JPS6161967B2 - - Google Patents

Info

Publication number
JPS6161967B2
JPS6161967B2 JP9335776A JP9335776A JPS6161967B2 JP S6161967 B2 JPS6161967 B2 JP S6161967B2 JP 9335776 A JP9335776 A JP 9335776A JP 9335776 A JP9335776 A JP 9335776A JP S6161967 B2 JPS6161967 B2 JP S6161967B2
Authority
JP
Japan
Prior art keywords
polyamide
film
nylon
stretching
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9335776A
Other languages
Japanese (ja)
Other versions
JPS5318667A (en
Inventor
Koichi Matsunami
Kaoru Furukawa
Toshihiko Oota
Tetsushi Murakami
Hiroshi Nagai
Kazuo Tamaoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14080017&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS6161967(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9335776A priority Critical patent/JPS5318667A/en
Publication of JPS5318667A publication Critical patent/JPS5318667A/en
Publication of JPS6161967B2 publication Critical patent/JPS6161967B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐水性、耐湿性が改良された脂肪族系
ポリアミドフイルムを逐次2軸延伸法で製造する
方法に関する。本発明はまた力学的強度の改良さ
れた脂肪族系ポリアミドフイルムを逐次2軸延伸
法で製造することを目的とする。 ナイロン6の延伸フイルムはよく知られてお
り、そのすぐれた透明性、力学的性質、耐寒性、
耐熱性、気体遮断性、耐薬品性などを生かして食
品包装分野を始めとする種々の用途において広く
使用されている。しかし延伸ナイロン6フイルム
の短所の一つは耐水性、耐湿性が不十分なことで
あ。例えば水蒸気透過度が比較的大きいことは包
装用途においては短所となることが多い。また例
えば水中での強度が空気中より低いことや高湿雰
囲気での酸素透過度が乾燥状態に比しはるかに高
いことにみられるように、吸水または吸湿による
物性の低下が大きい。或はロールに巻いたフイル
ムが吸湿または脱湿によつて寸法変化を生じ商品
価値を損なうこともよく知られている。さらにレ
トルト処理のような湿潤状態の高温の熱処理によ
つてフイルムの物性が低下したりすることも実用
上問題となつている。 上記の事情はナイロン66からなるフイルムにつ
いても同様であり、いずれもその有するすぐれた
性能を損なわずに耐水性、耐湿性を改良すること
が望まれている。本発明者らはこの点について鋭
意研究を重ねた結果、ナイロン6系ポリアミドま
たはナイロン66系ポリアミドにある特定の脂肪族
ポリアミドを混合した樹脂よりなるフイルムを逐
次2軸延伸法により得ることができ、そのフイル
ムは耐水性、耐湿性にすぐれていることを見出し
本発明に到達した。 本発明はε―カプロアミド単位を分子鎖中に少
なくとも80モル%以上含有するポリアミド(ナイ
ロン6系ポリアミドと略称することがある)又
は/及びヘキサメチレンアジポアミド単位を少な
くとも80モル%以上含有するポリアミド(ナイロ
ン66系ポリアミドと略称することがある)(A成
分ポリアミド50〜97重量%と吸水率が1.0%以下
の値を有する脂肪族系ポリアミド(B成分ポリア
ミド)50〜3重量%とから成る重合体混合物で形
成された未延伸フイルムを逐次2軸延伸法により
延伸温度30〜200℃、延伸倍率1.5〜8倍の範囲で
それぞれ選択することにより厚み1〜500μ、延
伸方向の破断強度5Kg/mm2以上の延伸ポリアミド
フイルムを製造する方法に関する。 本発明のA成分を構成するポリアミドはナイロ
ン6、ナイロン6を主体とする共重合体(ナイロ
ン6系ポリアミド)またはナイロン66、ナイロン
66を主体とする共重合体(ナイロン66系ポリアミ
ド)またはこれらの混合物である。 一方B成分を構成する吸水率が1.0%以下の脂
肪族系ポリアミドの例としてはナイロン11、ナイ
ロン12、ナイロン69、ナイロン610、ナイロン
612、及びこれらナイロンと他のナイロンとの共
重合体があげられる。B成分のポリアミドの吸水
率は1.0%以下であることが必要で、吸水率が1.0
%を超えると本発明方法で得られたフイルムの耐
水性、耐湿性が低下する。またこれらのポリアミ
ドは脂肪族からなるアミド単位を70〜100モル%
含むものであり結晶性であつても非晶性であつて
もよいが脂肪族アミド以外の成分の割合が多くな
ると脂肪族ポリアミド延伸フイルムの特長である
柔軟性、耐寒性、耐ピンホール性が低下するので
好ましくない。B成分ポリアミドの配合量は3重
量%以下では耐水性、耐湿性の改良が十分でな
く、一方50重量%を超えて配合してもより以上の
効果の増大は乏しくなる。A成分ポリアミド、B
成分ポリアミドの分子量は通常1.5〜6.0の範囲の
相対粘度を有するものがよい。また、本発明のA
成分ポリアミド、B成分ポリアミドは極めて相溶
性のよい組合せであつて一般に相溶性の良くない
組合せにおいてしばしばみられるような延伸操作
により本質的に失透したり破断したりすることは
なく、透明性の極めてすぐれた延伸フイルムを逐
次2軸延伸法で得ることができる。さらにB成分
ポリアミドとして特定のポリアミド例えばナイロ
ン69、ナイロン12、或はこれらの共重合体を使用
した場合はナイロン6、ナイロン66単独の場合に
比しフイルムの延伸性が改良され最高延伸比の上
昇、逐次二延伸が容易になりナイロン6又はナイ
ロン66単独の延伸フイルムに比し破断強度、衝撃
強度などの機械的強度のすぐれた延伸フイルムが
得られる。 さらに本発明の目的を損なわない限りA成分ポ
リアミドとB成分ポリアミドとの混合物に必要に
応じて滑剤、酸化防止剤、帯電防止剤、紫外線吸
収剤、顔料、染料などの添加剤或は他のポリマー
などを配合してもよい。 次に本発明のフイルム製造法について述べる。
A成分ポリアミドとB成分ポリアミドとを混合す
る方法は特に制限はないが通常はA成分ポリアミ
ド、B成分ポリアミドの粉末又はチツプを固態状
で混合した後溶融押出機などを用いて加熱溶融す
ることによつて均一に混合した組成物を得ること
ができる。本発明方法は上記混合ポリアミド樹脂
から先ず未延伸フイルムを作成しこれをフイルム
面に沿つて一方向に延伸する。未延伸フイルムは
通常A成分ポリアミドとB成分ポリアミドとから
なる重合体混合物を押出機を用いて加熱溶融しT
ダイ又は円形ダイを通して押出し冷却したロー
ル、液体、又は気体と接触させ固化して得られ
る。この場合の冷却温度は0℃〜80℃の範囲が好
ましい。かくして得られた未延伸フイルムをイン
フレーシヨン法で或いはロール延伸機で或はクリ
ツプで把持してテンター内で一方向に延伸して一
軸延伸フイルムが得られる。かかる一軸延伸フイ
ルムをインフレーシヨン法、テンター法あるいは
ロール延伸法で先の延伸方向と直角方向に延伸す
る。延伸温度はいずれも通常30℃〜200℃、好ま
しくは40℃〜150℃が用いられる。延伸倍率は通
常1.5〜8倍、好ましくは2〜6倍である。かく
して得られた延伸フイルムは必要に応じて延伸温
度以上でA成分ポリアミド又はB成分ポリアミド
の融点或は軟化点の低い方の温度を超えない温度
に加熱し熱処理してもよい。熱処理時フイルムは
延伸後の寸法に固定するか弛緩した状態に保持さ
れる。熱処理によつて寸法安定性などの物性を改
