JPS6156456A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6156456A
JPS6156456A JP59179749A JP17974984A JPS6156456A JP S6156456 A JPS6156456 A JP S6156456A JP 59179749 A JP59179749 A JP 59179749A JP 17974984 A JP17974984 A JP 17974984A JP S6156456 A JPS6156456 A JP S6156456A
Authority
JP
Japan
Prior art keywords
region
gate
drain
source
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59179749A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59179749A priority Critical patent/JPS6156456A/en
Priority to US06/725,353 priority patent/US4639753A/en
Publication of JPS6156456A publication Critical patent/JPS6156456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1124Devices with PN homojunction gate
    • H01L31/1126Devices with PN homojunction gate the device being a field-effect phototransistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain the title device having the high-sensitivity characteristic caused by the effect of stable multiplication which does not depend on the amount of incident light, by using a specific photo transistor as the photo receiving element. CONSTITUTION:An n<-> epitaxial layer 302 is formed on an n<+> substrate 301 that is the drain, and a p<+> region 303 that is the second gate is formed; then, another n<-> epitaxial layer 304 is formed, and a source n<+> region 305, a p<+> region 306 that is the first gate, and p<+> regions 307 for picture element isolation are formed on the surface of this epitaxial layer 304; besides, a source electrode 308 and the first gate electrode 309 come into contact with the corresponding regions through contact windows of the insulation films 310. The p<+> region 303 that is the second gate and the n<+> region 301 that is the drain are brought into contact with the second gate electrode and the drain electrode corresponding to the periphery. Further, dimensions are determined so that a relation lGG>rG2 may hold to the interval WG2 between a pair of p<+> regions 303 that are the second gates and to the distance LGG between the p<+> regions 306- that are the first gates and the p<+> region 303 that is the second gate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に感度増倍機能を有する固体撮像装置に関わる。[Detailed description of the invention] Industrial applications The present invention relates to a solid-state imaging device having a sensitivity multiplication function.

従来例の構成とその問題点 従来、感度増倍機能は光検出用のフォトダイオードをフ
ォトトランジスタとする事により実現しτいる。フォト
トランジスタに、バイポーラトランジスタ(BPT)で
も、電界効果トランジスタ(FET)でも実現できるが
、性能的にBPT。
Conventional structure and its problems Conventionally, the sensitivity multiplication function has been realized by using a phototransistor as a photodiode for light detection. The phototransistor can be implemented with a bipolar transistor (BPT) or a field effect transistor (FET), but BPT is preferable in terms of performance.

FRTを上回る静電誘導トランジスタ(SIT)を用い
た固体撮像装置が提案されている。(特開昭58−10
5672号公報、特開昭59−4571B1号公報を参
照)  SITをフォトトランジスタに利用すると、本
来の高いgm (相互コンダクタンス)により、大きな
感度増倍機能が実現する。しかし、三極管で見られるよ
うな非飽和型の電圧・電流特性を示すため、電荷蓄積型
で用いる場合にHDDC(ダイナミ、フク・ドレイン・
コンダクタンス)効果と呼ばれる好ましくない帰還効果
が生じ、ゲートの電位障壁が変調を受け、入射光の強度
により増倍率が変化するという問題が生じる。
A solid-state imaging device using a static induction transistor (SIT), which is superior to FRT, has been proposed. (Unexamined Japanese Patent Publication No. 58-10
(See Japanese Patent Laid-Open No. 5672 and Japanese Patent Application Laid-Open No. 59-4571B1) When SIT is used in a phototransistor, a large sensitivity multiplication function can be realized due to its inherently high gm (mutual conductance). However, because it exhibits unsaturated voltage and current characteristics like those seen in a triode, HDDC (dynamis, hook, drain,
An undesirable feedback effect called the conductance effect occurs, causing a problem in that the potential barrier of the gate is modulated and the multiplication factor changes depending on the intensity of the incident light.

発明の目的 本発明に上記従来の問題点を解消し、入射光量に依存し
ない安定な増倍効果による高感度特性を有する固体撮像
装置の提供を目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to provide a solid-state imaging device having high sensitivity characteristics due to a stable multiplication effect that does not depend on the amount of incident light.

