JPS6159321B2 - - Google Patents

Info

Publication number
JPS6159321B2
JPS6159321B2 JP4262080A JP4262080A JPS6159321B2 JP S6159321 B2 JPS6159321 B2 JP S6159321B2 JP 4262080 A JP4262080 A JP 4262080A JP 4262080 A JP4262080 A JP 4262080A JP S6159321 B2 JPS6159321 B2 JP S6159321B2
Authority
JP
Japan
Prior art keywords
group
ethylene
weight
vinyl acetate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4262080A
Other languages
Japanese (ja)
Other versions
JPS56139514A (en
Inventor
Takenori Tanaka
Takeshi Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4262080A priority Critical patent/JPS56139514A/en
Publication of JPS56139514A publication Critical patent/JPS56139514A/en
Publication of JPS6159321B2 publication Critical patent/JPS6159321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分子中にパーオキシ基を有する、エチ
レン、酢酸ビニル及び下記()式で示される化
合物の共重合体よりなる水性分散液に関するもの
である。該分散液は造膜性にすぐれ、且つ塗膜の
加熱により連鎖中にパーオキサイドの分解により
ラジカルが生成した架橋結合が促進されるため不
溶化すると共にその物性が著しく向上する特性を
有する。 但し、R1は水素原子はたは炭素数1〜4のア
ルキル基からなる群の中より選ばれた基を、
R2,R3は炭素数1〜4のアルキル基からなる群
の中より選ばれた基を、またR4は炭素数1〜12
のアルキル基または炭素数8〜12のシクロアルキ
ル基からなる群の中より選ばれた基を示す。尚
()式により示される化合物を以下アリルパー
オキシカーボネートという。 従来、エチレン、酢酸ビニル系水性分散液より
得られる皮膜を熱処理により改質するため、乳化
重合の際第3の官能基を有するモノマーを加えて
共重合させる方法が多く試みられている。例えば
N−メチルアクリルアミドを共重合させることに
より3次元化する方法(特公昭49−23299号公
報、特公昭48−39390号公報)、グリシジルメタア
クリレートを共重合させ、そのエポキシ基を開環
して3次元化する方法(特開昭51−114435号公
膜、特開昭51−125179号公報、特公昭48−4169号
公報)等が知られている。しかし、N−メチロー
ルアクリルアミドで3次元化する場合被付着体が
セルローズ系のような親水性素材に対しては被着
力が増し効果的であるが、疎水性の被付着体に対
してはその効果が乏しく、また耐油性耐水性も殆
んど向上しない。更に加熱の際有毒なホルマリン
を発生する欠点がある。又グリシジルメタアクリ
レートを共重合し3次元化する場合は、アミン等
の硬化剤を使用しないと3次元化し難たく、アミ
ンの使用は毒性の点で実用上望ましくない。 又アリルパーオキシカーボネートの共重合体に
ついては特開昭54−47790号に開示され、酢酸ビ
ニルとの共重合物は知られグラフト剤としての用
途が記載されている。 本発明者等はエチレン・酢酸ビニル系水性分散
液の改質について検討した結果、第3成分として
アリルパーオキシカーボネートを加えて共重合し
た変性エチレン・酢酸ビニル水性分散液は、一定
範囲の組成を有し、且つ一定範囲の平均粒子径を
有する場合は塗布後皮膜の加熱により架橋結合が
促進され、耐溶剤性及び接着力が著しく向上する
のみならず、有毒ガスの発生もないことを見出し
本発明を完成するに至つた。 すなわち、エチレン4.9〜40.0重量%、酢酸ビ
ニル95.0〜45.0重量%及びアリルパーオキシカー
ボネート0.1〜15.0重量%よりなる重合体で且
つ、平均粒子径が0.05〜1.0μである水性分散液
である。 以下本発明をさらに詳しく説明する。 本発明に使用されるエチレン・酢酸ビニル・ア