良することができる。このような方法によりナイ
ロン6あるいはナイロン66において困難であつた
逐次2軸を容易になすことができるようになつた
ことが本発明の特徴である。 かくして得られた延伸フイルムはすぐれた水分
遮断性、高湿度雰囲気下の気体遮断性、湿潤時の
機械的性質、湿度変化に対する寸法安定性を有す
る。本発明方法で得られたフイルムの厚みの範囲
は1〜500μである。また本発明方法で得られた
フイルムは通常延伸された方向において少なくと
も5Kg/mm2以上の破断強度を有するが、特に強靭
なものは1軸延伸フイルムで40Kg/mm2という高い
値を示す。また柔軟性にすぐれている。 このように本発明方法においては従来困難とさ
れて来たナイロン6あるいはナイロン66の逐次2
軸延伸が容易にできるようになつたという効果の
他本発明方法で得られたフイルムはすぐれた透明
性機械的性質、耐熱性、耐寒性、耐薬品性、気体
遮断性、水分遮断性、柔軟性と改良された耐水
性、耐湿性とを併せ有する今まで知られていなか
つたフイルムであり、食品、機械部品、油脂類な
どの包装用フイルム及びテープ、電線やパイプの
被覆、金銀糸などの用途に用いられる工業用フイ
ルムとして極めて有用なものである。 以下実施例をあげて本発明を詳細に説明するが
実施例中の測定項目は下記の方法で測定した。 (1) 吸水率(%) ASTM D―570に準じて測定し、20℃、
24Hrの値で示した。 (2) 相対粘度(ηrel) 溶媒として96%濃硫酸を用い、ポリマー濃度
1g/100ml硫酸溶液の温度25℃でのオストワ
ルド粘度計による落下時間を測定し、溶媒のみ
の場合の落下時間との比で表わした。 (3) 透湿度(g/m2/25μ/24Hr) JIS Z―0208に準じて測定した。 (4) 破断強度(Kg/mm2)、破断伸度(%) ASTM D―882に準じて測定した。 実施例 1 A成分ポリアミドBを表1に示すような割合で
混合しT―ダイを有する口径60mmの押出機を用い
て270℃の温度で溶融押出しし、30℃に冷却した
ロールで冷却して、厚さ約120μの未延伸フイル
ムを得た。続いてこのフイルムを直径110mmの異
なつた周速で回転するロール群よりなる縦延伸機
に導き60℃で3.0倍及び5.0倍一軸延伸した。
The present invention relates to a method for producing an aliphatic polyamide film with improved water resistance and moisture resistance by a sequential biaxial stretching method. Another object of the present invention is to produce an aliphatic polyamide film with improved mechanical strength by a sequential biaxial stretching method. Nylon 6 stretched film is well known for its excellent transparency, mechanical properties, cold resistance,
Due to its heat resistance, gas barrier properties, chemical resistance, etc., it is widely used in various applications including the food packaging field. However, one of the disadvantages of stretched nylon 6 film is that it has insufficient water resistance and moisture resistance. For example, relatively high water vapor permeability is often a disadvantage in packaging applications. In addition, physical properties are significantly reduced by water absorption or moisture absorption, as seen in the fact that the strength in water is lower than in air, and the oxygen permeability in a high humidity atmosphere is much higher than in a dry state. It is also well known that a film wound into a roll undergoes dimensional changes due to moisture absorption or dehumidification, impairing its commercial value. Further, it is a practical problem that the physical properties of the film are deteriorated by heat treatment at a high temperature in a wet state such as retort treatment. The above situation is the same for films made of nylon 66, and it is desired to improve the water resistance and moisture resistance of both films without impairing their excellent performance. As a result of extensive research by the present inventors on this point, we were able to obtain a film made of a resin obtained by mixing a specific aliphatic polyamide with nylon 6-based polyamide or nylon 66-based polyamide using a sequential biaxial stretching method. The inventors discovered that this film has excellent water resistance and moisture resistance, and arrived at the present invention. The present invention relates to a polyamide containing at least 80 mol% or more of ε-caproamide units in the molecular chain (sometimes abbreviated as nylon 6 polyamide) and/or a polyamide containing at least 80 mol% or more of hexamethylene adipamide units. (Sometimes abbreviated as nylon 66 polyamide) The unstretched film formed from the combined mixture is sequentially biaxially stretched at a stretching temperature of 30 to 200°C and a stretching ratio of 1.5 to 8 times to obtain a thickness of 1 to 500μ and a breaking strength in the stretching direction of 5Kg/mm. The polyamide constituting component A of the present invention is a copolymer mainly composed of nylon 6, nylon 6-based polyamide (nylon 6-based polyamide), nylon 66, or nylon 6.