発明の構成 本発明者により、SITの大きなgmを維持したIiま
、理想的な飽和特性(従ってDDC効果に生じない。)
を実現する新しい5IT(これを旦hieldadユd
eal JaturlLt’+50peration 
−5IT、略して’5ISO−3IT’と呼ぶ。)が提
案されている。(特許出願中)この’5ISO−5IT
’のゲート領域を光によシ発生した正孔の蓄積領域とし
、この正孔の量に対応して電源(又1GNI))K接続
されたソース領域から正孔のm倍の電子をドレイン領域
に集めるのが本発明の基本構成である。
Structure of the Invention The present inventor has maintained a large gm of SIT, which has ideal saturation characteristics (therefore, no DDC effect occurs).
The new 5 IT that realizes
eal JaturLt'+50peration
-5IT, abbreviated as '5ISO-3IT'. ) has been proposed. (Patent pending) This '5ISO-5IT
The gate region of ' is used as an accumulation region for holes generated by light, and m times as many electrons as holes are transferred to the drain region from the source region connected to the power supply (also 1 GNI) corresponding to the amount of holes. The basic configuration of the present invention is to collect the following.

実施例の説明に入る前に’5ISO−3工T’の説明を
行なう。第1図に横型に形成した接合ゲート型’5IS
O−3IT’の上面図(&)、チャネル方向に沿ったλ
−λ′断面図(b)、チャネル方向と直角な面に沿った
c −c’断面図(C)、チャネル方向と直角な面に沿
ったD −D’断面図(d)及び’5ISO−3工T’
の記号(6)を示す。
Before going into the explanation of the embodiment, '5ISO-3 Engineering T' will be explained. Junction gate type '5IS formed horizontally in Figure 1
Top view of O-3IT'(&), λ along the channel direction
-λ' sectional view (b), c-c' sectional view (C) along the plane perpendicular to the channel direction, D-D' sectional view (d) along the plane perpendicular to the channel direction, and '5ISO- 3-engine T'
The symbol (6) is shown.

第1図において、P基板101(不純物密度N=101
2〜1 o” cm−S)上K、n−ウェル102(N
=1012〜10”(’m−3)が形成され、このn−
ウェル102内表面にソースのn+領域103(N =
 10”〜1020apt−’ )、ドレインのn+領
域104 (N=10”〜10”ff1−3)、第1ゲ
ー    ′ト(G1)(Dp+領域105 (N=1
0” 〜1020“−°)・第2ゲート(G2)(DI
)”領域°06      !(N=1o17〜102
0clR−s)、カ形aすfE、、7−y。
In FIG. 1, a P substrate 101 (impurity density N=101
2-1 o” cm-S) upper K, n-well 102 (N
= 1012~10''('m-3) is formed, and this n-
A source n+ region 103 (N =
10"~1020apt-'), drain n+ region 104 (N=10"~10"ff1-3), first gate (G1) (Dp+ region 105 (N=1
0" ~ 1020"-°)・Second gate (G2) (DI
)” area °06! (N=1o17~102
0clR-s), afE, 7-y.

電極107、ドレイン電極108、第1ゲート電極10
9、第2ゲート電極11oが絶縁膜111のコ/タクト
窓を通して、対応する領域とコンタクトされる。
Electrode 107, drain electrode 108, first gate electrode 10
9. The second gate electrode 11o is contacted with the corresponding region through the contact/tact window of the insulating film 111.

第1図において、丸印112に第1ゲートのp+領域1
05によって形成される鞍部点状の電位障壁が存在する
領域で、′固有ゲート領域112′と以下呼称する。
In FIG. 1, the p+ region 1 of the first gate is indicated by a circle 112.
05, where a saddle point-like potential barrier exists, which is hereinafter referred to as a 'specific gate region 112'.

また、第1ゲートの1対のp+領域1055の間隔W。Also, the distance W between the pair of p+ regions 1055 of the first gate.

1を他のチャネル部よりも狭くする事により、固有ゲー
ト領域112内に第2図に示すような鞍部点状の電位障
壁201が実現され易くなシ、この電位障壁201の高
さによりソースのn+領域103からドレイン側に注入
される電子の量が制御される。この時、ソースのn+領
域103から固有ゲート領域112までの距離に十分小
さく設定することにより、ソースル固有ゲート領域間の
直列抵抗RSげ極めて小さくなシ、相互コンダクタンス
gmとの積に1以下となり、SIT特有の大きなgmが
そのまま実現する。このままでに1固有ゲート領域11
2の電位障壁2o1に、第1ゲートのp+領域105と
第2ゲートのp+領域106の影響を受けるが、第2ゲ
ートのp+領域106の電位を固定する事により、ソー
スのn+領域103からドレインのn+領域104に向
かう電子の注入量を入力信号に応じて実際に制御するの
に第1ゲートのp+領域106の印加電圧となる。
By making the potential barrier 1 narrower than the other channel portions, a saddle point-like potential barrier 201 as shown in FIG. The amount of electrons injected from n+ region 103 to the drain side is controlled. At this time, by setting the distance from the n+ region 103 of the source to the specific gate region 112 sufficiently small, the series resistance RS between the source specific gate regions becomes extremely small, and the product with the mutual conductance gm becomes 1 or less. The large GM characteristic of SIT is realized as is. As it is, 1 unique gate area 11
However, by fixing the potential of the p+ region 106 of the second gate, the potential barrier 2o1 of the source is influenced by the p+ region 105 of the first gate and the p+ region 106 of the second gate. The voltage applied to the p+ region 106 of the first gate is used to actually control the amount of electrons injected toward the n+ region 104 in accordance with the input signal.

