〃 100% by weight This chromium powder mixture is an average powder Particle size is approximately 110μm
It is. 35 parts by weight of this chromium powder mixture and 65 parts by weight of fine-grained copper powder with an average particle size not exceeding 5 μm are mixed together intensively for about 1 hour and cold pressed without additives to give a relative density of about 80%. (equivalent to pore volume of 20%). The press pressure required for this is 5500 to 6
500 bar (550-650 MN/m2). The preform thus produced is transferred to a sintering furnace where it is heated in a hydrogen atmosphere to a sintering temperature of 1030-1070°C, subsequently held at this temperature for 2 hours, and then The heating is interrupted and the mixture is gradually cooled down. The sintered contact piece has a relative density of approximately 95%. After removal from the sintering furnace, finishing treatment is carried out in a continuous furnace by melting heat treatment at a temperature of 1000° C. in a hydrogen atmosphere, also for a period of 1 hour. Subsequently, the contact piece (coming out of the continuous furnace) is quenched by pressing it onto a cooled metal plate under the action of a cold hydrogen shower.

実施例■ 上記の方法を一部変更して焼結過程の持続時間を加分間
に短縮する。そのとき焼結ずみの接点片は相対密度が約
90チにすぎない。それゆえ温度100000ならびに
圧200バール(−20MN/m2)において短時間の
熱間・均衡プレス作業により仕上圧密し、よって同じ<
95%の相対密度に達する。
Example ■ The above method is modified to shorten the duration of the sintering process to the addition period. The sintered contact piece then has a relative density of only about 90 inches. It is therefore final consolidated by a short hot isostatic pressing operation at a temperature of 100,000 and a pressure of 200 bar (-20 MN/m2), so that the same <
A relative density of 95% is reached.

そのほかは実施例第1と同様に方法を進行させる。Otherwise, the method proceeds in the same manner as in the first embodiment.

一部変更した方法により作られた接点片は、さきに示し
た方法によるものとでは接点片中のクロム粒子が焼結過
程短縮の結果としてなおギザギザの大きい形状を保って
いる点で相違している。
The contact piece made by the partially modified method differs from the contact piece made by the method shown earlier in that the chromium particles in the contact piece still maintain a large jagged shape as a result of the shortened sintering process. There is.

Claims (11)

