JPS6154023B2 - - Google Patents

Info

Publication number
JPS6154023B2
JPS6154023B2 JP54061288A JP6128879A JPS6154023B2 JP S6154023 B2 JPS6154023 B2 JP S6154023B2 JP 54061288 A JP54061288 A JP 54061288A JP 6128879 A JP6128879 A JP 6128879A JP S6154023 B2 JPS6154023 B2 JP S6154023B2
Authority
JP
Japan
Prior art keywords
acetonitrile
alkali
water
crude acetonitrile
extractor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54061288A
Other languages
Japanese (ja)
Other versions
JPS55153757A (en
Inventor
Terumasa Higuchi
Hiroshi Susumago
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6128879A priority Critical patent/JPS55153757A/en
Priority to US06/131,611 priority patent/US4308108A/en
Priority to DE3050670A priority patent/DE3050670C2/de
Priority to DE3050668A priority patent/DE3050668C2/de
Priority to DE19803011391 priority patent/DE3011391A1/en
Priority to DE3050669A priority patent/DE3050669C2/de
Priority to IT20915/80A priority patent/IT1130079B/en
Publication of JPS55153757A publication Critical patent/JPS55153757A/en
Priority to US06/289,628 priority patent/US4430162A/en
Publication of JPS6154023B2 publication Critical patent/JPS6154023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To dehydrate and purify water-containing crude acetonitrile by-produced in the production of acrylonitrile and methacrylonitrile, efficiently, by extracting the crude acetonitrile with an alkali and removing the separated water layer. CONSTITUTION:For example, water-containing crude acetonitrile introduced into the first extractor 2 through the feed pipe 1 is mixed with an alkali fed through the alkali-feeding pipe 5, and the mixed solution is fed into the first separation tank 7 through the discharge pipe 6 to separate the oil layer from the water layer. The oil layer is fed into the second extractor 2' through the pipe 1' and the water layer is discharged through the discharge pipe 8. Purified acetonitrile is recovered from the oil layer by carrying out the dehydration purification continuously in the same manner. The alkali is preferably NaOH or KOH and its amount is 10-50wt% on the basis of the amount of water contained in the crude acetonitrile. The operation temperature is preferably 20-30 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粗アセトニトリルの効率的な精製方
法、さらに詳しくいえば含水粗アセトニトリル例
えばプロピレン又はイソブチレンのアンモオキシ
デーシヨンによるアクリロニトリル又はメタクリ
ロニトリル製造の際に副生する粗アセトニトリル
から、主な不純物として含まれている水を、アル
カリを用いて抽出除去する方法に関するものであ
る。 アンモオキシデーシヨンによるアクリロニトリ
ル又はメタクリロニトリル製造の際の副生物とし
て得られる粗アセトニトリルは、通常数%ないし
80%程度の水を含んでおり、これを除くことはア
セトニトリル精製における必要な操作となつてい
る。 これまで粗アセトニトリルの脱水精製方法とし
ては、例えば塩化カルシウムを使用して抽出脱水
する方法、ベンゼンを添加して抽出蒸留する方法
(特公昭45−36490号公報)などが知られている。 しかしながら、前者の方法は、抽出により生じ
る有機物含有廃液の処理に際し、通常の高温、高
圧下での廃水処理方法を適用すれば、その廃液中
の塩素イオンにより装置が腐食するため、廃水処
理には特別の配慮を必要とするし、後者の方法は
水を蒸気として取り出すために多量の熱量を要す
るなどの欠点があつた。このように、従来知られ
ている方法には、実用化に際し障害となる欠点が
あるため、その改善が望まれていた。 本発明者らは、このような従来方法のもつ欠点
を克服した効率的な粗アセトニトリルの脱水精製
方法を開発するために鋭意研究を重ねた結果、ア
ルカリを抽出剤として用いることによりその目的
を達成しうることを見出し、本発明をなすに至つ
た。 従来の方法では、ベンゼンや塩化カルシウムな
どアセトニトリルが加水分解を起さないような抽
出剤を用いていたのであるが、一般にはアセトニ
トリルを加水分解しやすいと考えられているアル
カリを用い、効率よく精製することができたとい
うことは、全く予想外のことであつた。 本発明に従うと、含水粗アセトニトリルに、そ
の中に存在する水を抽出するのに十分な量のアル
カリを加えて混合し、次いで分離した水性相を除
去することにより、従来方法のような欠点を伴う
ことなく精製アセトニトリルを得ることができ
る。 本発明方法において、原液として用いられる粗
ニトリルとしては、例えばアンモオキシデーシヨ
ン法によりアクリロニトリル又はメタクリロニト
リルを製造する際に回収された粗アセトニトリル
をあげることができる。この粗アセトニトリル
は、水のほかにシアン化水素、アクリロニトリル
などを含んでいるが、そのまま本発明方法によつ
て精製することができる。 本発明方法において水の抽出剤として用いるア
ルカリは、水酸化ナトリウム、水酸化カリウムの
固形物又は溶液が好適である。 ただし、溶液として使用する際には、そのアル
カリ濃度は、含水粗アセトニトリルを処理した際
に精製アセトニトリル相と水性相に分離しうるよ
うにする。 本発明方法は、10〜50℃好ましくは20〜30℃で
行われる。温度が50℃を越えると、アセトニトリ
ルが加水分解を起すし、また10℃未満では粘度が
大きくなり作業性が低下するので好ましくない。
また、アルカリの使用量は、粗アセトニトリル中
の水分又は精製アセトニトリル中の含有水分によ
り変わるが、通常は粗アセトニトリルの含有水分
に対して10〜50重量%の範囲内で選ばれる。 本発明方法によれば、通常、水分含有率1〜3
重量%のアセトニトリルを容易に得ることがで
き、所望に応じさらに少ない量の水を含むアセト
ニトリルを得ることができる。また、本発明方法
においてアセトニトリルから除かれた水性相は、
アルカリと水のほかにシアン化水素、アクリロニ
トリルその他の不純物を含むが、これらは、例え
ば特公昭47−35416号公報及び特開昭48−81816号
