JPS6159390B2 - - Google Patents

Info

Publication number
JPS6159390B2
JPS6159390B2 JP13706682A JP13706682A JPS6159390B2 JP S6159390 B2 JPS6159390 B2 JP S6159390B2 JP 13706682 A JP13706682 A JP 13706682A JP 13706682 A JP13706682 A JP 13706682A JP S6159390 B2 JPS6159390 B2 JP S6159390B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
shape memory
superelastic
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13706682A
Other languages
Japanese (ja)
Other versions
JPS5928548A (en
Inventor
Kazuhiro Ootsuka
Shuichi Myazaki
Yutaka Omi
Juichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13706682A priority Critical patent/JPS5928548A/en
Publication of JPS5928548A publication Critical patent/JPS5928548A/en
Publication of JPS6159390B2 publication Critical patent/JPS6159390B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は超弾性と非可逆形状記憶性(以下形状
記憶性と略記)の優れたNi―Ti基合金材とその
製造方法に関するものである。 〔従来技術とその問題点〕 NiとTiを原子比で1:1又はその近傍でNiと
Tiを含むNi―Ti合金及びこれらにV、Cr、Mn、
Fe、Co、Cu、Zr、Nb、Mo、Ta又は貴金族を添
加したNi―Ti基合金は室温付近の特定の温度で
マルテンサイト変態を起し、これに伴つて超弾性
と形状記憶性というユニークな現象を示すことが
知られている。この超弾性を高性能バネ材とし、
形状記憶性を温度センサー、アクチユエーター又
はこれ等を兼ねる素子として実用化が進められて
いるが、そのためには充分な性能、例えば残留歪
が少なく、寿命が長い材料が要求されている。 〓〓〓〓〓
Ni―Ti基合金材の超弾性や形状記憶性の向上
には、転位すべりをできるだけ起さずに応力誘起
マルテンサイト変態を進行させることが有効であ
ることが金属学的に予測できる。これを達成する
ためには、Ni―Ti基合金に冷間加工を加えて加
工硬化させ、これに再結晶を起さない温度及び時
間、例えば400℃の温度で30分間の形状記憶処理
を施す方法が提案されている。このような方法で
得られたNi―Ti基合金材は、冷間加工によつて
形成された集合組織が形状記憶処理によつて消失
しないため、転位すべりの発生が困難であり、か
つ外部応力による応力誘起変態はそれほど影響を
受けずに進行する。その結果、変態温度以上では
良好な超弾性を、変態温度をまたいで良好な形状
記憶性を得ることができる。 しかしながらこのような方法は冷間加工を充分
に施すことが前提条件であるため、細線や薄板の
ように加工が内部にまで容易に施される場合には
有効であるが、太線や厚板或いはバルク形状のよ
うに加工が内部にまで均一に施されないものや、
Ni含有量が51.0at%を越えて硬くなり、組成的に
冷間加工が困難なものでは充分な冷間加工が不可
能なため実施できない欠点がある。 〔問題点の解決手段とその作用〕 本発明はこれに鑑み種々研究の結果、合金の母
相中に微細なNi3Ti相を分散析出させ、かつ内部
応力が均一であることにより、冷間加工を必要と
せず、良好な超弾性と形状記憶性が得られること
を知見し、超弾性、形状記憶性Ni―Ti基合金材
とその製造方法を開発したものである。 即ち、本願第1発明のNi―Ti基合金材は、
Ni50.0〜52.0at%、残部Tiからなる合金の母相中
に微細なNi3Ti相を分散析出させ、かつ内部応力
が均一であることを特徴とするものである。 又本願第2発明のNi―Ti基合金材は、Ni50.0〜
52.0at%、残部Tiからなる合金のNi又はTi含有量
の1.0at%以下をV、Cr、Mn、Fe、Co、Cu、
Zr、Nb、Mo、Ta及び貴金族から選ばれる元素の
1種又は2種以上で置換した合金の母相中に微細
なNi3Ti相を分散析出させ、かつ内部応力が均一
であることを特徴とするものである。 また本願第1発明及び第2発明に係るNi―Ti
基合金材の製造方法は、それぞれ前記組成範囲の
合金を700〜1100℃の温度で溶体化処理した後、
300〜600℃の温度で時効処理することを特徴とす
るものである。 しかして本願第1発明及び第2発明のNi―Ti
基合金材において、合金の組成範囲を上記の如く
限定したのは次の理由によるものである。 第1発明のNi含有量を50.0〜52.0at%と限定し
たのは、Ni含有量が50.0at%未満では充分な超弾
性と形状記憶性が得られず、52.0at%を超える
と、加工性が著しく低下し、熱間鍛造においても
割れを生ずるため、実用価値がないとの判断によ
るものである。また第2発明の合金について、第
1発明合金のNi又はTi含有量の1.0at%以下を
V、Cr、Mn、Fe、Co、Cu、Zr、Nb、Mo、Ta
及び貴金族の何れか1種又は2種以上で置換する
のは、V、Cr、Mn、Fe、Co及びCuによる置換
は、合金の超弾性及び形状記憶性をあまり変化さ
せることなく、変態温度を下げ、変態温度を低温
側にコントロールすることができる効果を有し、
Zr、Nb、Mo、Ta及び貴金族による置換は合金の
超弾性及び形状記憶性をあまり変化させることな
く耐食性を向上する効果を有するが、それ等元素
の置換量の合計が、Ni又はTi含有量の1at%を越
えると、加工性を損なうばかりか、超弾性及び形
状記憶性をも劣化するためである。 又第1発明及び第2発明合金において、合金の
母相中に微細なNi3Ti相を分散析出させて、かつ
内部応力が均一であることとするのは、超弾性及
び形状記憶性を劣化させることなく、転位すべり
の発生を困難にして、残留歪を少なくするためで
