JPS6156282A - Covering method of hard carbon film - Google Patents

Covering method of hard carbon film

Info

Publication number
JPS6156282A
JPS6156282A JP17663984A JP17663984A JPS6156282A JP S6156282 A JPS6156282 A JP S6156282A JP 17663984 A JP17663984 A JP 17663984A JP 17663984 A JP17663984 A JP 17663984A JP S6156282 A JPS6156282 A JP S6156282A
Authority
JP
Japan
Prior art keywords
base material
diamond
hard carbon
laser light
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17663984A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17663984A priority Critical patent/JPS6156282A/en
Publication of JPS6156282A publication Critical patent/JPS6156282A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form the titled film without causing exfoliation, etc. even under severe using condition, by depositing hard carbon film on a base material surface from gas phase, and irradiating laser light during or after said covering. CONSTITUTION:Laser light is irradiated during covering and/or after covering, in the titled method in wnich hydrocarbon molecule, etc. is decomposed by applying high energy thereto in gas phase to deposit hard carbon film such as diamond on the base material surface. As said laser light, carbonic acid gas laser light easy for obtaining high output, almost transparent to diamond, and opaque to base material and intermediate layer material is most preferable. Only temp. of intermediate layer or base material surface is rised by the laser light transmitted through said diamond layer, adhesion strength between coated film and base material or intermediate layer is increased, and exfoliation during usage is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板に硬質炭素膜を被覆する方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method of coating a substrate with a hard carbon film.

〔従来の技術〕[Conventional technology]

超高圧装置を用いずに、気相よりダイヤモンドもしくは
ダイヤモンド状の非晶質炭素膜尋、いわゆる硬質炭素膜
を基板に被覆する技術はすでに特開昭58−91100
.58−110494.58−135117.59−3
098各号公報および米国特許第3904505.39
61103号各明細書等に提案されている。これ等の公
知技術はいずれも、気相中にて炭化水素分子を高エネル
ギー状態にまで励起し分解を行うととによって、基板上
に準安定状態のダイヤモンドもしくはダイヤモンド状の
非晶質炭素膜を被覆するものである。
A technique for coating a substrate with a diamond or diamond-like amorphous carbon film, a so-called hard carbon film, from a gas phase without using an ultra-high pressure device has already been disclosed in Japanese Patent Application Laid-Open No. 58-91100.
.. 58-110494.58-135117.59-3
098 publications and U.S. Patent No. 3904505.39
No. 61103 and other specifications. All of these known techniques produce a metastable diamond or diamond-like amorphous carbon film on a substrate by exciting hydrocarbon molecules to a high energy state in the gas phase and decomposing them. It is something to cover.

かかる技術は、非常に高価な超高圧装置を用いずにダイ
ヤモンドを合成し得る方法であり、ダイヤモンドの有す
る高硬度を応用して耐摩耗部品や、切削工具への応用等
が提案されていて、工業上きわめて興味を持たれており
、さらなる開発が望まれている。
This technology is a method for synthesizing diamond without using extremely expensive ultra-high pressure equipment, and its application to wear-resistant parts and cutting tools by taking advantage of the high hardness of diamond has been proposed. It is of great industrial interest, and further development is desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の従来法により基板上に硬質炭素膜
を被覆した耐摩耗部品や切削工具では、該硬質被覆膜と
基材との接着強度が不足すると、実際の使用において、
被覆膜が基材より剥離してしまい、所期の効果を得られ
ないという欠点があった。との問題に対し、該硬質炭素
膜と基板との中間に、炭化物、窒化物、酸化物等の化合
物あるいはSc 、 TI 、 W等の金属を被覆する
方法が提案されている(特開昭56−41372゜58
−185417.56−6920各号公報)。
However, in wear-resistant parts and cutting tools whose substrates are coated with hard carbon films using the above-mentioned conventional method, if the adhesive strength between the hard coating film and the base material is insufficient, in actual use,
There was a drawback that the coating film peeled off from the base material and the desired effect could not be obtained. To solve this problem, a method has been proposed in which a compound such as carbide, nitride, or oxide, or a metal such as Sc, TI, or W is coated between the hard carbon film and the substrate (Japanese Patent Application Laid-Open No. 1983-1999). -41372°58
-185417.56-6920 publications).