公報に記載されているようなアセトニトリル精製
工程のアルカリ供給源として利用することができ
る。このようにすれば、廃アルカリ溶液中に含ま
れたまま廃棄されてしまうアセトニトリルを、他
のアセトニトリル精製工程中に組み入れて回収す
ることができ、全体としてのアセトニトリルの回
収率を高めることができるので有利である。 次に、添附図面に従つて、本発明の好適な実施
態様を説明する。第1図は、多段式脱水精製装置
を用いて本発明を実施する場合のフローシートで
あるが、アクリロニトリル又はメタクリロニトリ
ル製造の際に副生する粗アセトニトリルは、供給
管1から第一抽出器2に導入される。この第一抽
出器は、かきまぜ機3及び温度調節装置4を備え
ている。粗アセトニトリルは、この中でアルカリ
供給管5より供給される濃アルカリを混合され、
約5分間かきまぜる。この際、発熱が起るので、
温度調節装置により温度10〜50℃好ましくは20〜
30℃に調節する。混合液は、次に排出管6を通つ
て第一分離槽7に送られ、ここで油性相と水性相
に分けられ、油性相は導管1′を通つて第二抽出
器2′へ供給される。水性相は、排出管8を通つ
て集められ、前記したようにアセトニトリル精製
工程用アルカリ液として再使用される。第二抽出
器2′に送られた油性相は、ここでアルカリ供給
管5′から添加される濃アルカリと混合され、第
一抽出器の場合と同様にかきまぜ機3′によりか
きまぜ、温度調節装置4′で温度制御される。こ
こで処理されたアセトニトリルは、排出管6′を
経て第二分離槽7′に送られ、再び水性相と油性
相に分けられる。水性相は排出管8′を通つて第
一分離槽7からの水性相と一緒にされる。油性相
は、さらに導管1″を経て、かきまぜ機3″、温度
調節装置4″及びアルカリ供給管5″を備えた第三
抽出器2″に送られ前記と同様に処理されたの
ち、排出管6″によつて第三分離槽7″で再び水性
相と油性相に分けられ、水性相は排出管8″によ
り取り出され第一分離槽、第二分離槽からの水性
相と一緒に合わせされ、油性相は精製アセトニト
リルとして回収される。この実施態様では、3段
階で精製を行つたが、もちろん1段階で行うこと
もできる。 本発明方法における各段階のアルカリ必要量、
必要な段階数は、アセトニトリルとアルカリ例え
ば水酸化ナトリウムと水の3成分の溶解度は計算
によつて容易に求めることができる。また、粗ア
セトニトリルの中に含まれる水以外の不純物例え
ばシアン化水素、アクリロニトリルなどは、結果
に対して大きな影響を与えることはない。 必要ならば、慣用の精製方法例えば蒸留によつ
て、さらに精製することができる。また、水性相
として回収される希水酸化アルカリ溶液は、有用
成分の回収操作に供するか、あるいは濃縮後、濃
アルカリとして再使用することができる。 次に第2図は、本発明方法を連続的に実施する
のに好適な装置の説明図であり、比重の小さい粗
アセトニトリルは、原液供給管11から比重の大
きいアルカリ液はアルカリ供給管12からそれぞ
れ向流抽出塔10へ導入され、両者は塔内で向流
的に接触しながら、脱水精製処理が行われ、精製
アセトニトリルは塔頂排出口13から取り出され
る。他方、アルカリ液は水分濃度を増して塔底取
出口14から取り出される。この抽出塔として
は、この種の抽出に通常使用されるスプレー式充
てん塔などが用いられる。また、この際のアルカ
リ液としては、例えば濃水酸化ナトリウム溶液が
好適である。 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 かきまぜ機と冷却コイルを備えた4000容抽出
器に、水28.0重量%、アセトニトリル70.0重量
%、シアン化水素1.9重量%、その他の不純物0.1
重量%から成る粗アセトニトリル3370Kgを装入
し、冷却コイルに冷却水を通して30℃に保ち、か
きまぜながら、50%―水酸化ナトリウム溶液105
Kgを2分間で添加した。引続き、3分間かきまぜ
た後、この内容物を分離槽に移し、分離処理する
ことにより油性相として水20.4重量%、アセトニ
トリル78.3重量%、その他の不純物1.3重量%か
ら成る粗アセトニトリル溶液2863Kgと、水性相と
して水酸化ナトリウム8.6重量%、アセトニトリ
ル19.0重量%、水67.4重量%、その他の不純物5.0
重量%から成る希水酸化ナトリウム溶液612Kgを
得た。 このようにして得た粗アセトニトリル溶液を再
び抽出器に装入し、同様の操作を3回繰り返し
た。各回ごとに得られた油性相と水性相の組成を
第1表に示す。
The present invention provides an efficient method for purifying crude acetonitrile, more specifically, from crude acetonitrile produced as a by-product during the production of acrylonitrile or methacrylonitrile by ammoxidation of hydrous crude acetonitrile, for example, propylene or isobutylene, as a main impurity. The present invention relates to a method for extracting and removing water contained therein using an alkali. Crude acetonitrile obtained as a by-product during the production of acrylonitrile or methacrylonitrile by ammoxidation usually ranges from several percent to
It contains about 80% water, and removing this is a necessary operation in acetonitrile purification. Hitherto known methods for dehydrating and purifying crude acetonitrile include, for example, a method of extractive dehydration using calcium chloride, a method of extractive distillation with the addition of benzene (Japanese Patent Publication No. 36490/1983), and the like. However, the former method is not suitable for wastewater treatment because if ordinary high temperature and high pressure wastewater treatment methods are applied to the wastewater containing organic matter generated by extraction, the equipment will be corroded by the chlorine ions in the wastewater. Special consideration is required, and the latter method has drawbacks such as requiring a large amount of heat to extract the water as steam. As described above, since the conventionally known methods have drawbacks that hinder their practical application, improvements have been desired. The present inventors have conducted intensive research to develop an efficient method for dehydrating and purifying crude acetonitrile that overcomes the drawbacks of conventional methods, and as a result, they have achieved the objective by using alkali as an extractant. They have discovered that it is possible to do so, and have come up with the present