JPS6153407B2 - - Google Patents

Info

Publication number
JPS6153407B2
JPS6153407B2 JP54010316A JP1031679A JPS6153407B2 JP S6153407 B2 JPS6153407 B2 JP S6153407B2 JP 54010316 A JP54010316 A JP 54010316A JP 1031679 A JP1031679 A JP 1031679A JP S6153407 B2 JPS6153407 B2 JP S6153407B2
Authority
JP
Japan
Prior art keywords
rolling
steel
final pass
precipitation
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54010316A
Other languages
Japanese (ja)
Other versions
JPS55104428A (en
Inventor
Kenichi Shinoda
Juichi Higo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1031679A priority Critical patent/JPS55104428A/en
Publication of JPS55104428A publication Critical patent/JPS55104428A/en
Publication of JPS6153407B2 publication Critical patent/JPS6153407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐力の高い非磁性棒鋼を製造する方法
に関するものである。 従来から超電導電磁誘導方式リニアモーターカ
ーの基礎コンクリートや磁気測定用建物のコンク
リートなどでは電力ロスや測定誤差発生防止など
の目的から非磁性棒鋼による配筋が要求されてい
る。 非磁性鋼としてはハツドフイールド鋼系の高C
高Mnのオーステナイト鋼がNi−Cr系ステンレス
鋼に比し経済性の点で優れていることが注目され
ており、非磁性棒鋼として使用され始めている。
高C高Mnオーステナイト鋼の棒鋼は透磁率1.02
以下という値で非磁性であり、引張強さ、伸び、
及び曲げ性が優れている。 例えば鉄筋コンクリート用棒鋼JIS G3112の熱
間圧延異形棒鋼SD35の規格を満足するものも得
られている。 しかしながら最近更に高い強度を持つ非磁性棒
鋼を要求する声が出ており、従来の高C高Mnオ
ーステナイト鋼の棒鋼では引張強さの点では大略
満足できるとは言え、耐力の点では満足するだけ
の特性は得られていない。 上記現状に鑑み本発明者等は高C高Mnオース
テナイト鋼をベースとして多数の実験を行ない高
耐力の非磁性棒鋼を開発することに成功した。 高C高Mnオーステナイト鋼の強力方法として
は、先ず冷間加工による加工強化を利用する方法
が考えられるが、この方法は経済的に不利であ
り、また冷間加工による組織の変態は磁気特性を
劣化させるという問題点を有している。 次に合金元素添加による固溶強化を利用する方
法があるが、例えばCr、Si、Alなどの添加が試
みられているけれ共、経済的不利を招かない範囲
での合金元素添加量で得られる耐力の向上は10
Kg/mm2程度に過ぎず、大きな耐力向上を望むこと
はできない。 次に挙げられるのは強炭化物形成合金元素を添
加して炭化物の析出によつて強化する方法であ
る。強炭化物形成合金元素としてはNb、Vなど
が挙げられるが高C高Mnオーステナイト鋼の場
合に固溶度の点からVが最も有利である。Vの添
加では70Kg/mm2の耐力が得られるけれ共、この方
法を用いる場合には熱間圧延後に溶体化処理と析
出時効処理といつた後処理が必要であり、製造工
程の複雑化が生じ経済的に不利である。 上記の如く従来の高C高Mnオーステナイト鋼
棒鋼の強化方法には残されている問題点が存在し
ていることから本発明者等は耐力の向上が大き
く、且つ経済性に富んだ方法を研究した結果、本
発明を完成した。 本発明の構成概略はVを添加した高C高Mnオ
ーステナイト鋼の棒鋼熱間圧延時に圧延条件を制
御することによつて熱間圧延における加工歪みの
解放を抑制すると共に圧延後の冷却中にV炭化物
を微細に析出させて加工強化と析出強化との二重
の強化によつて耐力の高い非磁性棒鋼を製造する
方法にある。即ちC:0.70〜1.20%、Mn:11.0〜
16.0%にVを添加した高C高Mnオーステナイト
鋼の棒鋼の熱間圧延時の最終パスの圧下率を10〜
40%とし、且つV含有量が0.30%以上0.60%未満
の場合には最終パスの圧延温度を800〜950℃に、
V含有量が0.60%以上1.00%以下の場合には最終
パスの圧延温度を800〜1050℃にそれぞれ調節し
て圧延し圧延後、大気放冷する。この様にして製
造された棒鋼はV炭化物から成る未固溶炭化物の
存在によつて加工歪みの解放が抑制されて加工強
化され、また冷却中に微細析出したV炭化物で析
出強化され著しい耐力の向上が得られる。 以下に本発明を構成する各条件について更に詳
細説明する。 Cはオーステナイト組織を形成するのに不可欠