リルパーオキシカーボネート共重体に含まれるア
リルパーオキシカーボネートはその架橋効果を考
慮して0.1〜15.0重量%とする必要がある。0.1重
量%より少ないと、皮膜を加熱しても架橋度が低
く、耐溶剤性及び接着力の向上が不充分である。
またアリルパーオキシカーボネートが増加すると
架橋度は高くなるが、15重量%以上に増加すると
皮膜の強じん性が低下するため接着剤としては性
能が急激に低下する。また分散液を放置した場合
架橋反応により粘度上昇し易く、実用上難点があ
る。 また該重合体に含まれるエチレン含有率は4.9
〜40重量%とする必要がある。エチレン含有率が
4.9重量%以下では室温での造膜性が乏しく、熱
処理による架橋効果も低く、更に耐水性、耐アル
カリ性も低下して接着剤としての性能が不充分で
ある。また40重量%以上になると共重合体の分子
量が低下する傾向があり、また分散液の粒子径が
大きくなるため、塗膜を加熱した場合、架橋によ
る物性の改善効果が不充分となり、パーオキシカ
ーボネートを加える意義が失われる。 共重合体の成分として使用できるアリルパーオ
キシカーボネートとしては例えばt−ブチルパー
オキシアリルカーボネート、t−ヘキシルパーオ
キシアリルカーボネート、1,1,3,3−テト
ラメチルブチルパーオキシアリルカーボネート、
t−ブチルパーオキシメタアクリルカーボネー
ト、1,1,3,3−テトラメチルプチルパーオ
キシメタアクリルカーボネート等である。 本願に適用される水性分散液の平均粒径は0.05
〜1.0μの範囲内のものとする必要がある。これ
は皮膜形成後加熱により架橋化する際その架橋効
率を上げるためにもまた分散液の放置安定性の面
からも粒径を1.0μ以下とすることが特に重要で
ある。 又粒径が0.05μ以下になると粒子表面の保確層
が薄くなり特に安定性が低下し、実用上接着剤と
して使用することが困難となる。 上記の如き組成を有する水性分散液の調整法は
エチレン加圧下、界面活性剤または保護コロイド
の存在下で水中に酢酸ビニル及びアリルパーオキ
シカーボネートを分散し、触媒として水溶性ラジ
カル重合開始剤を使用して共重合させることによ
り得られる。共重合体のエチレン含有率はエチレ
ン圧力、重合温度、撹拌状態及び残存モノマー濃
度等によつて決定される。例えば、容量5、
500rpm撹拌機付重合槽で、酢酸ビニル1880g、
アリルパーオキシカーボネート20g、水2000g其
他安定剤触媒等を最初に加え、10Kg/cm2のエチレ
ン加圧下4時間重合した場合、共重合体のエチレ
ン含有率は5重量%となる。又上記において酢酸
ビニル及びアリルパーオキシカーボネートを逐次
添加し、100Kg/cm2のエチレン加圧下、5時間重
合させて、残存モノマーが殆んどないようにした
場合、共重合体のエチレン含有率は40重量%とな
る。 界面活性剤としてはノニオン界面活性剤或はア
ニオン界面活性剤が使用しうるが、平均粒径0.05
〜1.0μで安定な分散液をうるためにはノニオン
活性剤が適しまた保護コロイドと混合して使用す
ることもできる。ノニオン活性剤としては脂肪酸
とポリオールの部分エステル、例えば、グリセリ
ンモノステアリン酸エステル、ソルビトールモノ
ラウリル酸エステル、長鎖モノアルコールとポリ
オールの部分エーテル、脂肪酸とポリエチレンポ
リオールのエーテル、ポリエチレンオキサイド縮
合物、例えば、ポリオキシエチレンノニルフエニ
ルエーテル、ポリエチレンオキサイドとポリプロ
ピレンオキサイド縮合物が使用しうる。 保護コロイドとしてはヒドロキシエチルセルロ
ーズ、カルボキシメチルセルローズ、部分ケン化
ポリビニルアルコール、カルボキシ変性ポリビニ
ルアルコール、ポリアクリルアミド等が使用でき
る。 本願の平均粒径を有する分散液100重量部を得
るためには界面活性剤は0.5〜8.0重量部、望まし
くは1.0〜6.0重量部が使用される。また保護コロ
イドは1.0〜10重量部使用されるが、界面活性剤
と併用する場合は05〜4.0重量部が適当である。 水溶性ラジカル重合開始剤としては無機過酸化
物、例えば、過酸化水素、過酸化バリウム等、ア
ルカリ金属過硫酸塩、例えば過硫酸カリ、過硫酸
ナトリウム等その他アルカリ金属過炭酸塩等が使
用される。 上記の条件において、共重合は完結し、固形分
濃度50重量%、平均粒径0.05〜1.0μの水性分散
液が得られる。 上記の方法で該3元重合体に更に第4の不飽和
化合物を共重合せしめた分散液を得ることもで
き、その含有率が20重量%以下であれば本願発明
の効果を奏しうる。不飽和化合物としては例え