invention. Conventional methods use extractants that do not hydrolyze acetonitrile, such as benzene or calcium chloride, but alkali, which is generally thought to easily hydrolyze acetonitrile, is used to efficiently purify acetonitrile. The fact that I was able to do so was completely unexpected. According to the present invention, the drawbacks of conventional methods are overcome by mixing the hydrous crude acetonitrile with an amount of alkali sufficient to extract the water present therein and then removing the separated aqueous phase. Purified acetonitrile can be obtained without any oxidation. In the method of the present invention, examples of the crude nitrile used as a stock solution include crude acetonitrile recovered during the production of acrylonitrile or methacrylonitrile by the ammoxidation method. Although this crude acetonitrile contains hydrogen cyanide, acrylonitrile, etc. in addition to water, it can be purified as is by the method of the present invention. The alkali used as the water extractant in the method of the present invention is preferably a solid or solution of sodium hydroxide or potassium hydroxide. However, when used as a solution, the alkaline concentration is such that it can separate into a purified acetonitrile phase and an aqueous phase when the hydrous crude acetonitrile is treated. The method of the invention is carried out at a temperature of 10-50°C, preferably 20-30°C. If the temperature exceeds 50°C, acetonitrile will undergo hydrolysis, and if the temperature is lower than 10°C, the viscosity will increase and workability will decrease, which is not preferable.
The amount of alkali used varies depending on the water content in the crude acetonitrile or the water content in the purified acetonitrile, but is usually selected within the range of 10 to 50% by weight based on the water content of the crude acetonitrile. According to the method of the present invention, the moisture content is usually 1 to 3.
% by weight of acetonitrile can be easily obtained, and if desired, acetonitrile containing even smaller amounts of water can be obtained. In addition, the aqueous phase removed from acetonitrile in the method of the present invention is
In addition to alkali and water, it contains hydrogen cyanide, acrylonitrile, and other impurities, and these are used as an alkali source for the acetonitrile purification process as described in, for example, Japanese Patent Publication No. 47-35416 and Japanese Patent Application Laid-Open No. 48-81816. It can be used as In this way, the acetonitrile that would otherwise be discarded while still being contained in the waste alkaline solution can be incorporated into other acetonitrile purification processes and recovered, increasing the overall recovery rate of acetonitrile. It's advantageous. Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a flow sheet for carrying out the present invention using a multi-stage dehydration purification device. 2 will be introduced. This first extractor is equipped with an agitator 3 and a temperature control device 4. The crude acetonitrile is mixed with concentrated alkali supplied from the alkali supply pipe 5,
Stir for about 5 minutes. At this time, fever occurs, so
Depending on the temperature control device, the temperature should be 10~50℃, preferably 20~
