JPS6156314A - Recording and reproducing objective lens of optical information recording medium - Google Patents

Recording and reproducing objective lens of optical information recording medium

Info

Publication number
JPS6156314A
JPS6156314A JP17758984A JP17758984A JPS6156314A JP S6156314 A JPS6156314 A JP S6156314A JP 17758984 A JP17758984 A JP 17758984A JP 17758984 A JP17758984 A JP 17758984A JP S6156314 A JPS6156314 A JP S6156314A
Authority
JP
Japan
Prior art keywords
light source
aspherical
source side
lens
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17758984A
Other languages
Japanese (ja)
Other versions
JPH0428282B2 (en
Inventor
Norikazu Arai
則一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17758984A priority Critical patent/JPS6156314A/en
Publication of JPS6156314A publication Critical patent/JPS6156314A/en
Publication of JPH0428282B2 publication Critical patent/JPH0428282B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Viewfinders (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To realize an objective lens having a large image forming magnification, as a single lens by forming both surfaces of a light source side and an image side to aspherical surfaces by a positive single lens whose convex surface has been turned to the light source side, and satisfying prescribed conditions. CONSTITUTION:A titled lens is constituted so that a light emitted from a light source 4 is condensed to an information recording surface 1 by an objective lens 2, and as for the objective lens 2, both surfaces of the light source side and an image side are formed to aspherical surfaces by a positive single lens whose convex surface is turned to the light source side. In this way, a range of an image forming magnification is limited, an aspherical aberration is corrected easily, and in order to secure a necessary operating distance, too, an optical system can be made compact by shortening a focal distance. Also, the generation of the aspherical aberration and a comatic aberration is reduced by selecting optimumly a radius of curvature of an apex of the surface of the light source side, and the correction can be executed by a small aspherical surface quantity and a simple aspherical shape. Also, the aspherical aberration can be corrected satisfactorily by satisfying the conditions related to the aspherical surface quantity. Accordingly, even if the image forming magnification is large, the aberration is corrected satisfactorily by a single element lens, and an optical system for an optical disk can be reduced as to its cost remarkably as a simple type.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光ティスフ用対物レンズ、特に光源と清報記
録面との距離か比較的小さい場合に用いるに適した晧レ
ンズで構成された対物レンズに関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an objective lens for optical microscopes, particularly an objective lens composed of a light lens suitable for use when the distance between a light source and a recording surface is relatively small. Regarding lenses.

(従来技術) 光ディスク等の情報記録媒体への記録再生装置に用いら
れる光学系で、近年最も一般的なものけ、第11図に示
すように1光源4を出た光をコリメータレンズ3で子行
光にし、対物レンズ2によって情報記録面1に集光させ
るものである。この光学系では、光ディスク等の面振れ
に対しては対物レンズ2を光軸方向に動かすことによっ
て7オーカシングを行なっている。
(Prior art) An optical system used in recording and reproducing devices for information recording media such as optical disks, which has been the most common in recent years.As shown in FIG. The light is made into a line and focused on the information recording surface 1 by the objective lens 2. In this optical system, 7-ocusing is performed by moving the objective lens 2 in the optical axis direction in order to deal with surface wobbling of an optical disk or the like.

この方式は、対物レンズ2を動かしても光学系の性能が
不変でおるという長所を持っている反面、対物レンズ2
とコリメータレンズ3と2つのレンズを必要とするため
光学系が高lTh1Kなるという間蹟がある。
This method has the advantage that the performance of the optical system remains unchanged even if the objective lens 2 is moved.
Since two lenses, including the collimator lens 3, are required, the optical system becomes high lTh1K.

これに対して、第12図、第13図に示すより うにコリメータレンズを用いず、光源4からの光を対物
レンズ2で直接に情報記録面1に集光する方式も知られ
ている。
On the other hand, a method is also known in which the light from the light source 4 is directly focused onto the information recording surface 1 by the objective lens 2 without using a collimator lens, as shown in FIGS. 12 and 13.

第12図に示すものは、フォーカシングは対物レンズ2
の+0移動で行なうが、移動によって対物レンズ2の開
口数、性能が変化するため、あまυ結像@率を大きくす
ることが出来ず、基準結縁培率は一1/〜−1/8  
梶度であった。
In the case shown in Fig. 12, focusing is performed by the objective lens 2.
However, since the numerical aperture and performance of the objective lens 2 change due to the movement, it is not possible to increase the amaυ imaging rate, and the standard focal rate is -1/8 to -1/8.
It was Kajitoshi.