本発明者らは上記の各公報記載の方法に従って種々の試
作を行ったが、いずれによっても、厳しい使用環境にお
いては、硬質炭素被覆膜が剥離してしまい、実用に耐え
なかった。
The inventors of the present invention made various prototypes according to the methods described in the above-mentioned publications, but in all cases, the hard carbon coating peeled off in harsh usage environments, so that they could not be put to practical use.

このような現状に鑑み、本発明の目的は、厳しい使用環
境においても剥離等の外い実用に耐え得る硬質炭素被覆
を形成する新規な方法を提供するところにある。
In view of the current situation, an object of the present invention is to provide a new method for forming a hard carbon coating that can withstand practical use such as peeling even in severe usage environments.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、基材の表面に硬質炭素膜を気相より析出させ
る硬質炭素膜被覆方法において、被覆中および/又は被
覆後にレーザー光線を照射することを特徴とする硬質炭
素膜被覆方法により前記の目的を達成するものであシ、
特に好ましい実施態様としては、上記のレーザー光線が
炭酸ガスレーザー光線である上記方法を挙げることがで
きる。
The present invention achieves the above object by a hard carbon film coating method in which a hard carbon film is deposited from a gas phase on the surface of a base material, which is characterized by irradiating a laser beam during and/or after coating. It is something that achieves
A particularly preferred embodiment is the method described above, in which the laser beam is a carbon dioxide laser beam.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

気相より、基材表面に物質を析出させ被覆する、いわゆ
る気相蒸着法の技術において、被覆膜と基材との接着強
度を改善するためには、被覆温度を上昇させることが一
般的な手法として知られている。
In the so-called vapor phase deposition technique, which deposits and coats a substance on the surface of a substrate using a vapor phase, it is common to increase the coating temperature in order to improve the adhesive strength between the coating film and the substrate. It is known as a method.

しかしながら、硬質炭素膜被覆の場合、一般に基材もし
くは基材の表面に被覆した中間層物質は、炭化物を容易
に形成する物質であるため、被覆温度を上昇させると、
被覆膜は、所期のダイヤモンドもしくはダイヤモンド状
の非晶質炭素膜寿どいわゆる硬質炭素膜が合成されずに
、基材と反応してしまい、単なる炭化物を合成している
ことになってしまう。
However, in the case of hard carbon film coating, the base material or the intermediate layer material coated on the surface of the base material is generally a material that easily forms carbide, so if the coating temperature is increased,
The coating film reacts with the base material without synthesizing the so-called hard carbon film such as diamond or diamond-like amorphous carbon film, resulting in the synthesis of a mere carbide. .

〔作 用〕[For production]

本発明者らは、ダイヤモンドの物性を詳細に検討し、ダ
イヤモンドが可視光から近赤外およ   □び、一部波
長を除く赤外光に対し、きわめて透明である(吸収が起
らない)という事実に注目し、本発明に到達した。
The inventors investigated the physical properties of diamond in detail and found that diamond is extremely transparent (no absorption occurs) from visible light to near-infrared light, and infrared light excluding some wavelengths. The present invention was developed by paying attention to this fact.

第1図に、最も一般的な天然ダイヤモンド(Ia型)の
透光度曲線を示すもので、横軸は波長(μ)、縦軸は該
波長に対する透光度(%)をあられし、図中イにて示す
波長領域は可視部を、また口は赤外部をあられす。第1
図から明らか力ように、ダイヤモンドは可視部および波
長が5μ、8μの部分を除く赤外部において、きわめて
透光度が高い。
Figure 1 shows the transmittance curve of the most common natural diamond (type Ia), where the horizontal axis is the wavelength (μ) and the vertical axis is the transmittance (%) for the wavelength. The wavelength range shown in the middle A is the visible part, and the wavelength range shown in the middle is the infrared part. 1st
As is clear from the figure, diamond has extremely high light transmittance in the visible region and in the infrared region except for wavelengths of 5μ and 8μ.