Adjust to 30℃. The mixed liquid is then sent through a discharge pipe 6 to a first separation tank 7 where it is separated into an oily phase and an aqueous phase, the oily phase being fed through a conduit 1' to a second extractor 2'. Ru. The aqueous phase is collected through drain 8 and reused as lye for the acetonitrile purification process as described above. The oily phase sent to the second extractor 2' is mixed here with concentrated alkali added from the alkali supply pipe 5', stirred by the stirrer 3' as in the case of the first extractor, and controlled by the temperature control device. The temperature is controlled by 4'. The acetonitrile treated here is sent to the second separation tank 7' via the discharge pipe 6' and is again separated into an aqueous phase and an oily phase. The aqueous phase is combined with the aqueous phase from the first separation tank 7 through a discharge pipe 8'. The oily phase is further sent via conduit 1'' to a third extractor 2'' equipped with a stirrer 3'', a temperature regulator 4'' and an alkali supply tube 5'', treated in the same manner as described above, and then passed through a discharge tube. The aqueous phase is separated again into an aqueous phase and an oily phase in a third separation tank 7'' by a discharge pipe 8'' and combined with the aqueous phase from the first separation tank and the second separation tank. , the oily phase is recovered as purified acetonitrile. In this embodiment, purification was carried out in three stages, but of course it can also be carried out in one stage. The amount of alkali required for each step in the method of the present invention,
The required number of stages can be easily determined by calculating the solubility of the three components in acetonitrile, an alkali, for example, sodium hydroxide, and water. Furthermore, impurities other than water contained in the crude acetonitrile, such as hydrogen cyanide and acrylonitrile, do not have a large effect on the results. If necessary, further purification can be carried out by conventional purification methods such as distillation. Further, the dilute alkali hydroxide solution recovered as the aqueous phase can be subjected to an operation for recovering useful components, or can be concentrated and reused as a concentrated alkali. Next, FIG. 2 is an explanatory diagram of an apparatus suitable for continuously carrying out the method of the present invention, in which crude acetonitrile with a low specific gravity is supplied from a stock solution supply pipe 11, and alkali liquid with a high specific gravity is supplied from an alkali supply pipe 12. Each is introduced into a countercurrent extraction tower 10, and dehydration and purification treatment is performed while both are in countercurrent contact within the tower, and purified acetonitrile is taken out from the tower top outlet 13. On the other hand, the alkaline liquid is taken out from the bottom outlet 14 with its water concentration increased. As this extraction column, a spray-type packed column or the like which is commonly used for this type of extraction is used. Further, as the alkaline solution at this time, for example, a concentrated sodium hydroxide solution is suitable. Next, the present invention will be explained in more detail with reference to Examples. Example 1 In a 4000 volume extractor equipped with a stirrer and cooling coil, 28.0% water, 70.0% acetonitrile, 1.9% hydrogen cyanide, and 0.1% other impurities were added.
Charge 3370 kg of crude acetonitrile consisting of 50% sodium hydroxide solution by passing cooling water through the cooling coil, keep it at 30℃, and stir while stirring.
Kg was added in 2 minutes. Subsequently, after stirring for 3 minutes, the contents were transferred to a separation tank and subjected to separation treatment to produce 2863 kg of a crude acetonitrile solution as an oily phase consisting of 20.4% by weight of water, 78.3% by weight of acetonitrile, and 1.3% by weight of other impurities, and an aqueous phase. Sodium hydroxide 8.6% by weight, acetonitrile 19.0% by weight, water 67.4% by weight as phases, other impurities 5.0
612 kg of dilute sodium hydroxide solution consisting of % by weight were obtained. The crude acetonitrile solution thus obtained was charged into the extractor again, and the same operation was repeated three times. Table 1 shows the compositions of the oily phase and aqueous phase obtained each time.