第13図に示すものは、光源4と対物レンズ2を含む光
学系全体■ユニット5を動かしてフォーカシングを行な
うも0であり、フォーカシングのための開口数の変化や
性能劣化がないが、ユニット5をできるたけ軽kにする
ために、必要な作動111!躯をjlll医しつつ光源
4と情報記録面1とO距離ヲ小さくすることが電装とな
る。このため結鍬陪率は一1/〜−1/2と、第12図
に示す光学系と比較して大きくとる必安がある。
The entire optical system including the light source 4 and the objective lens 2 is shown in FIG. 111 necessary operations to make it as light as possible! Electrical equipment is achieved by reducing the distance between the light source 4 and the information recording surface 1 while keeping the body in check. For this reason, it is necessary to set the convergence ratio to 11/--1/2, which is larger than that of the optical system shown in FIG. 12.

これら0光学系でコストダウン全針るには、第11図に
示すもOでは対物レンズ2、コリメータレンズ3のそれ
ぞれを拳レンズで構成することによって限界にきている
In order to completely reduce the cost with these 0 optical systems, the limit is reached by constructing each of the objective lens 2 and collimator lens 3 with fist lenses in the O shown in FIG. 11.

I!12図、第13図の光学系において、対物レンズ2
が2枚構成になると、レンズの組込み、調整に工数がか
かシ、かえって第11図示の光学系の方が低コストとな
るので、藝レンズで構成しなければならない。
I! In the optical system shown in Figs. 12 and 13, objective lens 2
If the optical system is constructed with two lenses, it will take many man-hours to assemble and adjust the lenses, and the optical system shown in FIG. 11 will cost less, so it must be constructed with a single lens.

このようなレンズとしては、特開1150−15694
5号、%開昭58−17409号等が・−1 知られているが、結縁倍率か /20と小さく、必安な
作動距離を611保するKは焦点距離を長くしなければ
ならない。こ■ため、光源と情報記録面との距離が長く
なるので第13図に示す光学系用の対物レンズとしては
匣用不可能である。
As such a lens, Japanese Patent Application Laid-Open No. 1150-15694
No. 5, No. 58-17409, etc. are known, but the focal length is as small as /20, and the K, which maintains an essential working distance of 611, must have a long focal length. Therefore, since the distance between the light source and the information recording surface becomes long, it cannot be used as an objective lens for the optical system shown in FIG. 13.

第12図に示す光学系用の対物レンズとして用いるにし
ても、光学系全体を小匿化するためには光源と対物レン
ズと0間にミラーやプリズムを配置して光路を折シ曲け
なければならず、逆に光学系のコストアンプを招くとい
う問題があった。
Even if it is used as an objective lens for the optical system shown in Figure 12, in order to make the entire optical system smaller, it is necessary to bend the optical path by placing a mirror or prism between the light source, objective lens, and zero. On the contrary, there is a problem in that it increases the cost of the optical system.

(発明の目的) この発明は第12白、第13図のような光学系の対物レ
ンズとして用いるに適した結□□□@率の大きい対3勿
レンズを等レンズとして実損しようとするものである。
(Purpose of the invention) This invention aims to use a pair of lenses with a high ratio of □□□@ suitable for use as an objective lens in an optical system such as those shown in Fig. 12 and Fig. 13 as an equal lens. It is.

(発明の構成) この発明においては、対物レンズの構成を、光源側に凸
面を向けた正の琳レンズでおり、光源側及び縁側の両方
0面が非球面とされ、0.08 ≦1ml  <1  
      −・・・・・、 (1またたし m :績は@率 f :レンズの焦点距離 n :レンズの屈折率 rl:光源側の面の頂点曲率半匝 r2:縁側の面の頂点曲率半玉 NA:縁側の開口数 今 :光源側の面の有効径最周辺(上記NAの周縁光線
が入射する光源側の面上O位置ンにおける非球面と頂点
曲率半玉r、を有する基準球面との光軸方向の差で、光
軸から遠ざかるほど該非球面が光源側へ変位している場
合を正とする口 匂 :隊9111■面の有効径@周辺における非球面と
頂点曲率半玉r2を有する基準球面との光軸方向の差で
、元軸から遠ざかる程該非球面が光源側へ変位している
場合を正とする。
(Structure of the Invention) In the present invention, the objective lens is a positive Rin lens with a convex surface facing the light source side, and both the light source side and edge side zero surfaces are aspheric, and 0.08≦1ml< 1
-・・・・・・, (1 m): The result is @ratio f: Focal length of the lens n: Refractive index of the lens rl: Half the apex curvature of the surface on the light source side r2: Half the apex curvature of the surface on the edge side NA: Numerical aperture on the edge side Now: Effective diameter of the surface on the light source side (the light between the reference spherical surface having an aspherical surface at position O on the surface on the light source side where the peripheral rays of the above NA enter and the apex curvature semi-spherical r) Due to the difference in the axial direction, the case where the aspherical surface is displaced toward the light source as the distance from the optical axis is determined as positive. A case where the aspherical surface is displaced toward the light source as the distance from the original axis increases due to the difference in the optical axis direction from the original axis is defined as positive.