ば、プロピオン酸ビニル、酪酸ビニル、バーサチ
ツク酸ビニル等のビニルエステル類、アクリル酸
メチル、アクリル酸ブチル、アクリル酸2−エチ
ルヘキシル、メタクリル酸メチル、メタアクリル
酸ヒドロキシエチル等のアクリル酸のエステル
類、アクリルアミド、N−メチロールアクリルア
ミド等アクリルアミド類、塩化ビニル、塩化ビニ
リデン等ハロゲン化ビニル類、プロピレン、イソ
ブチレン、オクテン等のα−オレフイン類、アク
リル酸、クロトン酸、ビニルスルホン酸、アリル
スルホン酸またはその中性塩、イタコン酸、マレ
イン酸、フマル酸等の2塩基酸またはその中性
塩、トリアリルシアヌレート、トリメチロールプ
ロパンジアリルエーテル、ジアリルフタレート等
のアリル化合物、グリシジルメタアクリレート等
のエポキシ基含有不飽和化合物、エチレングリコ
ールジメタアクリレート、トリエチレングリコー
ルジアクリレート等のジビニル化合物等が使用し
うる。 上記の如くして得られた変性酢酸ビニル・エチ
レン共重合体水性分散は後処理で架橋結合を形成
させることにより、従来のエチレン・酢酸ビニル
共重合体分散液では性能不充分であつた不織布及
びフロツキー加工のバインダーとして使用可能と
なり、また耐水性、耐油性の点でアクリル系水性
分散液にくらべて劣つていたが、一定範囲の組成
及び一定範囲の平均粒子径を有するものは、きわ
めてすぐれた性質を示すに至つた。 更に不飽和2重結合を2個以上含むモノマー及
びポリマーとブレンドして熱処理することにより
耐水性、耐油性をさらに向上せしめうる。 一方N−メチロールアクリルアミドをエチレン
及び酢酸ビニルに加えて共重合し、架橋したもの
にくらべ、ホルマリン等による公害発生の原因と
なるおそれが全くない利点がある。 また、これらの場合硬化条件によつては一部未
硬化で残る可能性があり、メチロール基の親水性
によつてかえつて耐水性を阻害することがある
他、ポリエステル繊維等の比較的疎水性物質には
あまり接着性がよくない。 更にグリシジルメタアクリレートでエチレン・
酢酸ビニル共重合体を架橋した場合は架橋効率が
悪く充分な性能を性揮できない。 該水性分散液は不織布バインダー、繊維処理
剤、植毛加工剤、紙加工剤、パルプボード含浸
剤、塗料のビークル等に利用できる。それらの用
途に使用する際には本願の水性分散液と他の水性
分散液とブレンドして使用することも可能であ
る。更に熱処理による架橋性を利用して、他の不
飽和化合物とブレンドして熱処理による改質剤と
しても使用しうる。 以下実施例をあげて本発明を説明するが、これ
らの実施例は本発明を何等限定するものではな
い。尚%は重量基準で示す。 実施例 1 5オートクレーブに蒸留水1400g、ノニルフ
エニルエーテル(ノニポール400三洋化成KK
製)40g、ヒドロキシエチルセルロース(フジケ
ミカル製AL−15)20g、酢酸ビニル320gを仕込
み、500RPMで撹拌しながら窒素置換を行つた
後、エチレン圧力を50Kg/cm2に加圧後内温を50℃
に昇温する。過酸化水素と過硫酸ソーダを反応器
中に添加すると直ちに重合が開始するので、それ
と同時に酢酸ビニル1,270gとアリルt−ブチ
ルパーオキシカーボネートの70%トルエン溶液
12.6gを3時間で連続添加し、その後残存酢酸ビ
ニルモノマーが1%以下になつたところで反応を
停止し、系の温度を下げて生成物を取り出した。
生成したエマルジヨンの固形分は52.3%で粘度は
ブルツクフイールド型粘度計を使用し60rpmで
(以下粘度測定の場合同じ)59cp、樹脂分中のエ
チレン含量は20.1%であつた。また粒子径を電顕
で観察、測定した結果平均0.9μであつた。 このようにして製造したエマルジヨンの皮膜を
作り、150℃、30分熱処理した皮膜の強伸度及び
耐パークレン性の結果を表2に、またエステル織
物の接着性および耐パークレン性を表3に示す。 実施例 2 実施例1においてアリルt−ブチルパーオキシ
カーボネートの代りにアリルt−ヘキシルパーオ
キシカーボネートの70%トルエン溶液12.6gを加
えた他同様に処理した。得られた分散液の組成皮
膜の物性及び熱処理の効果を表1,2,3に示
す。 実施例 3 実施例1においてアリルt−ブチルパーオキシ
カーボネートの代りに1,1,3,3−テトラメ
チルブチルパーオキシカーボネートの70%トルエ
ン溶液12.6gを加えた他同様に処理した。得られ
た分散液の組成及び皮膜の物性試験の結果を表1
及び2に示す。 実施例 4 実施例1においてエチレン圧力50Kg/cm2に代え
て12Kg/cm2とした他、同様に処理した。得られた
分散液の組成及び皮膜の物性試験の結果を表1及