【表】 実施例 2 第2図に示す構造をもち、1/2インチ鉄製ラシ
ヒリングを充てんした塔高8m、充てん部高さ6
mの向流抽出塔に、水分20重量%の粗アセトニト
リルと52%―水酸化ナトリウム溶液を供給し、精
製処理したところ、第2表に示す結果を得た。
[Table] Example 2 A tower having the structure shown in Fig. 2, filled with 1/2 inch iron Raschig rings, height 8 m, filling part height 6
Crude acetonitrile with a water content of 20% by weight and a 52% sodium hydroxide solution were supplied to a countercurrent extraction column (m) and purified, and the results shown in Table 2 were obtained.

【表】 実施例 3 かきまぜ機を備えた300容抽出器に粗アセト
ニトリル200を装入し、温度を30〜40℃の間に
維持しながら、50%水酸化ナトリウム溶液8を
徐々に添加した。3分間激しくかきまぜたのち、
分離槽に移し、油性相と水性相に分け、油性相は
抽出器に戻し、水性相は抜き出した。この操作を
3回繰り返した結果を第3表に示す。
[Table] Example 3 A 300 volume extractor equipped with a stirrer was charged with 200 g of crude acetonitrile and 50% sodium hydroxide solution 8 was slowly added while maintaining the temperature between 30 and 40°C. After stirring vigorously for 3 minutes,
The mixture was transferred to a separation tank and separated into an oily phase and an aqueous phase. The oily phase was returned to the extractor and the aqueous phase was extracted. This operation was repeated three times and the results are shown in Table 3.