a(m):佑鐵WI率m■関数であシ a  (nリ =2.5 1m 12+0.11で表わ
きれる。
a(m): Yutetsu WI rate m ■ function is a (nri = 2.5 1m 12 + 0.11).

の各条注ヲ満足するものとしている。It is assumed that the notes in each article are satisfied.

史には、 −4くΔ1/ム2<−0,4・・・・・・ (4)0条
注七滴足することが望ましい。
In the history, it is desirable to add -4 Δ1/mu2<-0,4... (4) 7 drops of note 0.

(作用) 条件(1)はこの発明の対物レンズが囲周される結@倍
率の範囲を示す。上限をこえると光源側の開口数が慮側
の開口数よシ大となシ、周縁光線■光源側の面への入射
角が大となシ、球面収差の補正が困難となる。下限をこ
えると、必要な作動距i!1Iit−@保するには焦点
距離を長くしなければならず、光学系をコンパクトに構
成することが不可能となる。
(Operation) Condition (1) indicates the range of magnification within which the objective lens of the present invention is surrounded. If the upper limit is exceeded, the numerical aperture on the light source side becomes larger than the numerical aperture on the light side, and the angle of incidence of the marginal rays on the surface on the light source side becomes large, making it difficult to correct spherical aberration. If the lower limit is exceeded, the required working distance i! In order to maintain 1Iit-@, the focal length must be increased, making it impossible to configure the optical system compactly.

条件(2)は光源側の面■頂点曲率半玉r、に関する。Condition (2) relates to the light source side surface {circle around (2)} apex curvature half circle r.

こ■発明のレンズでは、両面を非球面としているので、
球面収と、正弦条件を良好に補正することは可能である
。しかし、rlt−最適に選ぶことでできるだけ球面収
益、コマ収差の発生を少なくし、小さい非球面量でしか
も導線な非   ”球面jし状で補正が可能となる。す
なわち、結縁@率が零のときはレンズの屈折率が比較的
小さ1/−+ jJj f tlつ70.、□、わ、1
−ゆえ  (両凸レンズであシ、屈折率が高いときは同
様の凸メニスカスレンズであることはよく知られている
。一方、結縁@率が−10ときは対称な両凸レンズとな
る。条件(2)は結@倍率が大きくなる稈元源側の面O
頂点曲率半玉r1の最遠端がゆるくなるという上述の関
係を示している。上限をこえて大となると正弦条件がオ
ーバーとな)、下限をこえて小となると正弦条件がアン
ダーとなシ、河れ■場合も、正弦条件を良好に床って球
面収とを補正するには非球面形状が複雑になるO 条件(3)は球面収差を良好に補正するためO非球面量
に関する条件である。収差論から明らかなように、3次
の球面収差は波面収差で考えると開口の4乗に比的する
口こ■ため非球面量は開口数の4乗で正規化する必装が
ある。また、レンズ■屈折率が高い回、球面収差補正の
だめの非球面量は小さくてすむ0実際には、非球面には
結@漬率を一定とすると、光源側の面と縁側の面の周縁
光線に対する非球面社命、偽をl/Φ−03、(NA)
’、fで正規化した量をス1、ス2とすれば、Zlが正
で大なほど、為が負で小なほど球面収差をオーバーにす
る効果が大となる −〇で、球面収差を補正するには式
−為はある範囲内にあることが必要である。
■The lens of this invention has aspherical surfaces on both sides, so
It is possible to satisfactorily correct spherical aberration and sine conditions. However, by selecting rlt-optimally, it is possible to reduce the spherical return and the occurrence of comatic aberration as much as possible, and to correct it with a small aspherical amount and a conductive aspherical surface. When the refractive index of the lens is relatively small 1/-+ jJj f tl 70., □, 1
- Therefore (it is a biconvex lens, and it is well known that when the refractive index is high, it is a similar convex meniscus lens.On the other hand, when the negativity is -10, it becomes a symmetrical biconvex lens.Condition (2) ) is the surface O on the culm source side where the magnification increases
This shows the above-mentioned relationship in which the farthest end of the apex curvature half ball r1 becomes loose. If it becomes larger than the upper limit, the sine condition is over), and if it becomes smaller than the lower limit, the sine condition is under. Condition (3) is a condition regarding the amount of the aspheric surface in order to satisfactorily correct the spherical aberration. As is clear from aberration theory, third-order spherical aberration is proportional to the fourth power of the numerical aperture when considered in terms of wavefront aberration, so it is necessary to normalize the aspherical amount by the fourth power of the numerical aperture. In addition, when the lens has a high refractive index, the amount of aspherical surface needed to correct spherical aberration can be small.In reality, if the aspherical surface has a constant condensation rate, the periphery of the surface on the light source side and the surface on the edge side Aspherical surface for light rays, false l/Φ-03, (NA)
', If the normalized quantities by f are S1 and S2, the larger the positive value of Zl, and the smaller the negative value of Zl, the greater the effect of overdoing the spherical aberration. In order to correct the equation, it is necessary that the equation is within a certain range.