び2に示す。 比較例 1 実施例1において、アリルt−ブチルパーオキ
シカーボネート70%トルエン溶液12.6gを571g
に、また後添加酢酸ビニル1,270gを870gに変
更した他、同様に処理した。得られた分散液の組
成及び皮膜の物性試験の結果を表1及び2に示
す。これは実施例1においてパーオキシカーボネ
ートが本発明の限定値15%をこえた場合に該当す
る。皮膜の耐パークレン性は向上しているが、強
伸度は著しく低下している。 比較例 2 実施例1において、エチレン圧力50Kg/cm2
130Kg/cm2に、初期添加酢酸ビニル320gを249g
に、後添加酢酸ビニル1,270gを886gに変更し
た他同様に処理した。得られた分散液の組成及び
皮膜の物性試験の結何を表1及び表2に示す。こ
れは共重合体のエチレン含有率43%で限定値をこ
え、且つ粒子径も限定値をこえた場合に該当する
が、皮膜の耐パークレン性及び強伸度は実施例1
にくらべて大巾に低下している。また分散液は粗
大粒子が大きく放置安定性不良であつた。 比較例 3 実施例1において、初期添加酢酸ビニル320g
を384gに、後添加酢酸ビニル1,270gを1,
524gに変更し、またエチレンを加えず、その他
実施例1と同様に処理した。 得られた分散液の組成及び皮膜の物性試験の結
果を表1及び2に示す。これは共重合体がエチレ
ン成分を欠く場合に該当し、強度は向上している
が、耐パークレン性及び伸度は著しく低下してい
る。 比較例 4 小容量の高圧試験容器を使用し、蒸留水140g
ノニポール400を4g、ヒドロキシエチルセルロ
ーズ2g、酢酸ビニル32gを加え、内温を80℃と
し過硫酸カリ2gを添加しエチレン圧力500Kg/
cm2で12時間重合した。得られた分散液の固形分濃
度は32%で、粗大粒子が多く放置安定性不良であ
つた。 分散液組成及び皮膜の物性試験の結果を表1及
び2に示す。これは共重合体が酢酸ビニル成分を
欠く場合に該当し、耐パークレン性及び強伸度共
に著しく低下している。 比較例 5 実施例1においてヒドロキシエチルセルローズ
及びノニポール400の代りにドデシルベンゼンス
ルホン酸ソーダ100gを使用した他同様に処理し
た。得られた分散液の粒子径は小さくまた少量の
粗大粒子が含まれていた。 粗大粒子を沈降させた後も尚放置安定性が不良
で上澄液の平均粒子径は0.03μであつた。得られ
た分散液の組成及び皮膜の物性試験の結果を表1
及び表2に示す。これは平均粒子径が限定値以下
に該当し実施例1に比べて強伸度はあまり変化し
ないが耐パークレン性が相当低下している。 実施例 6 実施例1においてアリルt−ブチルパーオキシ
カーボネートを使用せずその他同様にして処理し
た。分散液組成、皮膜の物性及び熱処理による変
化を表1,2及び3に示す。 これは共重合体がアリルパーオキシカーボネー
トを欠く場合に該当し、実施例1とくらべて皮膜
の強度及び耐パークレン性が相当低下している他
熱処理の効果も低い。
The present invention relates to an aqueous dispersion containing a peroxy group in the molecule and comprising a copolymer of ethylene, vinyl acetate, and a compound represented by the following formula (). The dispersion has excellent film-forming properties, and heating of the coating promotes crosslinking in which radicals are generated by decomposition of peroxide in the chain, making it insolubilized and significantly improving its physical properties. However, R 1 is a hydrogen atom or a group selected from the group consisting of an alkyl group having 1 to 4 carbon atoms,
R 2 and R 3 are groups selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, and R 4 is a group having 1 to 12 carbon atoms.