66-based copolymer (nylon 66-based polyamide) or a mixture thereof. On the other hand, examples of aliphatic polyamides with a water absorption rate of 1.0% or less that constitute component B include nylon 11, nylon 12, nylon 69, nylon 610, and nylon.
612, and copolymers of these nylons and other nylons. The water absorption rate of the polyamide of component B must be 1.0% or less, and the water absorption rate is 1.0%.
%, the water resistance and moisture resistance of the film obtained by the method of the present invention will decrease. In addition, these polyamides contain 70 to 100 mol% of amide units consisting of aliphatic
It may be crystalline or amorphous, but if the proportion of components other than aliphatic amide increases, the flexibility, cold resistance, and pinhole resistance that are the characteristics of aliphatic polyamide stretched film will deteriorate. This is not preferable because it lowers the temperature. If the amount of component B polyamide is less than 3% by weight, the improvement in water resistance and moisture resistance will not be sufficient, while if it is added in an amount exceeding 50% by weight, the effect will not be further increased. A component polyamide, B
The molecular weight of the component polyamide is usually one having a relative viscosity in the range of 1.5 to 6.0. Moreover, A of the present invention
The component polyamide and the B component polyamide are a highly compatible combination and do not essentially devitrify or break due to stretching operations, which is often the case with combinations with poor compatibility, and the transparency is maintained. An extremely good stretched film can be obtained by the sequential biaxial stretching method. Furthermore, when a specific polyamide such as nylon 69, nylon 12, or a copolymer thereof is used as the B component polyamide, the stretchability of the film is improved compared to when nylon 6 or nylon 66 is used alone, and the maximum stretching ratio increases. , sequential two-stretching becomes easy, and a stretched film with superior mechanical strength such as breaking strength and impact strength can be obtained compared to a stretched film made of nylon 6 or nylon 66 alone. Furthermore, additives such as lubricants, antioxidants, antistatic agents, ultraviolet absorbers, pigments, dyes, etc., or other polymers may be added to the mixture of the A component polyamide and B component polyamide as necessary, as long as they do not impair the purpose of the present invention. etc. may also be blended. Next, the film manufacturing method of the present invention will be described.
There are no particular restrictions on the method of mixing the A-component polyamide and the B-component polyamide, but usually the powders or chips of the A-component polyamide and the B-component polyamide are mixed in a solid state and then heated and melted using a melt extruder or the like. Thus, a uniformly mixed composition can be obtained. In the method of the present invention, an unstretched film is first prepared from the above mixed polyamide resin and then stretched in one direction along the film surface. Unstretched films are usually made by heating and melting a polymer mixture consisting of polyamide A and polyamide B using an extruder.