【表】 参考例 実施例2で得た希水酸化ナトリウム廃液を用い
て、粗アセトニトリルからアクリロニトリルとシ
アン化水素を除去した。 すなわち、水約25.2重量%、遊離シアン化水素
約0.3重量%、アセトンシアンヒドリンなどの結
合シアン化約0.5重量%、アクリロニトリル0.08
重量%、その他の不純物1.3重量%を含む粗アセ
トニトリル5100Kgをコンデンサー付処理槽に入
れ、次いでこれに実施例2で得た希水酸化ナトリ
ウム廃液(13.2%NaOH)572Kgを加え、PHを13
に調整したのち、スチームで加熱して60℃におい
て全還流運転を15分間行つた。この際の処理槽内
の液のアクリロニトリルを分析したところその量
は40ppmであつた。 次に硫酸第一鉄56Kgを添加して全還流処理を行
つたところ、還流アセトニトリル中の青酸は15分
後9.1ppmに、45分後6.0ppmに低下した。60分間全還
流したのち、単蒸留を行つたところ、留出物とし
て、水18重量%、シアン化水素3.2ppm、アクリロ
ニトリル10ppm以下、プロピオニトリル0.3重量
%、その他の不純物1.0重量%を含む精製アセト
ニトリル4093Kgを得た。また処理槽残液としてロ
ダン法によるシアン化水素濃度1.0ppm以下の廃水
1.7m3を得た。 この例で用いた原液の粗アセトニトリルは、ア
クリロニトリル製造の際の副生物として得られた
ものである。 以上の各実施例、参考例の結果から明らかなよ
うに、本発明方法によれば、水のほかに、シアン
化水素、アクリロニトリルなどを含んでいても効
率的な脱水ができる上に、向流抽出塔を用いれば
連続的な操作が可能であるという利点がある。し
かも、本発明方法により得られる希アルカリ廃液
は、アルカリによる粗アセトニトリルからアクリ
ロニトリル及びシアン化水素の除去方法(特公昭
47−35416号公報参照)のアルカリ処理剤として
十分に使用しうるという利点もある。
[Table] Reference Example Using the diluted sodium hydroxide waste solution obtained in Example 2, acrylonitrile and hydrogen cyanide were removed from crude acetonitrile. That is, approximately 25.2% water by weight, approximately 0.3% free hydrogen cyanide, approximately 0.5% bound cyanide such as acetone cyanohydrin, and 0.08% acrylonitrile.
5,100 kg of crude acetonitrile containing 1.3% by weight of other impurities was placed in a treatment tank equipped with a condenser, and then 572 kg of dilute sodium hydroxide waste solution (13.2% NaOH) obtained in Example 2 was added to this to bring the pH to 13.
After heating with steam, total reflux operation was performed at 60°C for 15 minutes. Analysis of the acrylonitrile in the liquid in the treatment tank at this time revealed that the amount was 40 ppm. Next, when 56 kg of ferrous sulfate was added and a total reflux treatment was performed, the hydrocyanic acid in the refluxed acetonitrile decreased to 9.1 ppm after 15 minutes and to 6.0 ppm after 45 minutes. After total reflux for 60 minutes, simple distillation was performed, and the distillate was 4093 kg of purified acetonitrile containing 18% by weight of water, 3.2ppm of hydrogen cyanide, 10ppm or less of acrylonitrile, 0.3% by weight of propionitrile, and 1.0% by weight of other impurities. I got it. In addition, wastewater with a hydrogen cyanide concentration of 1.0 ppm or less by the Rodan method is used as treatment tank residual liquid.
Obtained 1.7m3 . The raw crude acetonitrile used in this example was obtained as a by-product during the production of acrylonitrile. As is clear from the results of the above examples and reference examples, according to the method of the present invention, efficient dehydration is possible even when hydrogen cyanide, acrylonitrile, etc. are contained in addition to water, and the countercurrent extraction column The advantage of using this is that continuous operation is possible. Moreover, the dilute alkaline waste liquid obtained by the method of the present invention is a method for removing acrylonitrile and hydrogen cyanide from crude acetonitrile using an alkali
It also has the advantage that it can be used satisfactorily as an alkali treatment agent (see Japanese Patent Publication No. 47-35416).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法の一例を示すフローシー
ト、第2図は本発明方法を連続的に実施するため
の装置の説明図であつて、図中符号は次の意味を
もつ。 2,2′,2″…抽出器、3,3′,3″…かきま
ぜ機、4,4′,4″…温度調節装置、7,7′,
7″…分離槽。
FIG. 1 is a flow sheet showing an example of the method of the present invention, and FIG. 2 is an explanatory diagram of an apparatus for continuously carrying out the method of the present invention, and the symbols in the figure have the following meanings. 2, 2', 2''...extractor, 3, 3', 3''...stirrer, 4, 4', 4''...temperature control device, 7, 7',
7″…Separation tank.

Claims (1)