ある。 また本願第1発明及び第2発明に係る、Ni―
Ti基合金材の製造方法において、上記Ni―Ti基
合金を700〜1100℃の温度で溶体化処理した後、
300〜600℃の温度で時効処理するのは、合金の母
相中に微細なNi3Ti相を分散析出させて、かつ内
部応力が均一であることとするためである。しか
して溶体化処理温度を700〜1100℃と限定したの
は処理温度が700℃未満では溶体化が充分に行わ
れず、1100℃を越えると一部に溶融が生じたり、
又は変形を起すようになるためである。 溶体化処理は不活性ガス、例えばアルゴン雰囲
気中で700〜1100℃の温度に加熱する。この温度
範囲内であれば同様の結果が得られ、加熱時間も
0.5〜10時間の範囲内であれば同様の結果が得ら
〓〓〓〓〓
れる。 焼入れも空気焼入れ程度で所定の特性を得るこ
とができるが、再現性を確保する点から水焼入れ
することが望ましい。 また溶体化処理後の時効処理温度を300〜600℃
と限定したのは、300℃未満の温度では時効析出
が不充分で、良好な特性が得られず、600℃を越
える温度ではNi3Ti単相の領域に入るため、良好
な特性が得られないためである。尚、処理時間は
処理材の大きさにもよるが400℃の温度で1〜10
時間の範囲内であれば同様の結果が得られ、実用
的には350〜450℃の温度で1〜2時間で良好な結
果が得られる。 〔実施例〕 以下、本発明を実施例について詳細に説明す
る。 第1表に示す組成の合金を1000℃の温度に加熱
して水焼入れした後、500℃の温度で1時間時効
処理し、これについてマルテンサイト逆変態点
(Af点)、超弾性及び形状記憶性を測定した。そ
の結果を第1表に併記した。尚、参考のため溶体
化処理後の超弾性及び形状記憶性を測定し、その
結果を第1表に併記した。 各合金は常法により黒鉛ルツボを用いて真空高
周波溶解炉により溶解し、水冷鋳型に鋳造した鋳
塊に熱間鍛造と熱間圧延を加えた後中間焼鈍と冷
間伸線加工を繰返して直径1.0mmの線に仕上げ
た。ただし、本発明合金No.5については、伸線加
工が困難であつたため、圧延加工により厚さ1mm
の板に仕上げ、これより砥石切断によつて幅3
mm、長さ150mmに切断して板状試料とした。これ
等線材及び板材について表面のスケールを除去し
た後、アルゴン雰囲気中、1000℃の温度で1時間
溶体化処理し、氷水中に焼入れ、これを石英管内
に装入して500℃の温度で1時間時効処理した。 形状記憶性は線材又は板材を直径10mmの鉄製棒
に変態温度より20℃以上低い温度で巻き付け、そ
のままの状態で棒から外し、温水中で加熱して変
態温度以上になつた時の直線形状への回復度を角
度により測定し、該角度が175゜以上のものを◎
印で、135゜以上、175゜未満のものを〇印、135
゜未満のものを△印で示した。尚、変態温度が室
温以下のものについてはドライアイスとアルコー
ルの混合液中で巻付けを行つた。 また超弾性は線材又は板材を直径10mmの鉄製棒
に変態温度より高い温度で巻き付けた後、巻き付
け力を除去し、その際のスプリングバツクで回復
した後の角度を測定し、形状記憶性と同様にして
示した。
[Technical Field] The present invention relates to a Ni--Ti base alloy material with excellent superelasticity and irreversible shape memory properties (hereinafter abbreviated as shape memory properties), and a method for producing the same. [Prior art and its problems] Ni and Ti are mixed in an atomic ratio of 1:1 or close to that.
Ni-Ti alloy containing Ti and V, Cr, Mn,
Ni-Ti base alloys containing Fe, Co, Cu, Zr, Nb, Mo, Ta, or noble metals undergo martensitic transformation at a specific temperature around room temperature, resulting in superelasticity and shape memory properties. It is known to exhibit a unique phenomenon. This superelasticity is used as a high-performance spring material,
The practical use of shape memory as a temperature sensor, actuator, or an element that also serves as both is progressing, but materials with sufficient performance, such as low residual strain and long life, are required for this purpose. 〓〓〓〓〓
Metallurgically, it can be predicted that promoting stress-induced martensitic transformation while minimizing dislocation slippage is effective in improving the superelasticity and shape memory of Ni-Ti-based alloy materials. To achieve this, the Ni-Ti base alloy is cold-worked to work harden it, and then subjected to shape memory treatment at a temperature and time that does not cause recrystallization, for example at 400°C for 30 minutes. A method is proposed. In the Ni-Ti base alloy material obtained by this method, the