represents a group selected from the group consisting of an alkyl group or a cycloalkyl group having 8 to 12 carbon atoms. The compound represented by the formula () is hereinafter referred to as allyl peroxycarbonate. Conventionally, in order to modify the film obtained from an ethylene/vinyl acetate aqueous dispersion by heat treatment, many attempts have been made to copolymerize the film by adding a monomer having a third functional group during emulsion polymerization. For example, there is a method of copolymerizing N-methylacrylamide to make it three-dimensional (Japanese Patent Publication No. 49-23299, Japanese Patent Publication No. 48-39390), copolymerizing glycidyl methacrylate, and opening the epoxy group. Methods for three-dimensionalization (Japanese Patent Application Laid-open Nos. 114435/1980, 125179/1980, 4169/1980), etc. are known. However, when creating a three-dimensional structure using N-methylol acrylamide, the adhesion strength increases and is effective for hydrophilic materials such as cellulose-based materials, but it is not effective for hydrophobic materials. There is also little improvement in oil resistance and water resistance. Furthermore, it has the disadvantage of generating toxic formalin when heated. Furthermore, when copolymerizing glycidyl methacrylate to make it three-dimensional, it is difficult to make it three-dimensional unless a curing agent such as an amine is used, and the use of amines is practically undesirable from the viewpoint of toxicity. A copolymer of allyl peroxycarbonate is disclosed in JP-A-54-47790, and a copolymer with vinyl acetate is known and its use as a grafting agent is described. The present inventors investigated the modification of ethylene/vinyl acetate aqueous dispersions, and found that a modified ethylene/vinyl acetate aqueous dispersion copolymerized with allyl peroxycarbonate added as a third component has a composition within a certain range. It has been found that if the film has an average particle diameter within a certain range, cross-linking is promoted by heating the film after application, which not only significantly improves solvent resistance and adhesive strength, but also does not generate toxic gas. The invention was completed. That is, it is an aqueous dispersion of a polymer consisting of 4.9 to 40.0% by weight of ethylene, 95.0 to 45.0% by weight of vinyl acetate, and 0.1 to 15.0% by weight of allyl peroxycarbonate, and having an average particle diameter of 0.05 to 1.0μ. The present invention will be explained in more detail below. The amount of allyl peroxycarbonate contained in the ethylene/vinyl acetate/allyl peroxycarbonate copolymer used in the present invention must be 0.1 to 15.0% by weight in consideration of its crosslinking effect. If it is less than 0.1% by weight, the degree of crosslinking will be low even when the film is heated, and improvements in solvent resistance and adhesive strength will be insufficient.
Furthermore, as the amount of allyl peroxycarbonate increases, the degree of crosslinking increases, but when it increases to 15% by weight or more, the toughness of the film decreases, resulting in a sharp decline in performance as an adhesive. Furthermore, if the dispersion is left to stand, the viscosity tends to increase due to crosslinking reaction, which is a practical problem. In addition, the ethylene content contained in the polymer is 4.9
~40% by weight is required. Ethylene content
If it is less than 4.9% by weight, the film forming property at room temperature is poor, the crosslinking effect by heat treatment is low, and the water resistance and alkali resistance are also reduced, resulting in insufficient performance as an adhesive. In addition, when the amount exceeds 40% by weight, the molecular weight of the copolymer tends to decrease and the particle size of the dispersion increases, so when the coating film is heated, the effect of improving physical properties due to crosslinking becomes insufficient, and peroxy The significance of adding carbonate is lost. Examples of allyl peroxycarbonates that can be used as a component of the copolymer include t-butyl peroxyallyl carbonate, t-hexyl peroxyallyl carbonate, 1,1,3,3-tetramethylbutyl peroxyallyl carbonate,
These include t-butylperoxymethacrylic carbonate, 1,1,3,3-tetramethylbutylperoxymethacrylic carbonate, and the like. The average particle size of the aqueous dispersion applied to this application is 0.05
It must be within the range of ~1.0μ. It is particularly important to control the particle size to 1.0 μm or less in order to increase the crosslinking efficiency during crosslinking by heating after film formation, and also from the standpoint of storage stability of the dispersion. Furthermore, when the particle size is less than 0.05 μm, the securing layer on the particle surface becomes thin, particularly the stability decreases, and it becomes difficult to use it as an adhesive in practical terms. The method for preparing an aqueous dispersion having the above composition is to disperse vinyl acetate and allyl peroxycarbonate in water under pressure of ethylene in the presence of a surfactant or protective colloid, and use a water-soluble radical polymerization initiator as a catalyst. It can be obtained by copolymerizing. The ethylene content of the copolymer is determined by ethylene pressure, polymerization temperature, stirring conditions, residual monomer concentration, etc. For example, capacity 5,
In a polymerization tank with a 500 rpm stirrer, 1880 g of vinyl acetate,
When 20 g of allyl peroxycarbonate, 2000 g of water, and other stabilizer catalysts are added first, and polymerization is carried out for 4 hours under a pressure of 10 kg/cm 2 of ethylene, the ethylene content of the copolymer will be 5% by weight. In addition, in the above case, if vinyl acetate and allyl peroxycarbonate are sequentially added and polymerized for 5 hours under ethylene pressure of 100 kg/cm 2 so that there is almost no residual monomer, the ethylene content of the copolymer is It becomes 40% by weight. As the surfactant, nonionic surfactants or anionic surfactants can be used, but the average particle size is 0.05.