【特許請求の範囲】[Claims] (1)真空密閉型スイッチ用銅・クロム固溶体製電気接
点片の粉末冶金的製法において、下記の工程からなる方
法: a)銅粉末20乃至70重量%とクロム粉末30乃至8
0重量%との混合物を作る;その場合クロム粉末は粒度
が0乃至最大210μmであり、また粒度フラクション
0乃至30μm、30乃至60μm、60乃至90μm
、90乃至120μm、120乃至150μm、150
乃至180μm及び180乃至210μmにおいてそれ
ぞれのフラクション幅に規格化されたほぼ等しい割合を
、ならび に100μmと120μmとの間にある平均粒度を呈す
る粒度分布である b)粉末混合物から接点片・予備成形体をプレス成形す
る c)予備成形体を固体相において、すなわち銅の融点よ
り低い温度において理論上到達 可能の最大密度に対して93乃至97%の相対密度に到
達するまで焼結する d)銅中に析出するクロム粒子(直径)が1μmより小
さいままであるようにする接点 片の仕上熱処理。
(1) Powder metallurgy manufacturing method of copper-chromium solid solution electrical contact piece for vacuum-sealed switch, comprising the following steps: a) 20 to 70% by weight of copper powder and 30 to 8% by weight of chromium powder;
0% by weight; the chromium powder then has a particle size of 0 up to 210 μm, and also particle size fractions of 0 to 30 μm, 30 to 60 μm, 60 to 90 μm.
, 90 to 120 μm, 120 to 150 μm, 150
a particle size distribution exhibiting approximately equal proportions normalized to the respective fraction widths between 180 and 180 μm and between 180 and 210 μm, and an average particle size lying between 100 μm and 120 μm; b) contact piece/preform from the powder mixture; c) sintering the preform in the solid phase, i.e. until reaching a relative density of 93 to 97% of the theoretically attainable maximum density at a temperature below the melting point of the copper; d) in copper. Final heat treatment of the contact piece so that the precipitated chromium particles (diameter) remain smaller than 1 μm.
(2)用いられるクロム粉末は下記の粒度分布を示すこ
とを特徴とする特許請求の範囲第1項記載の方法: 0μm乃至30μm  10重量% 30μm乃至60μm  15 〃 60μm乃至90μm  15 〃 90μm乃至120μm 15 〃 120μm乃至150μm 15 〃 150μm乃至180μm 15 〃 180μm乃至210μm 15 〃 100重量%
(2) The method according to claim 1, wherein the chromium powder used has the following particle size distribution: 0 μm to 30 μm 10% by weight 30 μm to 60 μm 15 〃 60 μm to 90 μm 15 〃 90 μm to 120 μm 15 〃 120 μm to 150 μm 15 〃 150 μm to 180 μm 15 〃 180 μm to 210 μm 15 〃 100% by weight
(3)用いられる銅粉末の平均粒度は5μmより小さい
ことを特徴とする特許請求の範囲第1項又は第2項記載
の方法。
(3) A method according to claim 1 or 2, characterized in that the average particle size of the copper powder used is smaller than 5 μm.
(4)予備成形体は冷間プレス作業によって作られるこ
とを特徴とする特許請求の範囲第1項乃至第3項のうち
の一つに記載の方法。
(4) A method according to one of claims 1 to 3, characterized in that the preform is produced by a cold pressing operation.
(5)予備成形体が理論上到達可能の最大密度に対して
75乃至85%、望ましくは80%の相対密度に達する
ような圧をもって銅・クロム・粉末混合物をプレスする
ことを特徴とする特許請求の範囲第1項乃至第4項のう
ちの一つに記載の方法。
(5) A patent characterized in that the copper-chromium-powder mixture is pressed under such pressure that the preform reaches a relative density of 75 to 85%, preferably 80% of the theoretically attainable maximum density. A method according to one of claims 1 to 4.
(6)予備成形体を1030乃至1070℃の温度にお
いて焼結することを特徴とする特許請求の範囲第1項乃
至第5項のうちの一つに記載の方法。
(6) A method according to one of claims 1 to 5, characterized in that the preform is sintered at a temperature of 1030 to 1070°C.
(7)予備成形体を真空中で焼結することを特徴とする
特許請求の範囲第1項乃至第6項のうちの一つに記載の
方法。
(7) The method according to any one of claims 1 to 6, characterized in that the preform is sintered in vacuum.
(8)予備成形体を昇温位相中に一時的に還元性雰囲気
中に保つことを特徴とする特許請求の範囲第7項記載の
方法。
(8) The method according to claim 7, characterized in that the preform is temporarily kept in a reducing atmosphere during the heating phase.
(9)接点片は保護ガス中における溶解熱処理及び引続
いての急冷によって仕上げ処理されることを特徴とする
特許請求の範囲第1項乃至第8項のうちの一つに記載の
方法。
9. Process according to claim 1, characterized in that the contact piece is finished by solution heat treatment in a protective gas and subsequent rapid cooling.
(10)溶解熱処理は水素雰囲気中960乃至1030
℃の温度において行なわれることを特徴とする特許請求
の範囲第9項記載の方法。
(10) Melting heat treatment in hydrogen atmosphere from 960 to 1030
10. A method according to claim 9, characterized in that it is carried out at a temperature of .degree.
(11)粉末混合物はクロム35乃至50重量%、銅残
部を含んでいることを特徴とする特許請求の範囲第1項
乃至第10項のうちの一つに記載の方法。
11. Process according to claim 1, characterized in that the powder mixture contains 35 to 50% by weight of chromium, the balance copper.
JP60034292A 1984-02-23 1985-02-22 Manufacturing method of copper / chromium solid solution electrical contact piece for vacuum sealed switch Expired - Lifetime JPH0651892B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843406535 DE3406535A1 (en) 1984-02-23 1984-02-23 Powder metallurgical process for fabricating electrical contact pieces from a copper-chromium composite material for vacuum switches
DE3406535.0 1984-02-23

Publications (2)

Publication Number Publication Date
JPS616218A true JPS616218A (en) 1986-01-11
JPH0651892B2 JPH0651892B2 (en) 1994-07-06

Family

ID=6228596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034292A Expired - Lifetime JPH0651892B2 (en) 1984-02-23 1985-02-22 Manufacturing method of copper / chromium solid solution electrical contact piece for vacuum sealed switch

Country Status (2)