texture formed by cold working does not disappear by shape memory treatment, so it is difficult for dislocation slip to occur and it is resistant to external stress. The stress-induced transformation proceeds without much influence. As a result, good superelasticity can be obtained above the transformation temperature, and good shape memory properties can be obtained beyond the transformation temperature. However, since such a method requires sufficient cold working, it is effective for thin wires and thin plates where processing can be easily applied to the inside, but it is effective for thick wires, thick plates, etc. Items that are not uniformly processed inside, such as bulk shapes,
If the Ni content exceeds 51.0 at%, it becomes hard and difficult to cold work due to its composition, there is a drawback that sufficient cold working is impossible and cannot be performed. [Means for solving the problems and their effects] In view of this, the present invention has been developed as a result of various studies, and has been developed by dispersing and precipitating fine Ni 3 Ti phases in the matrix of the alloy and by making the internal stress uniform. We discovered that good superelasticity and shape memory can be obtained without the need for processing, and developed a superelastic and shape memory Ni-Ti base alloy material and its manufacturing method. That is, the Ni-Ti base alloy material of the first invention of the present application is
It is characterized by having a fine Ni 3 Ti phase dispersed and precipitated in the matrix of an alloy consisting of 50.0 to 52.0 at% Ni and the balance Ti, and having uniform internal stress. Moreover, the Ni-Ti base alloy material of the second invention of the present application has Ni50.0~
V, Cr, Mn, Fe, Co, Cu, Cr, Mn, Fe, Co, Cu,
Fine Ni 3 Ti phase is dispersed and precipitated in the matrix of the alloy substituted with one or more elements selected from Zr, Nb, Mo, Ta, and noble metals, and the internal stress is uniform. It is characterized by: In addition, the Ni-Ti according to the first invention and the second invention of the present application
The method for producing the base alloy materials includes solution treatment of alloys having the above composition ranges at a temperature of 700 to 1100°C, and then
It is characterized by aging treatment at a temperature of 300 to 600°C. However, the Ni-Ti of the first invention and the second invention of the present application
The reason why the composition range of the alloy in the base alloy material is limited as described above is as follows. The reason why the Ni content in the first invention was limited to 50.0 to 52.0 at% is that if the Ni content is less than 50.0 at%, sufficient superelasticity and shape memory properties cannot be obtained, and if it exceeds 52.0 at%, the workability becomes difficult. This was determined to be of no practical value because it significantly lowers the temperature and causes cracks even during hot forging. Regarding the alloy of the second invention, 1.0 at% or less of the Ni or Ti content of the first invention alloy is replaced by V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo, Ta.