次に@率を変化させた場合、結飲階率■変化が波面収差
に及はず影響は、縁側の開口数を一定とすると光k O
1t+ v開口数の自乗に比例する。
Next, when the @ ratio is changed, the change in the scala drinka ratio does not affect the wavefront aberration, and the effect is that if the numerical aperture on the edge side is constant, the light k O
1t+v Proportional to the square of the numerical aperture.

このため、補正すべき球[1[i収&駄は結縁渣率が零
のときの補正すべき球面収龜量と結鍬@率0自乗に比的
した址の和と考えることが出来る。
Therefore, the spherical convergence amount to be corrected can be considered as the sum of the spherical convergence amount to be corrected when the convergence rate is zero and the value relative to the convergence rate 0 squared.

従って、結諌@率O変化を考慮して定数項と結諌陪率の
自乗に比レリする項の和からなる関数必要がある。
Therefore, in consideration of the change in rate O, there is a need for a function consisting of the sum of a constant term and a term proportional to the square of the rate.

#!件(3)はこの範囲を規定するもので、上限をこえ
ると球面収差が補正過剰となシ、下限をこえると球面収
差が補正不足となる。
#! Condition (3) defines this range; when the upper limit is exceeded, the spherical aberration is over-corrected, and when the lower limit is exceeded, the spherical aberration is under-corrected.

条FF (4)は正弦条件の補正に関し、この範囲を満
足しないと正弦条件の凹凸が大となシ、これを無理に補
正しようとすると非球面形状が複雑化する。
Article FF (4) relates to correction of the sine condition, and if this range is not satisfied, the unevenness of the sine condition will become large, and if this is tried to be corrected forcibly, the aspherical shape will become complicated.

(実施例) 以下この発明O対物レンズ■実施列を示す0表中の記号
は前述の池、 d :レンズθ軸上厚 ν :d線におけるアツベ数 dc:112側に挿入されているカバーガラスの軸上厚
(7801m光に対する屈折率は1゜wiJ  :作動
距離 光源側、像側の面■非球面形状は、面の頂点を原点とし
、5を軸方向をXQiIとした直交座標系において、K
を円錐定数、Aiを非球面係数、Piを非球面のべき数
とするとき で表わされる。
(Example) Hereinafter, this invention O objective lens ■ 0 Indicating the implementation row The symbols in the table are as described above, d: Lens θ axial thickness ν: Atsbe number at d line dc: Cover glass inserted on the 112 side On-axis thickness (refractive index for 7801 m light is 1°wiJ: Working distance Light source side, image side surface ■The aspherical shape has the apex of the surface as the origin and 5 as the axial direction in the orthogonal coordinate system with XQiI, K
is a conic constant, Ai is an aspherical coefficient, and Pi is an exponent of the aspherical surface.

Hl、R2はそれぞれ光源側0面、像側■面における周
縁元厭の高さでおる。
Hl and R2 are the heights of the peripheral edges on the light source side surface 0 and the image side surface 2, respectively.