したがって、ダイヤモンド被覆中および/又は被覆後に
、かかる波長の光を照射するならば、ダイヤモンド被覆
膜そのものは、全く、温度上昇せずに、ダイヤモンド被
覆膜と接する基材もしくは中間層の表面のみが温度上昇
することによって、ダイヤモンド被覆膜と基材もしくは
中間層との接着強度のみを、著しく向上することができ
る。
Therefore, if light of such a wavelength is irradiated during and/or after diamond coating, the temperature of the diamond coating film itself will not rise at all, and only the surface of the base material or intermediate layer in contact with the diamond coating film will be affected. By increasing the temperature, only the adhesive strength between the diamond coating film and the base material or intermediate layer can be significantly improved.

また照射はダイヤモンド被覆中から被覆終了後に到るい
ずれの段階で行っても、その効果において本質的な差異
はない。
Moreover, there is no essential difference in the effect whether irradiation is performed at any stage from during diamond coating to after the coating is completed.

なお、本発明の方法において照射する光源としては、基
材もしくは中間層の表面が十分に温度上昇し、かつ、ダ
イヤモンド被覆膜の吸収が無い、波長のものであれば倒
れでもよいが、波長の単一性、さらには、基材もしくは
中間層の表面を加熱しうる出力を考えると、レーザー光
線が好ましい。
In addition, the light source for irradiation in the method of the present invention may be a light source with a wavelength that causes the surface of the base material or intermediate layer to rise sufficiently in temperature and is not absorbed by the diamond coating film, but may be a light source with a wavelength that is not absorbed by the diamond coating film. Laser light is preferred in view of its uniformity and power that can heat the surface of the substrate or intermediate layer.

またレーザー光線としては、工業的に高出力のものが得
られるArレーザー等も好ましいが、炭酸ガスレーザー
は、波長が10.6μであって、ダイヤモンドにとって
はほぼ透明であシ(第1図参照)、基材あるいは中間層
物質の大部分は、この波長に対しては殆んど透光度が無
いこと、さらには高出力のものが容易であること等の理
由から、特に好ましい。
Also, as a laser beam, an Ar laser or the like that can produce high output industrially is preferable, but a carbon dioxide laser has a wavelength of 10.6μ and is almost transparent to diamond (see Figure 1). Most of the base material or intermediate layer material is particularly preferable because it has almost no light transmittance for this wavelength and furthermore, it is easy to produce a high output material.

本発明の方法における硬質炭素膜層の一般的な厚さは、
0.1μよυ大で、100μまでが好ましく、0.1μ
以下では被覆の効果が認められず、また100μ以上で
は、効果が飽和するためである。
The typical thickness of the hard carbon film layer in the method of the present invention is:
0.1μ to υ, preferably up to 100μ, 0.1μ
This is because the effect of the coating is not observed below, and the effect is saturated above 100μ.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに詳しく説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ 市販のに一01超硬合金(型番5pG422 )を基材
とし、’gx/c’ga (混合比100/1)の混合
気流をマイクロ波を用いてプラズマさせることにより、
該基材上に厚さ2μの硬質炭素膜を被覆し、チップAを
得た。この際、基材を特に加熱することはしなかったが
、プラズマによって、はぼ1000℃程度に加熱されて
いた。該チップAに10Wの連続出力型炭酸ガスレーザ
ーを高速スキャンさせ外から照射し、チップBとした。
Example 1 Using a commercially available 101 cemented carbide (model number 5pG422) as a base material, a mixed air flow of 'gx/c'ga (mixing ratio 100/1) was turned into plasma using microwaves.
A hard carbon film having a thickness of 2 μm was coated on the base material to obtain a chip A. At this time, the base material was not particularly heated, but was heated to approximately 1000° C. by plasma. Chip A was irradiated from the outside with a 10 W continuous output carbon dioxide laser while scanning at high speed to obtain chip B.

以上により得られたチップAおよびBにつき、以下の条
件にて切削テストを行った。
A cutting test was conducted on the chips A and B obtained above under the following conditions.