Replacement with one or more of the noble metals is V, Cr, Mn, Fe, Co, and Cu, without significantly changing the superelasticity and shape memory properties of the alloy. It has the effect of lowering the temperature and controlling the transformation temperature to the low temperature side.
Substitution with Zr, Nb, Mo, Ta, and noble metals has the effect of improving corrosion resistance without significantly changing the superelasticity and shape memory of the alloy. This is because if the content exceeds 1 at%, not only processability is impaired, but also superelasticity and shape memory properties are deteriorated. In addition, in the first and second invention alloys, the fine Ni 3 Ti phase is dispersed and precipitated in the matrix of the alloy and the internal stress is uniform, which deteriorates superelasticity and shape memory. This is to make it difficult for dislocation slip to occur and to reduce residual strain. In addition, Ni-
In the method for producing a Ti-based alloy material, after solution-treating the Ni-Ti-based alloy at a temperature of 700 to 1100°C,
The reason why the aging treatment is carried out at a temperature of 300 to 600°C is to disperse and precipitate a fine Ni 3 Ti phase in the matrix of the alloy and to make the internal stress uniform. However, the reason why the solution treatment temperature was limited to 700 to 1100℃ is that if the treatment temperature is less than 700℃, solution treatment will not be performed sufficiently, and if it exceeds 1100℃, some parts will melt.
Or, it may cause deformation. Solution treatment involves heating to a temperature of 700 to 1100°C in an inert gas atmosphere, such as argon. Similar results can be obtained within this temperature range, and the heating time can also be reduced.
Similar results can be obtained within the range of 0.5 to 10 hours〓〓〓〓〓
It can be done. Predetermined properties can be obtained by air quenching, but water quenching is preferable in order to ensure reproducibility. In addition, the aging treatment temperature after solution treatment is 300 to 600℃.
The reason for this limitation is that at temperatures below 300°C, aging precipitation is insufficient and good properties cannot be obtained, and at temperatures above 600°C, the Ni 3 Ti single phase enters the region, making it difficult to obtain good properties. This is because there is no The processing time depends on the size of the treated material, but the processing time is 1 to 10 minutes at a temperature of 400℃.