It is obtained by extrusion through a die or a circular die and solidification upon contact with a cooled roll, liquid, or gas. The cooling temperature in this case is preferably in the range of 0°C to 80°C. The unstretched film thus obtained is stretched in one direction by an inflation method, by a roll stretching machine, or held with clips in a tenter to obtain a uniaxially stretched film. The uniaxially stretched film is stretched in a direction perpendicular to the previous stretching direction by an inflation method, a tenter method, or a roll stretching method. The stretching temperature used is usually 30°C to 200°C, preferably 40°C to 150°C. The stretching ratio is usually 1.5 to 8 times, preferably 2 to 6 times. The stretched film thus obtained may be heat-treated, if necessary, by heating at a temperature higher than the stretching temperature but not higher than the lower of the melting point or softening point of the polyamide component A or the polyamide component B. During heat treatment, the film is either fixed in its stretched dimensions or held in a relaxed state. Physical properties such as dimensional stability can be improved by heat treatment. A feature of the present invention is that by using such a method, it has become possible to easily perform sequential biaxial construction, which was difficult to achieve with nylon 6 or nylon 66. The stretched film thus obtained has excellent moisture barrier properties, gas barrier properties in a high humidity atmosphere, mechanical properties when wet, and dimensional stability against changes in humidity. The thickness of the film obtained by the method of the present invention ranges from 1 to 500 microns. Further, the film obtained by the method of the present invention usually has a breaking strength of at least 5 Kg/mm 2 in the stretching direction, but a particularly strong film exhibits a breaking strength as high as 40 Kg/mm 2 in a uniaxially stretched film. It also has excellent flexibility. In this way, in the method of the present invention, the sequential 2
In addition to the ability to easily carry out axial stretching, the film obtained by the method of the present invention has excellent transparency, mechanical properties, heat resistance, cold resistance, chemical resistance, gas barrier properties, moisture barrier properties, and flexibility. This is a previously unknown film that has both excellent water resistance and moisture resistance. It is extremely useful as an industrial film for various purposes. The present invention will be described in detail below with reference to Examples, and the measurement items in the Examples were measured by the following methods. (1) Water absorption rate (%) Measured according to ASTM D-570, 20℃,
Shown as a value for 24 hours. (2) Relative viscosity (ηrel) Using 96% concentrated sulfuric acid as a solvent, the falling time of a sulfuric acid solution with a polymer concentration of 1 g/100 ml at a temperature of 25°C was measured using an Ostwald viscometer, and the ratio with the falling time in the case of only the solvent was measured. It was expressed as (3) Moisture permeability (g/m 2 /25μ/24Hr) Measured according to JIS Z-0208. (4) Breaking strength (Kg/mm 2 ), breaking elongation (%) Measured according to ASTM D-882. Example 1 Component A polyamide B was mixed in the proportions shown in Table 1, melt-extruded at a temperature of 270°C using an extruder with a diameter of 60 mm equipped with a T-die, and cooled with a roll cooled to 30°C. An unstretched film with a thickness of about 120μ was obtained. Subsequently, this film was introduced into a longitudinal stretching machine consisting of a group of rolls having a diameter of 110 mm and rotating at different circumferential speeds, and was uniaxially stretched 3.0 times and 5.0 times at 60°C.