In order to obtain a stable dispersion at ~1.0μ, a nonionic activator is suitable and can also be used in combination with a protective colloid. Nonionic surfactants include partial esters of fatty acids and polyols, such as glycerin monostearate, sorbitol monolaurate, partial ethers of long-chain monoalcohols and polyols, ethers of fatty acids and polyethylene polyols, polyethylene oxide condensates, such as, Polyoxyethylene nonyl phenyl ether, polyethylene oxide and polypropylene oxide condensates can be used. As the protective colloid, hydroxyethyl cellulose, carboxymethyl cellulose, partially saponified polyvinyl alcohol, carboxy-modified polyvinyl alcohol, polyacrylamide, etc. can be used. To obtain 100 parts by weight of a dispersion having the average particle size of the present application, the surfactant is used in an amount of 0.5 to 8.0 parts by weight, preferably 1.0 to 6.0 parts by weight. The protective colloid is used in an amount of 1.0 to 10 parts by weight, but when used in combination with a surfactant, 05 to 4.0 parts by weight is appropriate. As the water-soluble radical polymerization initiator, inorganic peroxides such as hydrogen peroxide, barium peroxide, etc., alkali metal persulfates such as potassium persulfate, sodium persulfate, and other alkali metal percarbonates are used. . Under the above conditions, the copolymerization is completed and an aqueous dispersion having a solid content concentration of 50% by weight and an average particle size of 0.05 to 1.0 μm is obtained. It is also possible to obtain a dispersion liquid in which the terpolymer is further copolymerized with a fourth unsaturated compound by the above method, and the effect of the present invention can be achieved if the content thereof is 20% by weight or less. Examples of unsaturated compounds include vinyl esters such as vinyl propionate, vinyl butyrate, and vinyl versatate, acrylic acids such as methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, and hydroxyethyl methacrylate. esters, acrylamides such as acrylamide and N-methylolacrylamide, vinyl halides such as vinyl chloride and vinylidene chloride, α-olefins such as propylene, isobutylene, and octene, acrylic acid, crotonic acid, vinylsulfonic acid, allylsulfonic acid or its neutral salts, dibasic acids such as itaconic acid, maleic acid, and fumaric acid or their neutral salts, allyl compounds such as triallyl cyanurate, trimethylolpropane diallyl ether, diallyl phthalate, and epoxy groups such as glycidyl methacrylate. Containing unsaturated compounds, divinyl compounds such as ethylene glycol dimethacrylate, triethylene glycol diacrylate, etc. can be used. The aqueous modified vinyl acetate/ethylene copolymer dispersion obtained as described above can be used to form crosslinks in a post-treatment, thereby improving the ability of nonwoven fabrics that have had insufficient performance with conventional ethylene/vinyl acetate copolymer dispersions. It can be used as a binder for frotzky processing, and although it was inferior to acrylic aqueous dispersions in terms of water resistance and oil resistance, those with a certain range of composition and a certain range of average particle diameter are extremely superior. It has come to show the characteristics that Furthermore, water resistance and oil resistance can be further improved by blending with a monomer or polymer containing two or more unsaturated double bonds and heat-treating the mixture. On the other hand, compared to a product obtained by copolymerizing and crosslinking N-methylolacrylamide with ethylene and vinyl acetate, it has the advantage that it does not cause any pollution due to formalin or the like. In addition, depending on the curing conditions in these cases, some parts may remain uncured, and the hydrophilicity of the methylol group may actually impair water resistance. It does not adhere well to substances. Furthermore, ethylene and glycidyl methacrylate
When a vinyl acetate copolymer is crosslinked, the crosslinking efficiency is poor and sufficient performance cannot be achieved. The aqueous dispersion can be used as a nonwoven fabric binder, fiber treatment agent, flocking agent, paper treatment agent, pulp board impregnation agent, paint vehicle, etc. When used in those applications, the aqueous dispersion of the present application can be blended with other aqueous dispersions. Furthermore, by taking advantage of the crosslinking property caused by heat treatment, it can be blended with other unsaturated compounds and used as a modifier by heat treatment. The present invention will be explained below with reference to Examples, but these Examples are not intended to limit the present invention in any way. Note that percentages are expressed on a weight basis. Example 1 1400g of distilled water and nonylphenyl ether (Nonipol 400 Sanyo Kasei KK) were placed in an autoclave.
), 20 g of hydroxyethyl cellulose (AL-15 manufactured by Fuji Chemical), and 320 g of vinyl acetate, and after purging with nitrogen while stirring at 500 RPM, pressurize the ethylene pressure to 50 Kg/cm 2 and reduce the internal temperature to 50°C.