被剛材   At−881 切削速度    500 m/min 送   I)0.10 m/ reV 切り込み    0.20m その結果、従来法によるチップAは、18秒切削した後
、被覆膜が剥離し、以降は基材とかわらめ耐摩耗性を示
し、1分間切削後のフランク摩耗が0.22+m  で
あった。これに対し本発明の方法によるチップBは、1
0分間切削後のフランク摩耗は0.041+l+11と
非常に少なく、被覆膜は殆んど剥離していなかった。
Rigid material At-881 Cutting speed 500 m/min Feed I) 0.10 m/reV Depth of cut 0.20 m As a result, for chip A manufactured by the conventional method, the coating film peeled off after 18 seconds of cutting, and from then on It exhibited abrasion resistance similar to that of the base material, and the flank wear after cutting for 1 minute was 0.22+m2. On the other hand, chip B produced by the method of the present invention has 1
The flank wear after cutting for 0 minutes was very small at 0.041+l+11, and the coating film was hardly peeled off.

実施例2゜ 実施例1.と同じ基材に、まずイオンブレーティング法
によって、TIを厚さ2μ被覆した後、さらにH2/C
H4(混合比100/1 )混合気流を高周波を用いて
プラズマ化させることにより、硬質炭素膜を厚さ2μ被
覆した。この際、基材を1000℃まで加熱して被覆し
たものをチップCとし、1400℃まで加熱して被覆し
たものをチップDとした。またチップCに10Wの連続
出力型炭酸ガスレーザーを高速スキャンさせながら照射
したものをチップEとした。
Example 2゜Example 1. The same base material was first coated with TI to a thickness of 2μ by the ion blating method, and then coated with H2/C.
A hard carbon film was coated with a thickness of 2 μm by converting H4 (mixing ratio 100/1) mixed air flow into plasma using high frequency. At this time, the base material was heated to 1000° C. and coated as Chip C, and the base material heated to 1400° C. and coated was designated as Chip D. Further, Chip C was irradiated with a 10 W continuous output carbon dioxide laser while scanning at high speed, and this was designated as Chip E.

以上により得られた各チップO,I)、Eにつ    
□き、以下の条件にて切削テストを行った。
For each chip O, I), and E obtained above,
A cutting test was conducted under the following conditions.

被  削  材      A4− 12 Si切削速
度    500薦/m i n送     シ   
       ロ#08w/reV切シ込み    0
.101!l+ その結果、従来法によるチップCおよびDは、それぞれ
1分35秒問および1分19秒間しか切削できなかった
に対し、本発明の方法によるチップEは、10分間切削
後のフランク摩耗が0.06−と非常に少なかった。
Work material A4-12 Si cutting speed 500 recommended/min feed
#08w/reV cut depth 0
.. 101! l+ As a result, inserts C and D produced by the conventional method could only be cut for 1 minute 35 seconds and 1 minute 19 seconds, whereas insert E produced by the method of the present invention showed zero flank wear after 10 minutes of cutting. It was very low at .06-.

た訃、比較のため、基材のに一01超硬合金についても
同条件にてテストしたところ、1分17秒間しか切削で
きず、また焼結ダイヤニ具についてのテスト結果は、1
0分間切削後、フランク摩耗は0.03圏であった。
However, for comparison, when we tested the base material of 101 cemented carbide under the same conditions, it was possible to cut for only 1 minute and 17 seconds, and the test results for the sintered diamond tool were 1.
After cutting for 0 minutes, flank wear was within 0.03.

実施例五 実施例1.およびZと同じ基材上に、H2lCT14(
混合比100/1)混合気流をマイクロ波を用いプラズ
マ化させることによって、厚さ2μの硬質炭素膜を被覆
しながら、該被覆基材上に、パルス状の炭酸ガスレーザ
ーを照射して、チップFを得た。該チップFにつき実施
例1と同条件にて切削テストを行ったところ、10分間
切削後のフランク摩耗は0.05IIIff+であった
Example 5 Example 1. and H2lCT14 (
Mixing ratio 100/1) By converting the air mixture into plasma using microwaves, a hard carbon film with a thickness of 2 μm is coated, and a pulsed carbon dioxide gas laser is irradiated onto the coated base material to form a chip. I got an F. A cutting test was conducted on the tip F under the same conditions as in Example 1, and the flank wear after cutting for 10 minutes was 0.05IIIff+.