Similar results can be obtained within the range of time, and practically good results can be obtained at a temperature of 350 to 450°C for 1 to 2 hours. [Example] Hereinafter, the present invention will be described in detail with reference to Examples. The alloy having the composition shown in Table 1 was heated to a temperature of 1000℃ and water quenched, and then aged at a temperature of 500℃ for 1 hour. The sex was measured. The results are also listed in Table 1. For reference, the superelasticity and shape memory properties after solution treatment were measured, and the results are also listed in Table 1. Each alloy is melted in a vacuum high-frequency melting furnace using a graphite crucible using a conventional method, and the ingot is cast into a water-cooled mold and subjected to hot forging and hot rolling, followed by repeated intermediate annealing and cold wire drawing. Finished with a 1.0mm line. However, since it was difficult to wire-draw the invention alloy No. 5, it was rolled to a thickness of 1 mm.
Finished to a board with a width of 3 by cutting with a whetstone.
mm, and the length was cut to 150 mm to obtain a plate-shaped sample. After removing scale on the surface of these wire rods and plate materials, they were solution-treated at a temperature of 1000℃ for 1 hour in an argon atmosphere, quenched in ice water, placed in a quartz tube, and heated at a temperature of 500℃ for 1 hour. Time-aged. Shape memory is defined by winding a wire or plate material around a 10mm diameter iron rod at a temperature 20℃ or more below the transformation temperature, removing it from the rod in that state, heating it in hot water, and forming a straight line when the temperature reaches the transformation temperature or higher. The degree of recovery is measured by angle, and if the angle is 175° or more, ◎
If the angle is 135° or more and less than 175°, mark ○, 135
Those less than ° are marked with △. In addition, for those whose transformation temperature was below room temperature, winding was performed in a mixed solution of dry ice and alcohol. In addition, superelasticity is measured by winding a wire or plate material around a 10 mm diameter iron rod at a temperature higher than the transformation temperature, removing the winding force, and measuring the angle after recovery due to spring back. It was shown as follows.

【表】 〓〓〓〓〓
[Table] 〓〓〓〓〓

〔発明の効果〕〔Effect of the invention〕

このように本発明によればNi―Ti基合金を溶
体化処理後に時効処理することにより、冷間加工
を必要とせずに、高性能の超弾性、非可逆形状記
憶性が得られるもので、工業上顕著な効果を奏す
るものである。 〓〓〓〓〓
As described above, according to the present invention, by subjecting the Ni-Ti base alloy to solution treatment and then aging treatment, high-performance superelasticity and irreversible shape memory can be obtained without the need for cold working. This has a remarkable industrial effect. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 Ni50.0〜52.0at%、残部Tiからなる合金の母
相中に微細なNi3Ti相を分散析出させ、かつ内部
応力が均一であることを特徴とする超弾性、非可
逆形状記憶性Ni―Ti基合金材。 2 Ni50.0〜52.0at%、残部Tiからなる合金のNi
又はTi含有量の1.0at%以下をV、Cr、Mn、
Fe、Co、Cu、Zr、Nb、Mo、Ta及び貴金族から
選ばれる元素の1種又は2種以上で置換した合金
の母相中に微細なNi3Ti相を分散析出させかつ内
部応力が均一であることを特徴とする超弾性、非
可逆形状記憶性Ni―Ti基合金材。 3 Ni50.0〜52.0at%、残部Tiからなる合金を
700〜1100℃の温度で溶体化処理した後、300〜
600℃の温度で時効処理することを特徴とする超
弾性、非可逆形状記憶性Ni―Ti基合金材の製造
方法。 4 溶体化処理後の冷却を水焼入する特許請求の
範囲第3項記載の超弾性、非可逆形状記憶性Ni
―Ti基合金材の製造方法。 5 Ni50.0〜52.0at%、残部Tiからなる合金のNi
又はTi含有量の1.0at%以下をV、Cr、Mn、
Fe、Co、Cu、Zr、Nb、Mo、Ta及び貴金族から
選ばれる元素の1種又は2種以上で置換した合金
を700〜1100℃の温度で溶体化処理した後、300〜
600℃の温度で時効処理することを特徴とする超
弾性、非可逆形状記憶性Ni−Ti基合金材の製造
方法。 6 溶体化処理後の冷却を水焼入する特許請求の
範囲第5項記載の超弾性、非可逆形状記憶性Ni
―Ti基合金材の製造方法。