非球面量Δ1、Δ2は、非球面形状を上記のように表わ
した場合には、 Δj= Xsp、j   XAs、j   (コ=1,
2)但し C・ニー    rj Kユ :5面の円錐定数 Ai(j):j面O非球面係数 (j)、  ・ Pl、コ面の非球面Qべき数 である。
When the aspherical shape is expressed as above, the aspherical quantities Δ1 and Δ2 are as follows: Δj=Xsp,j XAs,j (ko=1,
2) However, C. knee rj Kyu: conic constant Ai (j) of 5 planes: j plane O aspherical coefficient (j), ・ Pl is the aspherical Q power of the C plane.

実施例1 f:1・□         NA=0.4523m 
=−1/8d c =0.2667WD=  0.58
59 非球面係数・べき敏 ヒ1=0.513       h2=o・402実施
列2 f  =  1.ONA=0.4503m =−1/s
       dc”(12667WD=  0.58
18 非球面係数・べき数 エラ、 =0.511       ki2=0.38
8実施8にり3 f   =   1.ONA=0.4426m =  
”/s       d C=0.2667〜VD=(
1,5291 非球面係数2べき数 )11 =0.512             上(
2二〇、333実施列4 f  =  1.0         NA=0.44
60n1 =  ”/s       d c−0,2
667WD=  0.7788 非球面係数・べき数 1−11=0.511      H2=0.484実
施列5 f =  1.0        1’1A=0.45
42m  =−0,25uc=t)、3333WL)=
  0.8362 非球面係数・べき該 )11=0.588       )12=0.561
実hVA例6 f  =  1.ONA=0.4493m  −−0,
25ac=0.3333込’D=  0.8774 非球面係数・べき以 1−1. =0.582       H2=0.55
4実施h7 .’  = 1.0         NA=0.46
557m  =−0,25clc=o、a:3:3aw
p==  0.7086 非球面係数・べ@数 。f (1+II。1)2=0°2991  偽/l<
=−2,74)i、 =0.590      )12
 =0.536実施列8 f  =  1.ONA=0.4511m  =−o、
s          uc=0.5000WD=  
0.9240 非球面係数・べき数 。、?”(1++□11ン2  =0°1522   
t−、/e陀=−0°6111、 =0.724   
    )12=0.649実m列9 f  =  1.ONA=0.4522m  =−0,
5dc =0.5002WD=  0.8138 非球面係数・べき数 )1.=0.690      鳩=0.673実施列
10 f  =  1.0             NA=
0.45mニー1/12      dC= WD= 非球面係数・べき数 )11=0.491       H2=0.363(
発明の効果) この発明の対″物しンズは、第2図ないし第11図に示
すように、F5鐵培率が従来のものに比較して大きいに
も拘らず、曝玉レンズで良好な収走補正がなされている
Example 1 f: 1・□ NA=0.4523m
=-1/8d c =0.2667WD=0.58
59 Aspherical coefficient/power agility 1=0.513 h2=o・402 implementation column 2 f=1. ONA=0.4503m=-1/s
dc” (12667WD= 0.58
18 Aspheric coefficient/power number error, =0.511 ki2=0.38
8 implementation 8 3 f = 1. ONA=0.4426m=
”/s d C=0.2667~VD=(
1,5291 Aspherical coefficient 2 powers) 11 = 0.512 Upper (
220, 333 row 4 f = 1.0 NA = 0.44
60n1 = ”/s d c-0,2
667WD = 0.7788 Aspheric coefficient/power number 1-11 = 0.511 H2 = 0.484 implementation column 5 f = 1.0 1'1A = 0.45
42m = -0, 25uc = t), 3333WL) =
0.8362 Aspheric coefficient/power) 11 = 0.588 ) 12 = 0.561
Actual hVA example 6 f = 1. ONA=0.4493m --0,
25ac=0.3333 included'D=0.8774 Aspheric coefficient/power 1-1. =0.582 H2=0.55
4 implementation h7. '=1.0 NA=0.46
557m =-0, 25clc=o, a:3:3aw
p== 0.7086 Aspherical coefficient/be@number. f (1+II.1)2=0°2991 false/l<
=-2,74)i, =0.590)12
=0.536 implementation column 8 f = 1. ONA=0.4511m=-o,
s uc=0.5000WD=
0.9240 Aspheric coefficient/power number. ,? ”(1++□11n2 =0°1522
t-, /e陀=-0°6111, =0.724
)12=0.649 real m column 9 f = 1. ONA=0.4522m=-0,
5dc =0.5002WD=0.8138 Aspheric coefficient/power)1. = 0.690 Pigeon = 0.673 Actual row 10 f = 1.0 NA =
0.45m knee 1/12 dC = WD = aspheric coefficient/power) 11 = 0.491 H2 = 0.363 (
Effects of the Invention) As shown in Figs. 2 to 11, the objective lens of this invention has a high abrasiveness and good performance even though the F5 rate is higher than that of the conventional one. Collection corrections have been made.