さらに、交流的に接地された第2ゲートの1対のp+領
域106の面隔W。2を、第1ゲートのp+領域105
〜第2ゲートのp+領域106間の距離り。0に対して LicG> WO2・・・・・・(1)とすることによ
り、ドレインのn+領域104の電圧の影響が固有ゲー
ト領域112の電位障壁201に及ぶのに完全に遮へい
される。このようにして、固有ゲート領域112の電位
障壁201に第1ゲートのp+領域106に印加された
電圧の静電誘導効果で制御され、しかも第2ゲートのp
+領域106の遮へい効果により、ドレイン電圧にa依
存しない事から、非飽和型SITの高いgmを維持しな
がら、飽和電流特性が得られる。
Furthermore, the plane distance W between the pair of p+ regions 106 of the second gate that is AC grounded. 2, the p+ region 105 of the first gate
~Distance between p+ regions 106 of the second gate. By setting LicG>WO2 (1) for 0, the influence of the voltage of the drain n+ region 104 on the potential barrier 201 of the specific gate region 112 is completely blocked. In this way, the potential barrier 201 of the intrinsic gate region 112 is controlled by the electrostatic induction effect of the voltage applied to the p+ region 106 of the first gate, and the p
Due to the shielding effect of the + region 106, a does not depend on the drain voltage, so that saturation current characteristics can be obtained while maintaining the high gm of a non-saturated SIT.

以上が’5ISO−8IT’の原理であり、これを受光
素子として使うのが本発明であり、以下実施例を図面を
用いて説明する。
The above is the principle of '5ISO-8IT', and the present invention uses this as a light receiving element.Examples will be described below with reference to the drawings.

本実施例でに、第1ゲート、第2ゲートを構成するp+
領領域逆方向電圧を印加して制御する場合を主に説明す
るが、チャネル部(n−ウェル102に相当する。)が
拡散電位だけでピンチオフするようにし、ゲートに順方
向電圧を印加して動作するエンハンスメントモードも可
能でめる。
In this embodiment, the p+
Although we will mainly explain the case where control is performed by applying a reverse voltage to the region, the channel portion (corresponding to the n-well 102) is pinched off only by the diffusion potential, and a forward voltage is applied to the gate. An enhancement mode of operation is also available.

実施例の説明 第3図に、縦型に形成し北本発明の一実施例における’
5ISO−3IT’型フォトトランジスタの一画素分の
上面図(&)、水平方向a −a’断」残水平方向b−
b’断面(Q)、垂直方向a −c’断面(d)、垂直
方向d−d’断面(+5)を示す。
DESCRIPTION OF THE EMBODIMENT FIG.
Top view of one pixel of 5ISO-3IT' type phototransistor (&), cross section in horizontal direction a-a', remaining in horizontal direction b-
b' section (Q), vertical direction a-c' section (d), and vertical direction dd' section (+5) are shown.

第3図において、ドレインのn+基板301(不純物密
度N=10〜10 on  )上にn−エビ302(N
=1o12〜1o”an−’)7)=形成され、第2ゲ
ートのp+領域303(N=1017〜1o20cm−
’ )を形成後、再びn−zピ304(N= 1012
〜10” an−’ )を形成し、コノn−エヒ304
表面に、ソースのn+領域30s(N=1o” 〜20
20crpt−S)、第1 ケー トノp” 領域30
6(N=10 〜10  ff  )、画素分離用のp
+領域307 (N=1o17〜1o20on−3)が
形成され、ソース電極308、第1ゲート電極309r
s絶縁膜310のコンタクト窓を通して対応する領域と
コンタクトする。
In FIG. 3, an n- shrimp 302 (N
=1o12~1o"an-')7)=formed, the p+ region 303 of the second gate (N=1017~1o20cm-
) After forming nz pi 304 (N= 1012
~10” an-’), forming a 304
On the surface, there is a source n+ region 30s (N=1o" ~ 20
20crpt-S), 1st Ketonop” area 30
6 (N=10 to 10 ff), p for pixel separation
+ region 307 (N=1o17 to 1o20on-3) is formed, and the source electrode 308 and the first gate electrode 309r
Contact is made with the corresponding region through the contact window of the s insulating film 310.

