JPS6154625A - X-ray exposure process - Google Patents

X-ray exposure process

Info

Publication number
JPS6154625A
JPS6154625A JP59176223A JP17622384A JPS6154625A JP S6154625 A JPS6154625 A JP S6154625A JP 59176223 A JP59176223 A JP 59176223A JP 17622384 A JP17622384 A JP 17622384A JP S6154625 A JPS6154625 A JP S6154625A
Authority
JP
Japan
Prior art keywords
ray
mask
exposure
resist
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59176223A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59176223A priority Critical patent/JPS6154625A/en
Priority to EP85110678A priority patent/EP0172583A3/en
Priority to US06/769,054 priority patent/US4702995A/en
Publication of JPS6154625A publication Critical patent/JPS6154625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To attain high throughput exposure by a method wherein, after a work coated with negative type resist is X-ray-transferred utilizing a mask, the work is entirely X-ray-irradiated without the mask. CONSTITUTION:When a negative resist 2 on a work 1 is X-ray-exposed through an X-ray mask 6 composed of an X-ray transmitting part 3, an absorbent pattern 4 and a supporter 5, the dosage below the transmitting part 3 and the absorbent pattern 4 will be respectively D0.5>D1 and D1'<<D1. Successively the resist 2 is irradiated with D2>D0.5 without the mask 6. At this time, the dosage below the absorbent pattern 4 will be D0.5>D3>D1. Likewise, the exposure is set up so that the residual film ratios at transmitting part 3 and absorbent part 4 may be made 1 and 0 by the succeeding overall dosage. Through these procedures, the exposure time may be finally restricted to the mask exposure making it feasible to S-ray-expose resulting in high throughput by means of collective processing especially in case of overall X-ray irradiation taking longer exposure time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1pm以下の微細パターンの複写に威力を発
揮するX線リングラフィの分野におけるX線露光方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray exposure method in the field of X-ray phosphorography, which is effective in copying fine patterns of 1 pm or less.

(従来技術) xmm光技術は、サブミクロン幅パターンの確実な高解
像性の故に、将来の極めて有望な複写技術として期待さ
れ、現在各所で精力的な研究、開発が行われている。第
3図に、従来性われているX線露光の基本的概念図を示
す。同様の図が1972年に発行された刊行物エレクト
ロニクス・レターズ(Electronics Let
ters ) 3巻4号、102〜104頁に示されン
いる。X線源311D放射されたX線32はX線マス□
り33のX線透過部34を通過して、被加工物35上に
塗布゛されたX線し゛シスト36に照射される。このと
きX線透過部上に形成−されたX@吸吸収体パター郡部
37はX線が通過せず、マスクパターンとしての役割が
得られる。
(Prior Art) Xmm optical technology is expected to be an extremely promising copying technology in the future because of its reliable high resolution of submicron width patterns, and is currently being actively researched and developed in various places. FIG. 3 shows a basic conceptual diagram of conventional X-ray exposure. A similar diagram appeared in the 1972 publication Electronics Let.
ters) Vol. 3, No. 4, pp. 102-104. X-ray source 311D emitted X-rays 32 are X-ray mass □
The X-rays pass through the X-ray transmission section 34 of the mirror 33 and are irradiated onto the X-ray cyst 36 coated on the workpiece 35 . At this time, the X@absorbent pattern group part 37 formed on the X-ray transparent part does not allow X-rays to pass therethrough, and can function as a mask pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図のX@露光における基本方式が発表されてから、
今日まで多くの研究開発がなされてきたが、1対1の複
写技術である本方式が根本原理でおる。これまでX線源
、アライメント方式及び装置、X線マスク、X線レジス
ト等の各個別技術が精力的に研究、開発され、まとまり
だX線露光システムとしてもいくつか数え上げることが
できる。
Since the basic method of X@exposure in Figure 3 was announced,
Much research and development has been carried out to date, but the basic principle of this system is one-to-one copying technology. Until now, individual technologies such as X-ray sources, alignment methods and devices, X-ray masks, and X-ray resists have been actively researched and developed, and several integrated X-ray exposure systems can be counted.