【表】 次いでこれらの縦延伸フイルムを95℃に調整さ
れたテンター内に導き、横方向に3.5倍延伸し、
テンターの最終ゾーンで200℃で15秒間熱固定し
た。 一方比較のためにナイロン―6、ナイロン―66
を単独で同じ方法で溶融押出しした後、延伸しよ
うとしたが、テンター内でフイルムの破断が生じ
横延伸が不能であつた。そこで溶融押出後の未延
伸フイルムを95℃に加熱されたテンター内で互い
に直角をなす2方向に夫々3.0倍づつ同時2軸延
伸し200℃で15秒間定長下に熱固定した。これ以
上延伸倍率をあげるとフイルムの破断が生じた。 これらの二軸延伸フイルムについて透湿度及び
機械的性質を測定したところ、本発明方法で得ら
れたフイルムはナイロン6及びナイロン66単独の
場合に比べて低い透湿度を示し、すぐれた防湿性
を示した。又ナイロン6やナイロン66では今まで
得られなかつた高い破断強度を示し、機械的性質
のすぐれたフイルムが得られた。 これらのデータを次表に示す。
[Table] Next, these longitudinally stretched films were introduced into a tenter adjusted to 95°C, and stretched 3.5 times in the transverse direction.
Heat set at 200°C for 15 seconds in the final zone of the tenter. On the other hand, for comparison, nylon-6 and nylon-66
An attempt was made to stretch the film after melt extruding it alone in the same manner, but the film broke in the tenter and transverse stretching was impossible. Therefore, the unstretched film after melt extrusion was simultaneously biaxially stretched by a factor of 3.0 in two directions perpendicular to each other in a tenter heated to 95°C, and heat-set at a constant length at 200°C for 15 seconds. When the stretching ratio was increased beyond this point, the film broke. When the moisture permeability and mechanical properties of these biaxially stretched films were measured, the films obtained by the method of the present invention showed lower moisture permeability than nylon 6 and nylon 66 alone, and exhibited excellent moisture resistance. Ta. Furthermore, a film with excellent mechanical properties was obtained, exhibiting high breaking strength that had not been achieved with nylon 6 or nylon 66. These data are shown in the table below.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ε―カプロアミド単位を分子鎖中に80モル%
以上含有するポリアミド又は/及びヘキサメチレ
ンアジポアミド単位を80モル%以上含有するポリ
アミド(A成分ポリアミド)50〜97重量%と吸水
率が1.0%以下の値を有する脂肪族系ポリアミド
(B成分ポリアミド)50〜3重量%とから成る重
合体混合物で形成された未延伸フイルムを逐次2
軸延伸法により延伸温度30〜200℃、延伸倍率1.5
〜8倍の範囲でそれぞれ選択することにより延伸
し、厚み1〜500μ、各延伸方向の破断強度5
Kg/mm2以上の延伸フイルムを得ることを特徴とす
る延伸ポリアミドフイルムの製造法。
1 80 mol% of ε-caproamide units in the molecular chain
or/and polyamide containing 80 mol% or more of hexamethylene adipamide units (A component polyamide) of 50 to 97% by weight and an aliphatic polyamide having a water absorption of 1.0% or less (B component polyamide). ) 50 to 3% by weight.
By axial stretching method, stretching temperature is 30-200℃, stretching ratio is 1.5
Stretched by selecting each in the range of ~8 times, thickness 1 ~ 500μ, breaking strength in each stretching direction 5
A method for producing a stretched polyamide film characterized by obtaining a stretched film of Kg/mm 2 or more.
JP9335776A 1976-08-04 1976-08-04 Stretching polyamid film Granted JPS5318667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335776A JPS5318667A (en) 1976-08-04 1976-08-04 Stretching polyamid film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335776A JPS5318667A (en) 1976-08-04 1976-08-04 Stretching polyamid film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9729685A Division JPS6169432A (en) 1985-05-07 1985-05-07 Stretched polyamide film