第2ゲートのp+領域303及びドレインのn+領域3
01[周辺部で対応する第2ゲート電極及びドレイン電
極とコンタクトされる。第3図において、丸印311σ
第1ゲートのp+領域306によって形成される鞍部点
状の電位障壁が存在する領域で、′固有ゲート領域31
1′と以下呼称する、この時、ソースル固有ゲート領域
間の距離を小さくしているため、この間の直列抵抗R8
に極めて小さくなり、相互フンダクタンスgmとの  
    ・(積に1以下となり、非飽和型SITの大き
なgmがそのまま実現する。
Second gate p+ region 303 and drain n+ region 3
01 [Contacted with the corresponding second gate electrode and drain electrode at the periphery. In Figure 3, circle mark 311σ
A region where a saddle point-like potential barrier formed by the p+ region 306 of the first gate exists;
At this time, since the distance between the source cell specific gate regions, hereinafter referred to as 1', is reduced, the series resistance R8 between them is reduced.
becomes extremely small, and the mutual fundductance gm becomes extremely small.
・(The product is less than 1, and the large gm of the non-saturated SIT can be realized as is.

さらに、第2ゲートの1対のp+領域303の間隔W。Furthermore, the distance W between the pair of p+ regions 303 of the second gate.

2と、第1ゲートのp+領域306〜第2ゲートのp+
領域303間の距離LGG との間に、(1)式同様 eaa > ”G2          −1”(2)
が成立するよう寸法が決められる。しかも、第2ゲート
のp+領域303[交流的に接地し、直流電圧が印加さ
れている。
2 and the p+ region 306 of the first gate to the p+ region of the second gate
Between the distance LGG between the regions 303, eaa >"G2-1" (2) as in equation (1)
The dimensions are determined so that the following holds true. Furthermore, the p+ region 303 of the second gate is grounded in an AC manner, and a DC voltage is applied thereto.

以下、このように構成された本実施例の’5ISo−S
IT’型フォトトランジスタ部の動作を説明する。本実
施例の読出し方法a′電子空乏動作′で行なう。
Hereinafter, the '5ISo-S of this embodiment configured in this way will be explained.
The operation of the IT' type phototransistor section will be explained. The reading method of this embodiment is performed by a'electron depletion operation'.

第3図に示すように、第1ゲートのp+領域306がソ
ースのn+領域305を取囲む事によって、ソースのn
+領域305の近傍の固有ゲート領域311のチャネル
電位が他のチャネル部分より低くなって、ソースのn+
領域305からドレインのn+領域301に向かって流
れる電子にとって第4図に示すような電位障壁401が
形成される。第3図のK −K’紗に沿ったエネルギー
バンド図と、L−L’線に沿ったエネルギーバンド図と
が第4図に示されている。
As shown in FIG. 3, the p+ region 306 of the first gate surrounds the n+ region 305 of the source.
The channel potential of the specific gate region 311 near the + region 305 is lower than that of other channel parts, and the source n+
A potential barrier 401 as shown in FIG. 4 is formed for electrons flowing from the region 305 toward the n+ region 301 of the drain. FIG. 4 shows an energy band diagram along the line K-K' of FIG. 3 and an energy band diagram along the line LL'.

光に表面から侵入し、発生した電子・正孔対のうち電子
にポテンシャルレベルの深いドレインのn+領域301
へ流れτいくが、正孔にフローティング状態になってい
るゲートのp+領域306に大部分が蓄、積される。(
一部に画素分離用のp+領域307に吸収される可能性
があるが、これを防ぐにσ、正のバイアス電圧を印加し
ておけばよいQ ) ’5ISO−3IT’型フォトトランジスタに第1ゲー
トのp+領域306の拡散電位だけで高抵抗のチャネル
領域(これnn″″エビ領域304の承で、一般に1領
域とも呼ぶ。)がほぼ空乏化し、正孔を蓄積する第1ゲ
ートのp+領域306の周囲a空乏化された高抵抗領域
(i領域)をはさんだ# p +  in + #フォ
トダイオードとなっており、対生成した正孔に効率よく
第1ゲートのp+領域306に流入する。
Among the electron-hole pairs generated by light entering from the surface, the n+ region 301 of the drain has a deep potential level for electrons.
Most of the electrons are accumulated in the p+ region 306 of the gate, which is in a floating state due to holes. (
There is a possibility that some of it is absorbed by the p+ region 307 for pixel isolation, but to prevent this, it is sufficient to apply a positive bias voltage σ. The diffusion potential of the p+ region 306 of the gate alone causes the high-resistance channel region (this is the successor to the nn''" shrimp region 304, and is also generally called 1 region) to be almost depleted, and the p+ region of the first gate accumulates holes. It is a #p + in + # photodiode sandwiching a depleted high resistance region (i region) around the periphery of the photodiode 306, and the generated holes efficiently flow into the p+ region 306 of the first gate.