このため、光デイスク用光学系を最も簡略な形式とする
ことがoT能となり大幅なコストダウンが可能になった
。さらに、レンズの構成材料に制限がないため、プラス
チックの射出成形技術等によシ更にコストダウンと@肚
化が可能になる。
For this reason, making the optical system for optical discs in the simplest format has enabled OT functionality, and it has become possible to significantly reduce costs. Furthermore, since there are no restrictions on the material of the lens, it is possible to further reduce costs and make it possible to use plastic injection molding technology.

光デイスク用光学系においては、対物レンズ■光源側に
偏光ビームスプリッタ等の光学素子を配置することが多
いが、上記実施列の若干の設計変丸によって対応が可能
である。
In an optical system for an optical disk, an optical element such as a polarizing beam splitter is often arranged on the objective lens (1) light source side, but this can be accommodated by making some changes in the design of the above-mentioned implementation row.

上記説明は、更用■態様を想定して結縁倍率の範囲に関
する制限をおいたが、結@陪率がこの範囲をこえて小と
な9、零になったとしても池の条件の作用は変らず、こ
の条件を満足することKよって性能の艮好なレンズを得
ることが出来る。
In the above explanation, a limit is placed on the range of the convergence ratio assuming the modified mode, but even if the convergence ratio exceeds this range and becomes small9 or even zero, the effect of the pond condition will not be affected. By satisfying this condition without any change, a lens with excellent performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の対物レンズのカバーガラスを含む断
面図、第2図、第3図、第4図、第5図、第6図、第7
図、第8図、第9図、第10図、第11図はそれぞれ第
1ないし第10実施例の収差曲線図、第12図、第13
図、第14図はこQ発明の対物レンズを用いる光学系の
光学配置図である。 1:光情報記録面、2:対物レンズ 3:コリメータレンズ 4:光源 特許出り人   小西六写真二気味式会仕出願人代理人
 弁理士 佐  藤  文  男(ほか1名) 牟1図 第2図 βy面収差       正弦条件       非点
酸度第:3図 球面収差       IE弦条件       J1
点収7τ−第   4   図 第   5   し1 球[有]収廻       正弦条件      非点
収差第   6   図 体ω収差       正弦条件       Jt点
収差第  7  図 球面収差       正弦条件       非点収
差軍   8   図 −し111収差       iE正弦条件     
 非点収差処  9  図 球面数;艷       IE正弦条件      、
11屯収差第10図 R色収差       正弦条件       非へ収
差尤冒図 球面数、−5市弦条件      非、屯収7仔第  
 12   図     第   1.)    図+
t+a    図
Fig. 1 is a sectional view including the cover glass of the objective lens of the present invention, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7.
8, 9, 10, and 11 are aberration curve diagrams of the first to tenth embodiments, FIG. 12, and FIG. 13, respectively.
14 are optical layout diagrams of an optical system using the objective lens of the Q invention. 1: Optical information recording surface, 2: Objective lens 3: Collimator lens 4: Light source patent owner Roku Konishi Nikkimi Shikikaishi Applicant's agent Patent attorney Fumi Sato (and 1 other person) Figure 2 Figure βy plane aberration Sine condition Astigmatic acidity No. 3 Figure 3 Spherical aberration IE string condition J1
Point aberration 7τ - 4th Figure 5 1 Spherical aberration Sine condition Astigmatism 6 Figure ω aberration Sine condition Jt point aberration 7th Figure Spherical aberration Sine condition Astigmatism 8 Figure 111 Aberration iE sine condition
Astigmatism treatment 9 Number of spheres; IE sine condition,
11 Tun aberration Figure 10 R Chromatic aberration Sine condition Non-Hebler aberration likelihood diagram Sphere number, -5 Chord condition Non, Tun convergence 7th
12 Figure 1. ) Figure +
t+a figure

Claims (1)