まさにX線露光技術の実用化が実現されつつある段階で
あると言えるが、現状及び将来において最大の問題点は
スループットであろう。X線露光ににおいてスループッ
トを定める要因は、X線源の強度及びこれと関連したX
@レジストの感度である。すなわち、通常量もよく用い
られる電子ビーム励起X線源は、電子ビーム出方のX線
への変換効率が〜10′4と極めて低いことと発散光源
であることから、露光部での照射強度は非常に弱い、高
輝度X線源として期待されているプラズマX線源はパル
ス線源であシ、−個のパルスにおけるX線への変換効率
は≧10−2と大きいが、パルス発生時の種々のダメー
ジ、電気的パルス発生のため高寿命スイッチ回路開発及
び繰シ返し速度向上等実用化においては数多くの問題点
が解決されなければならない。
Although it can be said that the practical application of X-ray exposure technology is just being realized, the biggest problem at present and in the future will be throughput. The factors that determine the throughput in X-ray exposure are the intensity of the X-ray source and the associated
@Resist sensitivity. In other words, the electron beam excitation X-ray source, which is often used in normal quantities, has an extremely low conversion efficiency of electron beam output into X-rays of ~10'4 and is a diverging light source, so the irradiation intensity at the exposed area is low. The plasma X-ray source, which is expected to be a very weak and high-brightness X-ray source, is a pulsed source. Many problems must be solved in order to put the switch into practical use, such as developing a long-life switch circuit and improving the repetition rate due to various types of damage caused by electrical pulses and the generation of electrical pulses.

また、最近急に研究開発の勢いが高まったシンクロトロ
ン軌道放射線源の場合は、高強度の平行ビームが得られ
るということで期待は高いが、まだ開発の途に着いたば
か)であシ、実用性を論するには時期尚早であろう。従
うて、X線源について言えば、現状では最も古典的で実
績の高い電子ビーム励起線源が、実用レベルのX線露光
装置において、最適であると言えよう。この点に関して
、すなわち電子ビーム励起線源を用いるとした場合特に
X線レジストの高感度が必要である。十分なスループッ
トを得るには10”JA以下の高感度X線レジストの開
発が必須である。ところで、このような高感度で実用性
のあるX線レジストは今のところほとんど見当らない、
X線レジストの開発の歴史からみても、感度10”輸以
下で実用のデバイス作製に耐えるものが得られるKは、
これからかなシの開発期間が必要と考えられる。一般の
露光装置の実用上の性能において、最も重要な要素の一
つはスループットであるが、以上述べたようにX線露光
技術においても、スループットの向上が重要な線層であ
る。
Furthermore, in the case of synchrotron orbital radiation sources, which have recently gained momentum in research and development, expectations are high because they can produce high-intensity parallel beams, but they are still in the early stages of development. It is probably too early to discuss practicality. Therefore, regarding the X-ray source, it can be said that the most classical and well-proven electron beam excitation source is currently the most suitable for a practical level X-ray exposure apparatus. In this regard, particularly when using an electron beam excitation source, high sensitivity of the X-ray resist is required. In order to obtain sufficient throughput, it is essential to develop a highly sensitive X-ray resist of 10" JA or less. By the way, such a highly sensitive and practical X-ray resist is hardly found at present.
Considering the history of the development of X-ray resists, K, which can withstand the production of practical devices with a sensitivity of 10" or less, is
It is thought that more time will be needed to develop Kana. One of the most important factors in the practical performance of a general exposure apparatus is throughput, and as described above, improving throughput is also an important factor in X-ray exposure technology.

本発明の目的は、このような従来の問題点を除去せしめ
て、高スループッ)X線露光を可能とする新たなX線露
光方法を提供することにある。
An object of the present invention is to provide a new X-ray exposure method that eliminates these conventional problems and enables high-throughput X-ray exposure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、X線源から放射されるX線を、X線マスクを
通してX線レジストが塗布された被加工物に照射する゛
X線露光方法において、前記被加工物上にネガ型X線レ
ジストを塗布し、この被加工物上に前記X線マスクを用
いたX線複写を行い、続いてX線マスク無しでX線を全
面照射する仁とを特徴とするX線露光方法である。
The present invention provides an X-ray exposure method in which a workpiece coated with an X-ray resist is irradiated with X-rays emitted from an X-ray source through an X-ray mask. This is an X-ray exposure method characterized by coating the workpiece with X-rays, performing X-ray copying on the workpiece using the X-ray mask, and then irradiating the entire surface with X-rays without an X-ray mask.