[Claims] 1. Superelasticity characterized by having a fine Ni 3 Ti phase dispersed and precipitated in the matrix of an alloy consisting of 50.0 to 52.0 at% Ni and the balance Ti, and having uniform internal stress. , Ni-Ti base alloy material with irreversible shape memory. 2 Ni in an alloy consisting of 50.0 to 52.0 at% Ni and the balance Ti
Or 1.0at% or less of Ti content is replaced by V, Cr, Mn,
Fine Ni 3 Ti phase is dispersed and precipitated in the matrix of the alloy substituted with one or more elements selected from Fe, Co, Cu, Zr, Nb, Mo, Ta, and noble metals, and internal stress is reduced. A superelastic, irreversible shape-memory Ni-Ti-based alloy material characterized by uniformity. 3 An alloy consisting of 50.0 to 52.0at% Ni and the balance Ti
After solution treatment at a temperature of 700~1100℃, 300~
A method for producing a superelastic, irreversible shape memory Ni-Ti base alloy material, which is characterized by aging treatment at a temperature of 600°C. 4. Superelastic, irreversible shape memory Ni according to claim 3, in which cooling after solution treatment is water quenching.
-Production method for Ti-based alloy materials. 5 Ni in an alloy consisting of 50.0 to 52.0 at% Ni and the balance Ti
Or 1.0at% or less of Ti content is replaced by V, Cr, Mn,
After solution treatment of an alloy substituted with one or more elements selected from Fe, Co, Cu, Zr, Nb, Mo, Ta, and noble metals at a temperature of 700 to 1100℃,
A method for producing a superelastic, irreversible shape memory Ni-Ti base alloy material, which is characterized by aging treatment at a temperature of 600°C. 6. Superelastic, irreversible shape memory Ni according to claim 5, in which cooling after solution treatment is water quenching.
-Production method for Ti-based alloy materials.
JP13706682A 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof Granted JPS5928548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13706682A JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13706682A JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5928548A JPS5928548A (en) 1984-02-15
JPS6159390B2 true JPS6159390B2 (en) 1986-12-16

Family

ID=15190094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13706682A Granted JPS5928548A (en) 1982-08-06 1982-08-06 Superelastic shape-memory ni-ti base alloy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5928548A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534303U (en) * 1991-10-14 1993-05-07 河村電器産業株式会社 Equipment storage box mounting structure

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155657A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS60155656A (en) * 1984-01-12 1985-08-15 Hitachi Metals Ltd Production of ti-ni superelastic alloy
JPS60169552A (en) * 1984-01-30 1985-09-03 Hitachi Metals Ltd Manufacture of shape memory alloy
JPS60248856A (en) * 1984-05-23 1985-12-09 Daido Steel Co Ltd Ni-ti alloy
US4770725A (en) * 1984-11-06 1988-09-13 Raychem Corporation Nickel/titanium/niobium shape memory alloy & article
JPS61235528A (en) * 1985-04-09 1986-10-20 Keijiyou Kioku Gokin Gijutsu Kenkyu Kumiai Superelastic ni-ti-cr alloy
JPS6210233A (en) * 1985-07-09 1987-01-19 Tohoku Metal Ind Ltd Shape memory alloy
JPH0686639B2 (en) * 1985-07-09 1994-11-02 株式会社トーキン Shape memory alloy
JPS6247445A (en) * 1985-08-24 1987-03-02 Tohoku Metal Ind Ltd Pseudoelastic alloy
CA1279210C (en) * 1985-12-23 1991-01-22 Mitsubishi Kinzoku Kabushiki Kaisha Wear-resistant intermetallic compound alloy having improved machineability
JPH0639648B2 (en) * 1986-01-23 1994-05-25 大同特殊鋼株式会社 Shape memory alloy material and manufacturing method thereof