The temperature rises to Polymerization starts immediately when hydrogen peroxide and sodium persulfate are added to the reactor, and at the same time 1,270 g of vinyl acetate and a 70% toluene solution of allyl t-butyl peroxycarbonate are added.
12.6 g was continuously added over 3 hours, and when the residual vinyl acetate monomer became 1% or less, the reaction was stopped, the temperature of the system was lowered, and the product was taken out.
The solid content of the produced emulsion was 52.3%, the viscosity was 59 cp at 60 rpm using a Bruckfield viscometer (the same applies hereafter for viscosity measurement), and the ethylene content in the resin was 20.1%. Furthermore, the particle diameter was observed and measured using an electron microscope, and the average diameter was 0.9μ. The emulsion film produced in this manner was heat-treated at 150°C for 30 minutes, and the results of the strength and elongation of the film and its perclene resistance are shown in Table 2, and the adhesion and perclene resistance of the ester fabric are shown in Table 3. . Example 2 The procedure of Example 1 was repeated except that 12.6 g of a 70% toluene solution of allyl t-hexyl peroxycarbonate was added instead of allyl t-butyl peroxycarbonate. Tables 1, 2, and 3 show the composition of the obtained dispersion, the physical properties of the film, and the effects of heat treatment. Example 3 The same procedure as in Example 1 was repeated except that 12.6 g of a 70% toluene solution of 1,1,3,3-tetramethylbutyl peroxycarbonate was added instead of allyl t-butyl peroxycarbonate. Table 1 shows the composition of the obtained dispersion and the results of physical property tests of the film.
and 2. Example 4 The same treatment as in Example 1 was carried out except that the ethylene pressure was changed to 12 Kg/cm 2 instead of 50 Kg/cm 2 . Tables 1 and 2 show the composition of the obtained dispersion and the results of physical property tests of the film. Comparative Example 1 In Example 1, 12.6 g of allyl t-butyl peroxycarbonate 70% toluene solution was added to 571 g.
The same process was carried out except that the post-added vinyl acetate was changed from 1,270 g to 870 g. Tables 1 and 2 show the composition of the obtained dispersion and the results of physical property tests of the film. This applies in Example 1 when the peroxycarbonate exceeds the limit value of 15% of the present invention. Although the perpendicular resistance of the film has improved, the strength and elongation have significantly decreased. Comparative Example 2 In Example 1, the ethylene pressure was 50Kg/ cm2.
249g of initially added vinyl acetate 320g to 130Kg/ cm2
The same process was carried out except that the post-added vinyl acetate was changed from 1,270 g to 886 g. Tables 1 and 2 show the composition of the obtained dispersion and the results of physical property tests of the film. This applies when the ethylene content of the copolymer exceeds the limit value at 43%, and the particle size also exceeds the limit value, but the percrene resistance and strength and elongation of the film are as shown in Example 1.
This is a significant decline compared to the previous year. Further, the dispersion liquid had large coarse particles and poor storage stability. Comparative Example 3 In Example 1, initially added vinyl acetate 320g
to 384g, and 1,270g of post-added vinyl acetate to 1,
The amount was changed to 524 g, and ethylene was not added, and the process was otherwise carried out in the same manner as in Example 1. Tables 1 and 2 show the composition of the obtained dispersion and the results of physical property tests of the film. This is the case when the copolymer lacks an ethylene component, and although the strength is improved, the per-ethylene resistance and elongation are significantly reduced. Comparative example 4 Using a small capacity high pressure test container, 140g of distilled water
Add 4g of Nonipol 400, 2g of hydroxyethyl cellulose, and 32g of vinyl acetate, raise the internal temperature to 80℃, add 2g of potassium persulfate, and add ethylene pressure to 500Kg/
Polymerization was carried out for 12 hours at cm2 . The resulting dispersion had a solid content concentration of 32%, contained many coarse particles, and had poor storage stability. Tables 1 and 2 show the dispersion composition and the results of physical property tests of the film. This is the case when the copolymer lacks a vinyl acetate component, and both perchloren resistance and strength and elongation are significantly reduced. Comparative Example 5 The same procedure as in Example 1 was carried out except that 100 g of sodium dodecylbenzenesulfonate was used instead of hydroxyethyl cellulose and Nonipol 400. The resulting dispersion had a small particle size and contained a small amount of coarse particles. Even after settling the coarse particles, the storage stability was still poor, and the average particle size of the supernatant was 0.03μ. Table 1 shows the composition of the obtained dispersion and the results of physical property tests of the film.