第4図に第3図の’5XSO−3IT’型フォトトラン
ジスタの動作をポテンシャル分布で示したもので、第4
図(2L)に、第3図(b)のK −K’線、L−L’
線に沿ったポテンシャル分布の様子を暗(Dark)状
態を実線で示し、光検出の結果、第1ゲートのp+領域
306にある程度正孔が蓄積されて、第1ゲートのp+
領域306の電位が正に帯電した状態を破線で示し、読
出し状態を一点鎖線で示している。これらに対応する第
3図(b)のM−M’線に沿ったポテンシャル分布が第
4図(b)に示てれている。
Figure 4 shows the operation of the '5XSO-3IT' type phototransistor in Figure 3 using potential distribution.
Figure (2L) shows the K-K' line and L-L' line of Figure 3(b).
The dark state of the potential distribution along the line is shown by a solid line, and as a result of photodetection, a certain amount of holes are accumulated in the p+ region 306 of the first gate, and the p+ region of the first gate is
A state where the potential of the region 306 is positively charged is shown by a broken line, and a read state is shown by a dashed line. The potential distribution along line MM' in FIG. 3(b) corresponding to these is shown in FIG. 4(b).

読出し時にに、パルスが第1ゲート電極309から第1
ゲートのp+領域306に印加される。
During readout, a pulse is applied from the first gate electrode 309 to the first gate electrode 309.
Applied to the p+ region 306 of the gate.

第1ゲートのp 領域306に印加されるパルス電圧が
不妊ければ高いゲート電位に蓄積された正孔に逃げにく
く、非破壊読出し動作となる。第1ゲートのp 領域3
06に印加するパルス電圧が大きければ、第1ゲートの
p+領域306に蓄積でれた正孔にソースのn+領域3
01(又に画素分離用のp+領域307)に掃出されて
、暗(Dark)状態の実線で示したポテンシャル分布
に復帰する事になり、通常の破壊読出し動作となる。
If the pulse voltage applied to the p-region 306 of the first gate is inefficient, holes accumulated at a high gate potential will have difficulty escaping, resulting in a non-destructive readout operation. P region 3 of first gate
If the pulse voltage applied to 06 is large, the holes accumulated in the p+ region 306 of the first gate will be absorbed by the n+ region 306 of the source.
01 (and the p+ region 307 for pixel isolation) and returns to the potential distribution shown by the solid line in the dark state, resulting in a normal destructive readout operation.

第1ゲートのp+領域306に蓄積された光情報として
の正孔が印加パルスによってソースのn+領域305に
移動する時、本来高いゲートポテンシャルレベルにある
ゲートのp+領域306内に蓄積された正孔にとってに
、リースのn+領域305に流入する為に拡散電位とい
う非常に高いポテンシャル障壁を越えなければならず、
一方ソースノn+領域306の電子にとっては固有ゲー
ト領域311の低い電位障壁を越えればチャネルに注入
される訳で、この差に対応するように正孔のm倍の電子
注入が行なわれ大きな光増倍効果が実現する。この時、
ソースのn+領域305がフローティング状態であれば
、′電子空乏′という状態で信号情報が保存される。こ
の時、従来の’S I T’であれば、ドレインのn+
領域301の電圧の変動が固有ゲート領域311の電位
障壁K11i″fhfcF>・−”AI!EKG [7
?jM+7t[l! h’v4     。
When the holes as optical information accumulated in the p+ region 306 of the first gate move to the n+ region 305 of the source by the applied pulse, the holes accumulated in the p+ region 306 of the gate, which is originally at a high gate potential level, move to the n+ region 305 of the source. In order to flow into the n+ region 305 of the lease, it is necessary to overcome a very high potential barrier called the diffusion potential.
On the other hand, for electrons in the source n+ region 306, if they cross the low potential barrier of the intrinsic gate region 311, they are injected into the channel, and to correspond to this difference, m times as many electrons as holes are injected, resulting in a large photomultiplier. The effect is realized. At this time,
If the source n+ region 305 is in a floating state, signal information is stored in an ``electron depletion'' state. At this time, in the conventional 'S I T', the drain n+
The fluctuation of the voltage in the region 301 causes the potential barrier K11i″fhfcF>・−”AI! of the intrinsic gate region 311. EKG [7
? jM+7t[l! h'v4.