【特許請求の範囲】 1 含水粗アセトニトリルに、その中に存在する
水を抽出するのに十分な量のアルカリを加えて混
合し、次いで分離した水性相を除去することを特
徴とする粗アセトニトリルの脱水精製方法。 2 アルカリが水酸化ナトリウム又は水酸化カリ
ウムである特許請求の範囲第1項記載の方法。 3 10〜50℃の範囲内の温度で行う特許請求の範
囲第1項記載の方法。 4 含有水分に対し、10〜50重量%のアルカリを
加える特許請求の範囲第1項記載の方法。
[Claims] 1. A method for preparing crude acetonitrile, which is characterized in that a sufficient amount of alkali to extract the water present therein is added to and mixed with hydrous crude acetonitrile, and then the separated aqueous phase is removed. Dehydration purification method. 2. The method according to claim 1, wherein the alkali is sodium hydroxide or potassium hydroxide. 3. The method according to claim 1, which is carried out at a temperature within the range of 10 to 50°C. 4. The method according to claim 1, wherein 10 to 50% by weight of alkali is added to the water content.
JP6128879A 1979-03-28 1979-05-18 Purification of crude acetonitrile by dehydration Granted JPS55153757A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6128879A JPS55153757A (en) 1979-05-18 1979-05-18 Purification of crude acetonitrile by dehydration
US06/131,611 US4308108A (en) 1979-03-28 1980-03-19 Process for purification of crude acetonitrile
DE3050670A DE3050670C2 (en) 1979-03-28 1980-03-25
DE3050668A DE3050668C2 (en) 1979-03-28 1980-03-25
DE19803011391 DE3011391A1 (en) 1979-03-28 1980-03-25 METHOD FOR PURIFYING RAW ACETONITRILE
DE3050669A DE3050669C2 (en) 1979-03-28 1980-03-25
IT20915/80A IT1130079B (en) 1979-03-28 1980-03-26 PROCEDURE FOR PURIFYING RAW ACETONITRILE
US06/289,628 US4430162A (en) 1979-03-28 1981-08-03 Process for purification of crude acetonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6128879A JPS55153757A (en) 1979-05-18 1979-05-18 Purification of crude acetonitrile by dehydration

Publications (2)

Publication Number Publication Date
JPS55153757A JPS55153757A (en) 1980-11-29
JPS6154023B2 true JPS6154023B2 (en) 1986-11-20

Family

ID=13166852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6128879A Granted JPS55153757A (en) 1979-03-28 1979-05-18 Purification of crude acetonitrile by dehydration

Country Status (1)

Country Link
JP (1) JPS55153757A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121081A1 (en) * 2005-05-10 2006-11-16 Asahi Kasei Chemicals Corporation High-purity acetonitrile and process for producing the same
WO2013146609A1 (en) 2012-03-26 2013-10-03 旭化成ケミカルズ株式会社 Method for purifying acetonitrile
JP6038157B2 (en) * 2012-08-31 2016-12-07 旭化成株式会社 Acetonitrile purification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881816A (en) * 1972-02-12 1973-11-01
JPS5025527A (en) * 1973-07-09 1975-03-18
JPS5132518A (en) * 1974-09-06 1976-03-19 Mitsubishi Chem Ind ASETONITORIRUNOSEISEIHO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881816A (en) * 1972-02-12 1973-11-01
JPS5025527A (en) * 1973-07-09 1975-03-18
JPS5132518A (en) * 1974-09-06 1976-03-19 Mitsubishi Chem Ind ASETONITORIRUNOSEISEIHO

Also Published As

Publication number Publication date
JPS55153757A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
US4430162A (en) Process for purification of crude acetonitrile
US4961918A (en) Process for production of chlorine dioxide
CN107311878B (en) Device for recycling glycine waste liquid and method for recycling glycine waste liquid
US2869989A (en) Method for the recovery of hydrogen peroxide
TW201414706A (en) Method for purifying acetonitrile
JPS6154023B2 (en)
US4241229A (en) Recovery of nitrated aromatic compounds from nitration wash liquors
JP2930736B2 (en) Method for treating aqueous mother liquor containing hydrochloric acid, sulfuric acid and its hydroxylammonium and ammonium salts
CN106277468A (en) A kind of method removing oils from high salinity DMF waste water
JP5648304B2 (en) Method for producing acrylonitrile
CN220656435U (en) Device for recycling pyridine or pyridine derivative in hexachlorocyclo-triphosphazene synthetic waste residues
JPS6154021B2 (en)
JP3019535B2 (en) How to collect indene from tar
JPS6331458B2 (en)
CN220277839U (en) Device for recycling hexachlorocyclo triphosphazene synthetic waste residues
CN212293381U (en) Propylene oxide refining device
KR840000571B1 (en) Purification of acetonitlie
US3145084A (en) Purification of liquid bromine contaminated with organic impurities
TWI631082B (en) Method for treating chemical oxygen content of wastewater in isooctyl alcohol process
JP4065714B2 (en) Method for purifying 1,2-dichloroethane
KR830002432B1 (en) Purification method of hydrogen cyanide containing acetonitrile
ZA200507200B (en) Process for the recovery of oxazole
CN111574479A (en) Refining process of propylene oxide
EP1592676B1 (en) Process for the recovery of oxazole
JP3949457B2 (en) Method for recovering 1,2-dichloroethane