〔発明の効果〕〔Effect of the invention〕

以上の説明および実施例から明らかなように、本発明の
硬質炭素膜被覆法は、従来法に比べ、実用において被覆
膜の剥離もほとんどなく、また、ダイヤモンド焼結工具
に比肩し得る程の、耐摩耗性を有する硬質炭素被覆膜を
得ることができる優れた方法である。
As is clear from the above description and examples, the hard carbon film coating method of the present invention causes almost no peeling of the coating film in practical use compared to conventional methods, and also has a hard carbon film coating method that can be compared to diamond sintered tools. This is an excellent method for obtaining a hard carbon coating film with wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は天然ダイヤモンドの、波長(μ)に対する透光
度(X)を示す透光度曲線のグラフである。
FIG. 1 is a graph of a light transmittance curve showing light transmittance (X) versus wavelength (μ) of natural diamond.

Claims (2)

【特許請求の範囲】[Claims] (1)基材の表面に硬質炭素膜を気相より析出させる硬
質炭素膜被覆方法において、被覆中および/又は被覆後
にレーザー光線を照射することを特徴とする硬質炭素膜
被覆方法。
(1) A hard carbon film coating method in which a hard carbon film is deposited from a gas phase on the surface of a substrate, the method comprising irradiating a laser beam during and/or after coating.
(2)レーザー光線が炭酸ガスレーザー光線である特許
請求の範囲第(1)項に記載の硬質炭素膜被覆方法。
(2) The hard carbon film coating method according to claim (1), wherein the laser beam is a carbon dioxide laser beam.
JP17663984A 1984-08-27 1984-08-27 Covering method of hard carbon film Pending JPS6156282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17663984A JPS6156282A (en) 1984-08-27 1984-08-27 Covering method of hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17663984A JPS6156282A (en) 1984-08-27 1984-08-27 Covering method of hard carbon film

Publications (1)

Publication Number Publication Date
JPS6156282A true JPS6156282A (en) 1986-03-20

Family

ID=16017096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17663984A Pending JPS6156282A (en) 1984-08-27 1984-08-27 Covering method of hard carbon film

Country Status (1)

Country Link
JP (1) JPS6156282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154945A (en) * 1990-03-05 1992-10-13 Iowa Laser Technology, Inc. Methods using lasers to produce deposition of diamond thin films on substrates
JP2022515040A (en) * 2018-12-28 2022-02-17 エーエスエムエル ネザーランズ ビー.ブイ. Manufacturing method of substrate holder and substrate holder for lithography equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154945A (en) * 1990-03-05 1992-10-13 Iowa Laser Technology, Inc. Methods using lasers to produce deposition of diamond thin films on substrates
JP2022515040A (en) * 2018-12-28 2022-02-17 エーエスエムエル ネザーランズ ビー.ブイ. Manufacturing method of substrate holder and substrate holder for lithography equipment

Similar Documents

Publication Publication Date Title
CA1336704C (en) Method of producing sintered hard metal with diamond film
CA2181440A1 (en) Using lasers to fabricate coatings on substrates
Fogarassy et al. Low‐temperature synthesis of silicon oxide, oxynitride, and nitride films by pulsed excimer laser ablation
JPS61124573A (en) Diamond-coated base material and its production
JPH07112306A (en) Surface coating cutting tool
JPS6156282A (en) Covering method of hard carbon film
JPS62138395A (en) Preparation of diamond film
Ouyang et al. Deposition of diamond-like carbon films via excimer laser ablation of polybutadiene
JPH06183890A (en) Artificial diamond-coated material
JPS61291493A (en) Diamond coated hard material
JPS61210179A (en) Coating blade for microtome and its production
JPH04157157A (en) Production of artificial diamond coated material
JPS6354495B2 (en)
JPS6257802A (en) Parts coated with hard carbon
Collins et al. Preparation an study of laser plasma diamond
JPH0912397A (en) Sintered hard film coated member and its production
JPS5918474B2 (en) coated cemented carbide
JPS6234704A (en) Diamond coated cutting tool
JPS62226889A (en) Vapor phase synthesis method for filmy diamond
JPS5959879A (en) Multi-coated material and its production
Qingrun et al. Micro-hardness and adhesion of boron carbon nitride coatings
JPS63150926A (en) Film formation of diamond-shaped carbon film
JPH0224005A (en) Diamond coated tool and manufacture thereof
JPH0394062A (en) Diamond-coated sintered hard alloy
JPH04120265A (en) Boron nitride coated member