ン電圧の変動が光増倍率を変化させてしまう。ところが
本発明の#5ISO−3IT’に、第2ゲートのp+領
域303の遮へい効果により、このような好ましくない
帰還作用に生じないので光の強度に依存しない増倍効果
が実現できる。
Fluctuations in the voltage will change the light multiplication factor. However, in the #5ISO-3IT' of the present invention, due to the shielding effect of the p+ region 303 of the second gate, such undesirable feedback effects do not occur, so that a multiplication effect that does not depend on the intensity of light can be realized.

以上のような電子空乏動作をする’5XSO−3IT’
型フォトトランジスタを二次元配列した回路構成を第6
図に示す。垂直走査回路501に’5ISO−3IT’
型フォトトランジスタの第1ゲートのp+領域306に
読出しパルスを印加し、光発して蓄積している正孔のm
倍の電子がソースからドレインに注入され電源F1に排
出される。この結果、ソースのn+領域305及びこれ
に接続した垂直信号伝送@5Q2が電子空乏状態となる
。(第2ゲートのp+領域303に電源z2に接続され
る。)その後、水平走査回路503によって水平MOS
スイッチが順次開閉することで、電源E3から電子が負
荷抵抗Rcを流れて垂直信号伝送線502に注入する時
、信号電圧を発生するO 受光部のレイアウトに、第6図に示すように第3図のユ
ニットを二次元に配列したものである。
'5XSO-3IT' which performs electron depletion operation as described above
The circuit configuration with a two-dimensional array of type phototransistors is shown in the sixth example.
As shown in the figure. '5ISO-3IT' in vertical scanning circuit 501
A read pulse is applied to the p+ region 306 of the first gate of the type phototransistor, and m of the holes emitted and accumulated is
Double the number of electrons is injected from the source to the drain and discharged to the power source F1. As a result, the n+ region 305 of the source and the vertical signal transmission @5Q2 connected thereto are in an electron-depleted state. (The p+ region 303 of the second gate is connected to the power supply z2.) After that, the horizontal scanning circuit 503 connects the horizontal MOS
By sequentially opening and closing the switches, when electrons from the power source E3 flow through the load resistor Rc and are injected into the vertical signal transmission line 502, a signal voltage is generated. This is a two-dimensional arrangement of the units shown in the figure.

以上のように、本実施例によれば、理想的な飽和電流特
性をもつ′S工5o−8工T′型フォトトランジスタを
受光素子とする事により、入射光の強度に依らず安定な
増倍効果が実現できる。
As described above, according to this embodiment, by using the 'S5O-8T' type phototransistor with ideal saturation current characteristics as the light receiving element, stable increase is achieved regardless of the intensity of the incident light. A double effect can be achieved.

以上に、電子空乏動作であるが、構造を一部変更すれば
、電子蓄積動作も可能でるる。この時の画素部分の構造
に第7図に上面図(a)、水平方向a&/断面図(b)
、水平方向b −b’断面図(C)、垂直方向C−Q’
断面図((1)、垂直方向d −d’断面図(d)を示
す。
The above is an electron depletion operation, but if the structure is partially changed, an electron accumulation operation is also possible. The structure of the pixel part at this time is shown in Figure 7, with a top view (a) and a horizontal cross-sectional view (a).
, horizontal direction b-b' sectional view (C), vertical direction C-Q'
Cross-sectional view ((1), vertical direction d-d' cross-sectional view (d) is shown.

第7図に示すように第3図のn 基板301のかわりに
p基板7o1(N=1012〜1o17備−5)を用い
、p基板701表面にドレインとなるn+領域702を
垂直信号伝送線となるように形成する。この後、n″″
 エピ302を形成してから以降に第3図と全く同一で
ある。
As shown in FIG. 7, a p-substrate 7o1 (N=1012 to 1o17-5) is used instead of the n-substrate 301 in FIG. Form it so that it becomes. After this, n″″
The process after forming the epitaxial layer 302 is exactly the same as that shown in FIG.

読出し動作も全く同様で、第3図と異なる点にドレイン
のn+領域702に光生成した正孔のm倍の電子(これ
にソースのn+領域306からチャネルへ注入される。
The read operation is exactly the same, except that the difference from FIG. 3 is that electrons (m times as many electrons as holes photogenerated in the n+ region 702 of the drain) are injected into the channel from the n+ region 306 of the source.