Country Link
JP (1) JPH0651892B2 (en)
DE (1) DE3406535A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386836A (en) * 1986-09-30 1988-04-18 Toshiba Corp Contact alloy for vacuum valve
JPS6386835A (en) * 1986-09-30 1988-04-18 Toshiba Corp Contact alloy for vacuum valve
CN104232961A (en) * 2014-09-10 2014-12-24 华南理工大学 High-strength high-hardness Cu-Cr composite material as well as preparation method and application thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3915287C2 (en) * 1989-05-10 1997-12-18 Sachsenwerk Ag Contact arrangement for a vacuum switch
DE58905069D1 (en) * 1989-05-31 1993-09-02 Siemens Ag METHOD FOR PRODUCING A CUCR CONTACT MATERIAL FOR VACUUM PROTECTORS AND RELATED CONTACT MATERIAL.
KR920702002A (en) * 1989-05-31 1992-08-12 크리스트, 퀼 Manufacturing method of CuCr-contact part for vacuum switch and its contact part
DE4002933A1 (en) * 1990-02-01 1991-08-08 Sachsenwerk Ag Vacuum switch chamber assembly
DE19650752C1 (en) * 1996-12-06 1998-03-05 Louis Renner Gmbh Sintered copper@-chromium@ vacuum contact material
DE10010723B4 (en) 2000-03-04 2005-04-07 Metalor Technologies International Sa Method for producing a contact material semifinished product for contact pieces for vacuum switching devices and contact material semi-finished products and contact pieces for vacuum switching devices
CN105364075B (en) * 2014-08-29 2018-10-02 优美科管理(上海)有限公司 A kind of manufacturing method of strip fine grain copper tungsten contact
CN105018815B (en) * 2015-07-31 2017-03-08 陕西斯瑞新材料股份有限公司 A kind of high-Cr, high withstand voltage copper-chromium contact material and preparation method thereof
CN105132726B (en) * 2015-07-31 2017-03-08 陕西斯瑞新材料股份有限公司 A kind of copper-chromium contact material suitable for contactor and preparation method thereof
CN112143934B (en) * 2020-09-18 2021-12-07 安徽楚江科技新材料股份有限公司 Method for reducing oxidation burning loss of copper-boron-copper-manganese alloy during coinage copper smelting
CN114951665B (en) * 2022-05-17 2024-04-16 浙江省冶金研究院有限公司 Preparation method of low-cost high-density high-conductivity copper-chromium contact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346179A1 (en) * 1973-09-13 1975-06-26 Siemens Ag COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2822956C2 (en) * 1977-05-27 1983-04-14 Mitsubishi Denki K.K., Tokyo Process for the production of switching contacts for a vacuum switch
US4190753A (en) * 1978-04-13 1980-02-26 Westinghouse Electric Corp. High-density high-conductivity electrical contact material for vacuum interrupters and method of manufacture
JPS598015B2 (en) * 1978-05-31 1984-02-22 三菱電機株式会社 Vacuum shield contact
JPS5619832A (en) * 1979-07-27 1981-02-24 Mitsubishi Electric Corp Vacuum breaker contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346179A1 (en) * 1973-09-13 1975-06-26 Siemens Ag COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386836A (en) * 1986-09-30 1988-04-18 Toshiba Corp Contact alloy for vacuum valve
JPS6386835A (en) * 1986-09-30 1988-04-18 Toshiba Corp Contact alloy for vacuum valve
CN104232961A (en) * 2014-09-10 2014-12-24 华南理工大学 High-strength high-hardness Cu-Cr composite material as well as preparation method and application thereof
CN104232961B (en) * 2014-09-10 2016-09-21 华南理工大学 A kind of high-strength height hard Cu-Cr composite and its preparation method and application

Also Published As

Publication number Publication date
DE3406535C2 (en) 1987-05-27
JPH0651892B2 (en) 1994-07-06
DE3406535A1 (en) 1985-09-05

Similar Documents

Publication Publication Date Title
JPS616218A (en) Powder metallurgical manufacture of electric contact piece of copper chromium solid solution for vacuum enclosed switch
KR920003464B1 (en) Method for making vacuum circuit breaker electrodes
JP5697604B2 (en) Manufacturing method of metal parts
CN103201059B (en) The powder metallurgically manufacturing method of Cu-Cr material
US5236523A (en) Silver- or silver-copper alloy-metal oxide composite material
EP2492032B1 (en) Method for manufacturing a copper-based composite material for electrical contacts
CN110295294A (en) A kind of preparation method mutually optimizing copper chromium contact by adding Ultra-fine Grained chromium
US4440572A (en) Metal modified dispersion strengthened copper
JPH04505986A (en) Manufacturing method of CuCr contact material for vacuum electromagnetic contactor and attached contact material
US4793969A (en) Process for producing tungsten heavy alloy sheet using high temperature processing techniques
KR950008375B1 (en) Process for forming contact material
JPH0561334B2 (en)
CN109500392B (en) Preparation method of silver zinc oxide contact material for improving sintering property of ingot blank
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP2008133516A (en) Compact of amorphous metal, manufacturing method and manufacturing apparatus therefor
JPH07179911A (en) Production of powder for mpp core and production of mpp core from this powder
RU2003436C1 (en) Method of blanks making from alloy on tungsten-base of system tungsten-copper
JP2006024476A (en) Manufacturing method of contact material for vacuum valve
JPS6353252B2 (en)
US4832907A (en) Process for producing tungsten heavy alloy sheet
JP3168635B2 (en) Manufacturing method of electrode material
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material
SU1321522A1 (en) Method of producing porous sintered iron-copper alloy
JPH04180534A (en) Metallic member having high thermal conductivity and low coefficient of thermal expansion and its production
JPS633934B2 (en)