Publications (2)

Publication Number Publication Date
JPS5318667A JPS5318667A (en) 1978-02-21
JPS6161967B2 true JPS6161967B2 (en) 1986-12-27

Family

ID=14080017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335776A Granted JPS5318667A (en) 1976-08-04 1976-08-04 Stretching polyamid film

Country Status (1)

Country Link
JP (1) JPS5318667A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780448A (en) * 1980-11-10 1982-05-20 Asahi Chem Ind Co Ltd Glass fiber-reinforced polyamide resin composition
JPS5780449A (en) * 1980-11-10 1982-05-20 Asahi Chem Ind Co Ltd Polyamide resin composition
JPS57168940A (en) * 1981-04-13 1982-10-18 Toray Ind Inc Underhood component for automobile use
JPS57212252A (en) * 1981-06-25 1982-12-27 Ube Ind Ltd Polyamide composition resistant to calcium chloride
JPS5874748A (en) * 1981-10-29 1983-05-06 Toray Ind Inc Polyamide resin composition
JPS58146714A (en) * 1982-02-19 1983-09-01 Musashi Seimitsu Kogyo Kk Manufacture of ball joint
JPS63289064A (en) * 1988-04-13 1988-11-25 Toray Ind Inc Automobile oil pan
JPS63289063A (en) * 1988-04-13 1988-11-25 Toray Ind Inc Automobile cylinder head cover

Also Published As

Publication number Publication date
JPS5318667A (en) 1978-02-21

Similar Documents

Publication Publication Date Title
CN103402737B (en) A kind of drawing polyamide film
US4098860A (en) Production of biaxially drawn film of polyamide blend
JP2000302952A (en) Polyester resin composition
US5206309A (en) Heat stable film composition comprising polyepsiloncaprolactam
JPS6024814B2 (en) resin composition
JPS6161967B2 (en)
JPS6024813B2 (en) resin composition
JP2017066405A (en) Polyester film and method for producing the same
JPH07276591A (en) Polyamide type laminated biaxially stretched film
JPH04270655A (en) Laminaed biaxially stretched film and its manufacture
JP5467296B2 (en) Polyamide-based laminated film with excellent water vapor and alcohol permeability
JPS6241261A (en) Heat-shrinkable polyamide film
JPS6119653B2 (en)
JPS5852821B2 (en) Nylon stretched film and its manufacturing method
JPH11246686A (en) Stretched polyamide film
JP4209047B2 (en) Polyamide film with improved slip and method for producing the same
JPH04198329A (en) Production of mixed polyamide film
JP3180392B2 (en) Polyamide resin composition and film thereof
JPS6169432A (en) Stretched polyamide film
JPH0222032A (en) Biaxially oriented polyamide film
JPS6343217B2 (en)
JPH1016047A (en) Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH0551525A (en) Polyamide resin composition and its stretched film
KR19990042595A (en) Polyamide Resin Composition for Film
JPS6119652B2 (en)