)が信号電荷として蓄積するという事とこ′rLに対応
して、第3図の信号伝送線として用いたソース電極30
8に、電源供給のための配線にかわる。
) is accumulated as a signal charge.
8, the wiring for power supply is replaced.

このように、電子蓄積動作をする’5ISO−3I T
’型フォトトランジスタを二次元配列した回路構成を第
8図に示す。上述したように、第3図の垂直信号伝送線
502にソースに接続されていたが、第8図でに、ドレ
インに接続された垂直信号伝送線802を用い、ソース
に電源(ここでにGND)に接続されている。
In this way, the '5ISO-3I T
FIG. 8 shows a circuit configuration in which ' type phototransistors are two-dimensionally arranged. As mentioned above, the source was connected to the vertical signal transmission line 502 in FIG. 3, but in FIG. )It is connected to the.

この場合も、光強度に依存しない安定な増倍効果が可能
な上、水平走査回路をCODとした構成にも応用できる
特徴を有する。
In this case as well, it is possible to achieve a stable multiplication effect that does not depend on the light intensity, and it also has the feature that it can be applied to a configuration in which the horizontal scanning circuit is a COD.

なお、上記実施例の各領域の極性を全て反転しても構わ
ないし、画素分離領域としては絶縁膜で構成しても構わ
ない。
Note that the polarities of all the regions in the above embodiments may be reversed, and the pixel isolation region may be formed of an insulating film.

発明の効果 1       本発明に、理想的な電流飽和特性を有
するフォトトランジスタを用いる事により、入射光量に
依存しない光増倍が可能となり、優れた高感度特性の撮
像素子を実現できるものである。
Effect of the Invention 1 By using a phototransistor having ideal current saturation characteristics in the present invention, light multiplication that does not depend on the amount of incident light becomes possible, and an imaging device with excellent high sensitivity characteristics can be realized.

チャネル方向に沿った人−に断面図〆、チャネルと直角
な方向に沿ったc−c’断面図ダ、チャ坏ルと直角な方
向に沿ったD−了断面図〆、等価記号目 〆、第2図B’5ISO−3IT’(7)動作時のポテ
ンシャル分布図、第3図a Naに電子空乏動作の’5
ISO−8IT’型フォトトランジスタの上面図、水平
方向2L −&’断面図、水平方向のb −b筒面図、
垂直方向a −c’断面図、垂直方向d −d′断面図
、第4図に’5ISO−3IT’型フォトトランジスタ
のチャネル方向に沿っtポテンシャル分布図〆、チャネ
ルと直角な方向に沿ったボテンシャル分布図ν、第5図
に電子空乏動作の’5ISO−8IT’型フォトトラン
ジスタを用いた撮像素子構成図、第6図a−6に第5図
の各受光部のレイアウト図、第7図a”’−’err電
子蓄積      1動作の’S I S O−3I 
T’型フォトトランジスタの上面図〆、水平方向a−a
/断面図2.水平方向b−b’断面図4、垂直方向0−
 Q’断面図!、垂301・・・・・・n+基板(ドレ
イン)、302゜304・・・・・・n−エビ、303
・・・・・・第2ゲート、305・・・・・・ソース、
3o6・・・・・・lEl ケ−)、311・・・・・
・固有ゲート。
Cross-sectional view along the direction of the channel〆〆, CC' cross-sectional view along the direction perpendicular to the channel〆, D-cross-sectional view along the direction perpendicular to the channel〆〆, equivalent symbol 〆〆, Figure 2 B'5ISO-3IT' (7) Potential distribution diagram during operation, Figure 3a '5 of electron depletion operation in Na
A top view of an ISO-8IT' type phototransistor, a horizontal 2L-&' cross-sectional view, a horizontal b-b cylindrical view,
Vertical direction a-c' cross-sectional view, vertical direction d-d' cross-sectional view, t-potential distribution diagram along the channel direction of the '5ISO-3IT' type phototransistor, and the potential distribution along the direction perpendicular to the channel. Distribution diagram ν, Figure 5 is a configuration diagram of an image sensor using a '5ISO-8IT' type phototransistor with electron depletion operation, Figure 6 a-6 is a layout diagram of each light receiving section in Figure 5, and Figure 7 a. ”'-'errElectron accumulation 1 operation'S I S O-3I
Top view of T' type phototransistor, horizontal direction a-a
/Cross-sectional view 2. Horizontal direction bb' sectional view 4, vertical direction 0-
Q' cross section! , vertical 301...n+ substrate (drain), 302°304...n- shrimp, 303
...Second gate, 305...Source,
3o6...lEl ke-), 311...
・Unique gate.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 第4図 (α)(b) 第5図 E(、工↓ 第8図
Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 (α) (b) Figure 5 E (, ↓ Figure 8