(実施例) 以下本発明の構成について、図面を参照しながら説明す
る。
(Example) The configuration of the present invention will be described below with reference to the drawings.

第1図は、本発明に係るX線露光方法の一実施例を示す
概略図である。第1図(a)において、第一段階として
、被加工物1上にネガ型X線レジスト2を塗布する0次
に第1図Φ)に示すように第二段階として、X線透過部
3、X線吸収体パターン部4、及び支持部5から構成さ
れるX線マスク6とX線源7とを用いて、ネガ凰X線レ
ジスト2が塗布された被加工物1上の必要な領域にX線
8を照射してX線露光を行う。さらに第1図(e)にお
いて第三段階として、X線源7を用いてネガ型X線レジ
スト2が塗布された被加工物1上に、X線8をX線マス
ク無しで全面照射する。
FIG. 1 is a schematic diagram showing an embodiment of the X-ray exposure method according to the present invention. In FIG. 1(a), as a first step, a negative X-ray resist 2 is applied onto the workpiece 1.As shown in FIG. , an X-ray absorber pattern section 4, and a support section 5, and an X-ray mask 6 and an X-ray source 7 are used to form a necessary area on the workpiece 1 coated with the negative X-ray resist 2. is irradiated with X-rays 8 to perform X-ray exposure. Furthermore, in a third step in FIG. 1(e), the entire surface of the workpiece 1 coated with the negative type X-ray resist 2 is irradiated with X-rays 8 using the X-ray source 7 without an X-ray mask.