and shown in Table 2. This corresponds to the average particle size being below the limit value, and compared to Example 1, the strength and elongation do not change much, but the per-cleaning resistance is considerably reduced. Example 6 The same treatment as in Example 1 was carried out except that allyl t-butyl peroxycarbonate was not used. Tables 1, 2, and 3 show the dispersion composition, physical properties of the film, and changes due to heat treatment. This is the case when the copolymer lacks allyl peroxycarbonate, and the strength and resistance to peroxidation of the film are considerably lower than in Example 1, and the effect of heat treatment is also low.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 エチレン4.9〜40.0重量%、酢酸ビニル95.0〜
45.0重量%及び下記一般式()で表わされる化
合物0.1〜15.0重量%よりなる共重合体で且つ、
平均粒子径が0.05〜1.0μである水性分散液。 但し、R1は水素原子または炭素数1〜4のア
ルキル基からなる群の中より選ばれた基を、
R2,R3は炭素数1〜4のアルキル基からなる群
の中より選ばれた基を、またR4は炭素数1〜12
のアルキル基または炭素数8〜12のシクロアルキ
ル基からなる群の中より選ばれた基を示す。
[Claims] 1. Ethylene 4.9~40.0% by weight, vinyl acetate 95.0~
A copolymer consisting of 45.0% by weight and 0.1 to 15.0% by weight of a compound represented by the following general formula (), and
Aqueous dispersion with an average particle size of 0.05 to 1.0μ. However, R 1 is a hydrogen atom or a group selected from the group consisting of an alkyl group having 1 to 4 carbon atoms,
R 2 and R 3 are groups selected from the group consisting of alkyl groups having 1 to 4 carbon atoms, and R 4 is a group having 1 to 12 carbon atoms.
represents a group selected from the group consisting of an alkyl group or a cycloalkyl group having 8 to 12 carbon atoms.
JP4262080A 1980-03-31 1980-03-31 Aqueous dispersion of modified ethylene-vinyl acetate copolymer Granted JPS56139514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4262080A JPS56139514A (en) 1980-03-31 1980-03-31 Aqueous dispersion of modified ethylene-vinyl acetate copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4262080A JPS56139514A (en) 1980-03-31 1980-03-31 Aqueous dispersion of modified ethylene-vinyl acetate copolymer

Publications (2)

Publication Number Publication Date
JPS56139514A JPS56139514A (en) 1981-10-31
JPS6159321B2 true JPS6159321B2 (en) 1986-12-16

Family

ID=12641057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4262080A Granted JPS56139514A (en) 1980-03-31 1980-03-31 Aqueous dispersion of modified ethylene-vinyl acetate copolymer

Country Status (1)

Country Link
JP (1) JPS56139514A (en)

Also Published As

Publication number Publication date
JPS56139514A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
US4521561A (en) Vinyl acetate/ethylene copolymer emulsions exhibiting both partially- and fully-hydrolyzed polyvinyl alcohol compatibility
JPS6140251B2 (en)
US3322711A (en) Polymer oxidation process and emulsion therefrom
JP2634027B2 (en) Woodworking adhesive and method for producing the same
US5326809A (en) Poly[(vinyl alcohol)-CO-(vinyl amine)] copolymers as stabilizing protective colloids in aqueous emulsion polymerization
KR20200038973A (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl polymer using same
US5665816A (en) Aqueous dispersions for adhesives
JPH11335490A (en) Aqueous emulsion and its production
JPS61111116A (en) Oil filter using aqueous latex binder
JP2002167403A5 (en)
EP0812863A1 (en) Acrylic emulsions prepared in the presence of fully hydrolyzed poly(vinyl alcohol)
FI70908C (en) FOERFARANDE FOER FRAMSTAELLNING AV VINYLACETATOLEFINKOPOLYMERERS LATEXER
US4333971A (en) Substrate treating compositions
JPS6159321B2 (en)
US4412017A (en) Compositions for bonding fibrous substrates
DE19739936A1 (en) Solvent-free polyvinyl ester dispersions with increased water resistance
US3772226A (en) Suspension polymerization of vinyl chloride
EP0034893B1 (en) Compositions for bonding fibrous substrates and cellulosic fibrous substrate treated therewith
JP3728485B2 (en) Aqueous emulsion composition
WO2022230828A1 (en) Vinyl alcohol polymer, powder including same, methods for producing same, paper processing agent, and dispersant for emulsion polymerization
JP2020070415A (en) Method for producing aqueous emulsion
JP4381569B2 (en) Vinyl ester resin emulsion
JPS6131723B2 (en)
JP3078185B2 (en) Suspension polymerization of vinyl chloride resin
JP3347953B2 (en) Suspension polymerization of vinyl chloride resin