Claims (1)

【特許請求の範囲】[Claims] ソース領域、ドレイン領域、前記ソース領域〜ドレイン
領域間に第1の電荷担体の通路となるチャネルを形成す
るための高抵抗半導体領域を備え、前記高抵抗半導体領
域内のソース領域近傍に、光生成した第2の電荷担体を
蓄積する第1のゲート領域を形成し、前記チャネルの前
記ソース領域近傍の電位に不均一な部分を設けて、主動
作領域において第1の電荷担体に対する電位障壁となし
、しかもソース領域から前記電位障壁までの直列抵抗R
_Sが変換コンダクタンスGmに対しR_S・Gm<1
となし、かつ、前記第1のゲート領域近傍に第2のゲー
ト領域を形成し、前記第2のゲート領域で決まるチャネ
ル幅r_G_2と第1ゲート領域〜第2ゲート領域間の
距離l_G_Gとの間で、l_G_G>r_G_2が成
立つように諸寸法を選定し、第2の電荷担体のm倍に相
当する第1の電荷担体が前記ソース領域から前記ドレイ
ン領域に注入されるようなフォトトランジスタを受光素
子とする事を特徴とする固体撮像装置。
A source region, a drain region, and a high resistance semiconductor region for forming a channel serving as a passage for a first charge carrier between the source region and the drain region; forming a first gate region for accumulating second charge carriers, and providing a non-uniform portion of potential in the vicinity of the source region of the channel to act as a potential barrier to the first charge carriers in the main operating region; , and the series resistance R from the source region to the potential barrier
_S is R_S・Gm<1 for conversion conductance Gm
and a second gate region is formed near the first gate region, and between a channel width r_G_2 determined by the second gate region and a distance l_G_G between the first gate region and the second gate region. Then, various dimensions are selected so that l_G_G>r_G_2 holds, and a phototransistor is used to receive light such that first charge carriers equivalent to m times the number of second charge carriers are injected from the source region to the drain region. A solid-state imaging device characterized by an element.
JP59179749A 1984-04-19 1984-08-28 Solid-state image pickup device Pending JPS6156456A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59179749A JPS6156456A (en) 1984-08-28 1984-08-28 Solid-state image pickup device
US06/725,353 US4639753A (en) 1984-04-19 1985-04-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59179749A JPS6156456A (en) 1984-08-28 1984-08-28 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6156456A true JPS6156456A (en) 1986-03-22

Family

ID=16071199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59179749A Pending JPS6156456A (en) 1984-04-19 1984-08-28 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6156456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162887A (en) * 1988-10-31 1992-11-10 Texas Instruments Incorporated Buried junction photodiode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162887A (en) * 1988-10-31 1992-11-10 Texas Instruments Incorporated Buried junction photodiode

Similar Documents

Publication Publication Date Title
JP4295740B2 (en) Charge coupled device image sensor
JPH0444465B2 (en)
JPH0666446B2 (en) Solid-state image sensor
JPS6149822B2 (en)
EP0020175B2 (en) Solid-state imaging device
JPH0370436B2 (en)
US4525742A (en) Two-dimensional solid-state image sensor device
US6545331B1 (en) Solid state imaging device, manufacturing method thereof, and solid state imaging apparatus
JPH01194353A (en) Photoelectric conversion device
US4616249A (en) Solid state image pick-up element of static induction transistor type
US4684968A (en) JFET imager having light sensing inversion layer induced by insulator charge
US4623909A (en) Semiconductor photodetector
US4433343A (en) Extrinsic infrared detector with dopant site charge-neutralization
JPS6156456A (en) Solid-state image pickup device
JPS59188278A (en) Semiconductor image pickup device
JPS6134263B2 (en)
JP2870467B2 (en) Charge coupled device
JP2898005B2 (en) Solid-state imaging device
JPS5831670A (en) Solid-state image pickup device
JPS6050101B2 (en) solid-state imaging device
JPS61279173A (en) Solid-state image pickup device
JPS62152162A (en) One-dimensional semiconductor image pickup device
GB2248341A (en) Infra-red radiation imaging device arrangements
JPH02218162A (en) Solid-state image sensing element
JPH069239B2 (en) Solid-state imaging device