JP2603463B2 (en) * 1986-07-01 1997-04-23 形状記憶合金技術研究組合 Low temperature reversible shape memory alloy
JP2541802B2 (en) * 1986-07-07 1996-10-09 株式会社トーキン Shape memory TiNiV alloy and manufacturing method thereof
JPS6383252A (en) * 1986-09-26 1988-04-13 Furukawa Electric Co Ltd:The Method and device for heat treating superelastic shape memory material
JPS63235444A (en) * 1987-03-24 1988-09-30 Tokin Corp Ti-ni-al based shape memory alloy and its production
JP2631989B2 (en) * 1988-01-05 1997-07-16 株式会社トーキン High temperature thermal response element
JPH07300638A (en) * 1995-05-29 1995-11-14 Daido Steel Co Ltd Shape memory alloy material and its production
JPH09104936A (en) * 1996-08-09 1997-04-22 Daido Steel Co Ltd Shape memory alloy material
US7306683B2 (en) * 2003-04-18 2007-12-11 Versitech Limited Shape memory material and method of making the same
EP2339041A1 (en) 2006-03-17 2011-06-29 University of Tsukuba Actuator and engine
WO2007108180A1 (en) * 2006-03-20 2007-09-27 University Of Tsukuba High-temperature shape memory alloy, actuator and motor
WO2011053737A2 (en) * 2009-11-02 2011-05-05 Saes Smart Materials Ni-Ti SEMI-FINISHED PRODUCTS AND RELATED METHODS
CN104099544A (en) * 2013-04-07 2014-10-15 北京有色金属研究总院 Whole course memory effect acquisition method for shape memory alloy
CN104946956A (en) * 2015-06-09 2015-09-30 哈尔滨工程大学 TiNiCuNb shape memory alloy and preparation method thereof
CN105033252B (en) * 2015-07-23 2016-05-25 南京航空航天大学 Laser in combination process technology based on automatic power spreading is prepared the method for marmem intravascular stent
CN107523719B (en) * 2017-09-22 2019-09-20 北京航空航天大学 A kind of novel high rigidity NiTi based alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534303U (en) * 1991-10-14 1993-05-07 河村電器産業株式会社 Equipment storage box mounting structure

Also Published As

Publication number Publication date
JPS5928548A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
JPS6159390B2 (en)
EP0709482B1 (en) Method of manufacturing high-temperature shape memory alloys
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPS6157390B2 (en)
JP3303623B2 (en) Method for producing copper alloy mold material for steelmaking continuous casting and mold produced thereby
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
JPH0158261B2 (en)
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JPH0321623B2 (en)
JPS6026648A (en) Manufacture of shape memory ni-ti alloy plate
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP2000169920A (en) Copper base alloy having shape memory characteristic and superelasticity, and its production
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP2022526677A (en) Copper alloys with high strength and high conductivity, and methods for making such copper alloys.
JP2022022731A (en) Resistor and method for manufacturing the same
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP3766051B2 (en) Copper alloy having excellent heat resistance and method for producing the same
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance
JPH03134144A (en) Nickel-base alloy member and its manufacture
JPH01123052A (en) Ultralow thermal expansion alloy and production thereof
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
JP2589125B2 (en) Manufacturing method of shape memory alloy
US3553035A (en) Process for making high initial permeability iron-nickel alloys
JP4552302B2 (en) ELECTRICAL RESISTOR ELEMENT, ITS MATERIAL AND MANUFACTURING METHOD THEREOF
JPS6365042A (en) Ti alloy excellent in crevice corrosion resistance and combining high strength with high ductility and its manufacture