【特許請求の範囲】 光源側に凸面を向けた正の単レンズであり、光源側及び
像側の両方の面が非球面とされ、0.75<r_1/(
n−1)f√(1+|m|)<1.50.75<■_1
−■_2/a(m)<1.5■_1=(n−1)^3Δ
_1/(NA)^4f■_2=(n−1)^3Δ_2/
(NA)^4fただし f:レンズの焦点距離 n:レンズの屈折率 r_1:光源側の面の頂点曲率半径 r_2:像側の面の頂点曲率半径 NA:像側の開口数 Δ_1:光源側の面の有効径最周辺(上記NAの周縁光
線が入射する光源側の面上の位置) における非球面と頂点曲率半径r_1を有する基準球面
との光軸方向の差で、光軸か ら遠ざかるほど該非球面が光源側へ変位 している場合を正とする。 Δ_2:像側の面の有効径最周辺における非球面と頂点
曲率半径r_2を有する基準球面との光軸方向の差で、
光軸から遠ざかる程該 非球面が光源側へ変位している場合を正 とする。 a(m):結像倍率mの関数であり a(m)=2.5|m|^2+0.11 で表わされる。 の各条件を満足することを特徴とする光情報記録媒体の
記録再生用対物レンズ
[Claims] It is a positive single lens with a convex surface facing the light source side, and both the light source side and image side surfaces are aspheric, and 0.75<r_1/(
n-1) f√(1+|m|)<1.50.75<■_1
−■_2/a(m)<1.5■_1=(n-1)^3Δ
_1/(NA)^4f■_2=(n-1)^3Δ_2/
(NA) ^4f However, f: Lens focal length n: Lens refractive index r_1: Vertex radius of curvature of the light source side surface r_2: Vertex curvature radius of the image side surface NA: Image side numerical aperture Δ_1: Light source side surface This is the difference in the optical axis direction between the aspherical surface at the outermost periphery of the effective diameter of the surface (the position on the surface on the light source side where the marginal rays of the above NA enter) and the reference spherical surface having the apex radius of curvature r_1. It is positive when the spherical surface is displaced toward the light source. Δ_2: The difference in the optical axis direction between the aspheric surface at the most peripheral effective diameter of the image side surface and the reference spherical surface having the apex radius of curvature r_2,
A case where the aspherical surface is displaced toward the light source side as the distance from the optical axis increases is considered positive. a(m): It is a function of the imaging magnification m and is expressed as a(m)=2.5|m|^2+0.11. An objective lens for recording and reproducing optical information recording media, characterized by satisfying each of the following conditions.
JP17758984A 1984-08-28 1984-08-28 Recording and reproducing objective lens of optical information recording medium Granted JPS6156314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17758984A JPS6156314A (en) 1984-08-28 1984-08-28 Recording and reproducing objective lens of optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17758984A JPS6156314A (en) 1984-08-28 1984-08-28 Recording and reproducing objective lens of optical information recording medium

Publications (2)

Publication Number Publication Date
JPS6156314A true JPS6156314A (en) 1986-03-22
JPH0428282B2 JPH0428282B2 (en) 1992-05-14

Family

ID=16033629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17758984A Granted JPS6156314A (en) 1984-08-28 1984-08-28 Recording and reproducing objective lens of optical information recording medium

Country Status (1)

Country Link
JP (1) JPS6156314A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118708A (en) * 1984-11-14 1986-06-06 Sankyo Seiki Mfg Co Ltd Lens for optical disk
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory
JPS6310119A (en) * 1986-07-02 1988-01-16 Matsushita Electric Ind Co Ltd Large aperture single lens
JPH02271311A (en) * 1989-04-12 1990-11-06 Canon Inc Both-sided aspherical single lens for optical information recording and reproducing device
US5015078A (en) * 1988-12-01 1991-05-14 Canon Kabushiki Kaisha Aspherical single lens
US5475537A (en) * 1993-03-05 1995-12-12 Konica Corporation Optical system for use in recording and reading information on an optical information medium
US5600494A (en) * 1994-12-14 1997-02-04 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens system of an optical disk device
US5966362A (en) * 1995-11-02 1999-10-12 Konica Corporation Optical system for recording and reproducing for use in optical information recording medium
US6922289B2 (en) * 2002-05-17 2005-07-26 Minolta Co., Ltd. Objective lens system for optical pickups
US7639589B2 (en) 2000-10-26 2009-12-29 Konica Corporation Optical pickup apparatus for recording or reproducing information for an optical information recording medium and objective lens for optical pickup apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047488A (en) * 1973-08-31 1975-04-26
JPS50156945A (en) * 1974-05-14 1975-12-18
JPS55130527A (en) * 1979-03-30 1980-10-09 Minolta Camera Co Ltd Real image system finder optical system
JPS5776512A (en) * 1980-10-31 1982-05-13 Konishiroku Photo Ind Co Ltd Large-aperture aspheric single lens
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS5923313A (en) * 1982-07-29 1984-02-06 Minolta Camera Co Ltd Large aperture condenser lens
JPS5926714A (en) * 1982-08-05 1984-02-13 Olympus Optical Co Ltd Lens for optical disc