以上が本発明の基本構成であるが、原理について第2図
を用いて説明する。図はネガ型X線レジストの感度特性
が、X線ドース量に対する残膜率の関係として示しであ
る。(a)はX線マスクのX@透過部下におけるX線レ
ジストの感度特性を、Φ)はX線吸収体パターン部下に
おける同特性を表わしている。第1図(ロ)で示したX
線マスクを用いたX線露光によって、第2図(a)の場
合(X線透過部下)において、ネガ型X線レジストにD
lのドース量が与えられるとする。このDlはネガ型X
線レジストの感度Do、s (現像後残膜率がα5とな
るドース量)より小さい値に設定される。このとき第2
図Φ)の場合においては(X線吸収体パタ一部下)、D
lよりか表)小さいドース量DIIがネガ型X線レジス
トに与えられる0次に第1図(e)に示したX線マスク
無しでのX線全面照射が行われる。このときは、第2図
(a)の場合(X線マスク無し)においては感度DO,
!Sを越えたX線ドースD8が、また第2図の)の場合
(この場合もX線マスク無し)においては感度D0.5
より小さく DIIよシ大きなX線ドースD3(残膜率
は零)が、ネガ型X線レジストに与えられるような設定
は可能である。言い換えると、(a)の場合には、−回
目の露光ではDlのX線ドース量が、二回目には(D2
−Dt)のX線ドース量がネガ型X線レジストに与えら
れ、(b)の場合には、−回目にはD1′のX線ドース
量、二回目には(Da −Dt’ )のX線ドース量が
ネガ型X線レジストに寿えられることになる。このよう
にして、第1図の)のX線マスクを用いたX線露光によ
ってネガ型X線レジスト中に与えられたX線透過部とX
線吸収体パターン部におけるX線ドース量との差が、続
くX線マスク無しのX線全面照射(第1図(C))によ
って、残膜率が例えば1と零とになるようなネガ型複写
パターンを得る露光設定は可能である。以上述べたよう
に、X線マスクを用いたX線露光、続いてX線マスクな
しのX線全面照射という二度のX線露光を行うことが本
発明の必須の要件である。この二回のX線露光は、装置
を複数台(一つはX線源のみでもよい)用意すれば、並
列処理が可能である。特にX線全面照射の工程は、ネガ
型X線レジストが塗布された被加工物一枚についての露
光時間が長いことが考えられるから、多数枚を一括して
露光するような方式が有効である。このような並列処理
を行えば、結局被加工物一枚についての露光時間の大幅
な短縮が可能となシ、高スループツトが達成される。最
終的には、露光時間は一回目のX線マスクを用いたX線
露光によって、はとんど制約され、スループットが定め
られることになる。
The basic configuration of the present invention has been described above, and the principle will be explained using FIG. 2. The figure shows the sensitivity characteristics of a negative X-ray resist as a relationship between the residual film rate and the X-ray dose. (a) shows the sensitivity characteristic of the X-ray resist under the X-ray transmitting part of the X-ray mask, and Φ) shows the same characteristic under the X-ray absorber pattern. X shown in Figure 1 (b)
By X-ray exposure using a ray mask, D is applied to the negative X-ray resist in the case of FIG.
Suppose that a dose of l is given. This Dl is negative type
The sensitivity Do,s of the line resist is set to a value smaller than (the dose at which the residual film rate after development becomes α5). At this time, the second
In the case of figure Φ) (lower part of the X-ray absorber pattern), D
A small dose DII is applied to the negative X-ray resist.The entire surface is irradiated with X-rays without an X-ray mask as shown in FIG. 1(e). At this time, in the case of Fig. 2(a) (without an X-ray mask), the sensitivity DO,
! If the X-ray dose D8 exceeds S, the sensitivity D0.5 in the case shown in Fig. 2 (also without an X-ray mask)
It is possible to set a smaller X-ray dose D3 (remaining film rate is zero) that is larger than DII to be applied to the negative X-ray resist. In other words, in the case of (a), the X-ray dose of Dl is (D2) in the -th exposure, and (D2) in the second exposure.
-Dt) is applied to the negative X-ray resist, and in the case of (b), the -th X-ray dose is D1', and the second time is (Da - Dt') The radiation dose can be maintained in a negative-tone X-ray resist. In this way, the X-ray transmissive area provided in the negative X-ray resist and the
Negative type in which the difference between the X-ray dose in the radiation absorber pattern and the subsequent X-ray irradiation without an X-ray mask (Fig. 1 (C)) reduces the remaining film rate to 1 or 0, for example. Exposure settings to obtain a duplicate pattern are possible. As described above, it is an essential requirement of the present invention to perform two X-ray exposures: one using an X-ray mask and then irradiating the entire surface with X-rays without an X-ray mask. These two X-ray exposures can be performed in parallel by providing a plurality of apparatuses (one may be only an X-ray source). In particular, in the process of irradiating the entire surface with X-rays, the exposure time for each workpiece coated with negative-tone X-ray resist is considered to be long, so a method that exposes many workpieces at once is effective. . If such parallel processing is performed, the exposure time for one workpiece can be significantly shortened, and a high throughput can be achieved. Ultimately, the exposure time is limited by the first X-ray exposure using an X-ray mask, and the throughput is determined.

以上述べたことによって本発明の効果は明らかであり、
本発明の目的は達成される。なお、本発明で用いられる
ネガ型X線レジストを考えた場合、感度よシもr値の方
がよシ重要である。すなわち高rレジストの方が、−回
目のX線マスクを用いたX線露光による露光時間を短縮
出来るからである。
From the above description, the effects of the present invention are clear,
The objectives of the invention are achieved. Note that when considering the negative X-ray resist used in the present invention, the r value is more important than the sensitivity. In other words, the high r resist can shorten the exposure time for X-ray exposure using the -th X-ray mask.