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047488A (en) * 1973-08-31 1975-04-26
JPS50156945A (en) * 1974-05-14 1975-12-18
JPS55130527A (en) * 1979-03-30 1980-10-09 Minolta Camera Co Ltd Real image system finder optical system
JPS5776512A (en) * 1980-10-31 1982-05-13 Konishiroku Photo Ind Co Ltd Large-aperture aspheric single lens
JPS57201210A (en) * 1981-06-04 1982-12-09 Sony Corp Condenser lens
JPS5923313A (en) * 1982-07-29 1984-02-06 Minolta Camera Co Ltd Large aperture condenser lens
JPS5926714A (en) * 1982-08-05 1984-02-13 Olympus Optical Co Ltd Lens for optical disc

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118708A (en) * 1984-11-14 1986-06-06 Sankyo Seiki Mfg Co Ltd Lens for optical disk
JPS6331766B2 (en) * 1984-11-14 1988-06-27 Sankyo Seiki Seisakusho Kk
JPS62215222A (en) * 1986-03-17 1987-09-21 Canon Inc Condenser lens for optical memory
JPS6310119A (en) * 1986-07-02 1988-01-16 Matsushita Electric Ind Co Ltd Large aperture single lens
US5015078A (en) * 1988-12-01 1991-05-14 Canon Kabushiki Kaisha Aspherical single lens
JPH02271311A (en) * 1989-04-12 1990-11-06 Canon Inc Both-sided aspherical single lens for optical information recording and reproducing device
US5475537A (en) * 1993-03-05 1995-12-12 Konica Corporation Optical system for use in recording and reading information on an optical information medium
US5600494A (en) * 1994-12-14 1997-02-04 Asahi Kogaku Kogyo Kabushiki Kaisha Objective lens system of an optical disk device
US5966362A (en) * 1995-11-02 1999-10-12 Konica Corporation Optical system for recording and reproducing for use in optical information recording medium
US6049519A (en) * 1995-11-02 2000-04-11 Konica Corporation Optical system for recording and reproducing for use in optical information recording medium
US7639589B2 (en) 2000-10-26 2009-12-29 Konica Corporation Optical pickup apparatus for recording or reproducing information for an optical information recording medium and objective lens for optical pickup apparatus
US6922289B2 (en) * 2002-05-17 2005-07-26 Minolta Co., Ltd. Objective lens system for optical pickups

Also Published As

Publication number Publication date
JPH0428282B2 (en) 1992-05-14

Similar Documents

Publication Publication Date Title
US20090219631A1 (en) ultra-wide angle objective lens
JPS62269922A (en) Optical system for recording and reproducing optical information medium
JP2991524B2 (en) Wide-angle lens
JPS59149312A (en) Photographic lens of high aperture ratio
JPS6156314A (en) Recording and reproducing objective lens of optical information recording medium
JPH0216513A (en) Single-group objective
US5508848A (en) Wide-angle lens for film-combined type cameras
US4029398A (en) Objective for video disks
US4772105A (en) Graded refractive index lens system
JPS5944016A (en) Lens system with aspherical surface
JPH0453285B2 (en)
TWI314218B (en) Objective lens system
JPS61176905A (en) Distributed refractive index type meniscus lens and lens system
US4741606A (en) Objective lens system for optical recording and reading device
JPS6243842A (en) Light collecting optical system for recording and reproducing optical system of optical information medium
JPH04163510A (en) Object lens for optical disk
JPH0462564B2 (en)
JPH0462565B2 (en)
JPH01161308A (en) Lens for optical recording and reproducing device
JPS6267740A (en) Light converging optical system for recording and reproducing optical system of optical information storage medium
JPS59195213A (en) Photographic compact lens
JPH0239009A (en) Aspherical single lens
JPS6254212A (en) Aspheric surface single lens
JPS6191612A (en) Objective for optical disk
JP2622155B2 (en) Aspheric single lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term