(発明の効果) 以上説明したように本発明によれば、第1に実用的ネガ
型X線レジストを用いた高スループツトX線露光が可能
となシ、第2にネガ型X線レジメトな開発する際により
大きな許容度(すなわち高r値ネガ型X線レジストの開
発が重要である)を与えることができ、第3に電子ビー
ム励起X線源等を用いた実用的xm露光システムの早期
市販化を実現しうる効果を有するものである。
(Effects of the Invention) As explained above, according to the present invention, firstly, high-throughput X-ray exposure using a practical negative-tone X-ray resist is possible, and secondly, a negative-tone X-ray regimen can be developed. Thirdly, the early commercialization of practical XM exposure systems using electron beam-excited X-ray sources, etc. It has the effect of realizing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) −(C)は本発明の一実施例を示す工程
図、第2図は本発明にがかる一実施例であるX線露光方
法の原理を説明するもので、(a)はXaマスクのX線
透過部下におけるX線レジストの感度特性、Φ)はX線
吸収体パターン部下における同特性を示す図、第3図は
従来のX線露光の概念図である。 1.35・・・被加工物、2・・・ネガ型X線レジスト
、3.34・・・X線透過部、4.37−・・X線吸収
体バター2都、5・・・支持部、6.33・・・X線マ
スク、7.31・・・Xl1I源、 8.32・・・X
線、36・・・X線レジメト 第2図 (α) (b) X糸宗ドーλ量
FIGS. 1(a) to (C) are process diagrams showing an embodiment of the present invention, and FIG. 2 is a diagram explaining the principle of an X-ray exposure method, which is an embodiment of the present invention. is a diagram showing the sensitivity characteristics of the X-ray resist under the X-ray transmission area of the Xa mask, Φ) is a diagram showing the same characteristics under the X-ray absorber pattern, and FIG. 3 is a conceptual diagram of conventional X-ray exposure. 1.35...Workpiece, 2...Negative X-ray resist, 3.34...X-ray transparent part, 4.37-...X-ray absorber butter 2 capitals, 5...Support part, 6.33...X-ray mask, 7.31...Xl1I source, 8.32...X
Line, 36...X-ray regimen Figure 2 (α) (b) X-ray λ amount

Claims (1)

【特許請求の範囲】[Claims] (1)X線源から放射されるX線を、X線マスクを通し
てX線レジストが塗布された被加工物に照射するX線露
光方法において、前記被加工物上にネガ型X線レジスト
を塗布し、この被加工物上に前記X線マスクを用いたX
線複写を行い、続いてX線マスク無しでX線を全面照射
することを特徴とするX線露光方法。
(1) In an X-ray exposure method in which a workpiece coated with an X-ray resist is irradiated with X-rays emitted from an X-ray source through an X-ray mask, a negative X-ray resist is applied on the workpiece. Then, on this workpiece,
An X-ray exposure method characterized by performing ray copying and then irradiating the entire surface with X-rays without an X-ray mask.
JP59176223A 1984-08-24 1984-08-24 X-ray exposure process Pending JPS6154625A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59176223A JPS6154625A (en) 1984-08-24 1984-08-24 X-ray exposure process
EP85110678A EP0172583A3 (en) 1984-08-24 1985-08-26 Method of x-ray lithography
US06/769,054 US4702995A (en) 1984-08-24 1985-08-26 Method of X-ray lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176223A JPS6154625A (en) 1984-08-24 1984-08-24 X-ray exposure process

Publications (1)

Publication Number Publication Date
JPS6154625A true JPS6154625A (en) 1986-03-18

Family

ID=16009777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176223A Pending JPS6154625A (en) 1984-08-24 1984-08-24 X-ray exposure process

Country Status (1)

Country Link
JP (1) JPS6154625A (en)

Similar Documents

Publication Publication Date Title
US4028547A (en) X-ray photolithography
US4360586A (en) Spatial period division exposing
JP2000269130A (en) Lithography projection system
US20020009176A1 (en) X-ray exposure apparatus
Peckerar et al. X-ray lithography-an overview
JPH0324769B2 (en)
JPS6154625A (en) X-ray exposure process
US4702995A (en) Method of X-ray lithography
JPS6154624A (en) X-ray exposure process
US4604345A (en) Exposure method
JPS6154623A (en) X-ray exposure process
JPH0689839A (en) Fine pattern formation and fine pattern aligner
JPS6164127A (en) X-ray exposure
JP3673431B2 (en) Lithographic projection apparatus
EP0209152B1 (en) Pre-exposure method for increased sensitivity in high contrast resist development
JPS61160935A (en) X-ray exposure method
US6682870B1 (en) Enhanced adhesion for LIGA microfabrication by using a buffer layer
JPS5915380B2 (en) Fine pattern transfer device
Smith et al. X-ray lithography
CA1153227A (en) Method and apparatus for making grating
JPS59184526A (en) Formation of pattern
JPH08250420A (en) Processing method of plurality field in x-ray lithography
Piestrup et al. Single-stepper soft x-ray source for step-and-scan tools
JP2004517491A (en) X-ray lithography device
JPH05136026A (en) Pattern forming method