な元素であり、通常高C高Mnオーステナイト鋼
ではCを0.8〜1.5%が添加されるが、Cが高いと
Vの固溶量を少なくするし、また粒界炭化物の析
出を促進して靭性を劣化させるから0.70〜1.20%
とした。 Mnもオーステナイト組織の形成に不可欠であ
り、11.0%以上が必要であるが16.0%を超えて添
加しても経済的に不利となるだけであるから11.0
〜16.0%とした。 Vの添加量、最終パスの圧下率、最終パスの圧
延温度及び圧延後の冷却速度は熱間加工歪みの解
放を抑制して加工強化を得るのみでなく残存した
加工歪みのため容易ならしめられた微細V炭化物
の析出によつて析出強化させる点においても重要
である。 第1図、第2図および第3図はそれぞれ0.71%
C−13.0%Mn;0.71%C−13.2%Mn−0.40%
V;および0.72%C−13.1%Mn−0.80%V;の成
分から成る鋼片を1150℃で加熱後、800〜1100℃
の所定温度まで放冷し所定温度で圧下率10〜50%
の1パスによる熱間圧延を行ない、その後空冷時
間(a)1秒、(b)10秒、(c)30秒でそれぞれ大気放冷
し、しかる後、水冷して得た鋼材の硬度を測定し
た実験結果を示す図である。尚、図中〇は圧下率
10%、△は圧下率30%、●は圧下率50%の場合を
表わす。Vを含まない鋼の場合には第1図に示す
如く加工歪みの解放が急速に起こり、且つ析出強
化が無いため硬度が低い。Vを0.40%含んでいる
鋼では第2図に示す如く加工歪みの解放が抑制さ
れ且つ析出強化されて硬度が上昇する傾向がある
が、加工温度が1000℃以上では加工歪みの解放を
抑制しきれず更に歪みが解放されて短時間内での
V炭化物の析出が微量となり、析出強化もなされ
ていない。Vを0.80%含む鋼では第3図に示す如
く加工歪み解放の抑制と析出強化の度合は更に高
まるが、加工温度が1100℃の場合、加工歪み解放
の抑制と析出強化の効果は小さなものとなつてい
る。 之等の知見に基づいて本発明においては最終パ
スの圧延温度の上限を、0.30〜0.60%Vの鋼の場
合には950℃;0.60〜1.0%Vの鋼の場合には1050
℃としたが、之は加工歪みの解放を抑制し且つ析
出強化が得られることを目的としたからである。
最終パスの圧延温度の下限を800℃としたが、之
は800℃より低い温度では熱間圧延自体が困難と
なるばかりか、温度が低過ぎて冷却中のV炭化物
の析出が起き難くなるためである。 最終パスの圧下率は10〜40%としたが、10%未
満では強化に充分な加工歪みを与えることができ
ないし、40%を越える圧下率ではVを含む高C高
Mn鋼は変形抵抗が大きいため圧延自体が困難と
なるばかりか、加工率の増大により反えつて加工
歪み解放が促進され、析出強化も少なくなるから
である。圧延後の冷却は大気放冷としたが加工歪
みが残存している場合、V炭化物の析出は短時間
に起こり大気放冷で充分な析出強化を得ることが
でき、時効処理といつた後処理は必要がなくな
る。 次に本発明の効果を比較例と対比させて実施例
で示す。 本発明実施例と比較例における共試鋼の化学成
分を第1表に示す。 何れも高周波炉で溶製して100Kg鋼塊としたも
のであり、ピレツトに鍛造後、1150℃で加熱し第
2表に示す圧延条件で直径10〜15mmの棒鋼に圧延
した。第3表に本発明の実施例と比較例の機械的
性質と物理的性質を示す。比較例1〜3ではVを
含まないが、或いは添加量が少ないため耐力が低
い。比較例4、5はVを0.40%以上含む鋼の場合
であるが最終パスの圧延温度が高いか、或いは最
終パスの圧下率が小さいため充分な加工歪みと炭
化物の析出が得られず耐力の向上は充分でない。 本発明の実施例では耐力が大きく向上し80Kg/
mm2にまで到達する。なお本発明の実施例では耐力
が向上する反面、全伸びが低下し限界曲げ半径が
増大するが、鉄筋コンクリート用棒鋼としては充
分な延性と曲げ性を有している。また本発明の実
施例における透磁率は何れの場合も1.01であり、
従来の高C高Mnオーステナイト鋼棒鋼の化学成
分と圧延条件を用いた比較例1及び2の場合と差
がなく優れた非磁性鋼であると言うことができ
る。 本発明によつて得られた非磁性棒鋼は耐力が高
いので大きな強化を必要とする鉄筋コンクリート
の配筋などに使用できる。
The present invention relates to a method of manufacturing a non-magnetic steel bar with high yield strength. Conventionally, reinforcement made of non-magnetic steel bars has been required for the foundation concrete of superconducting electromagnetic induction type linear motor cars and the concrete of buildings used for magnetic measurement, in order to prevent power loss and measurement errors. As a non-magnetic steel, there is a high C of hard field steel.
High Mn austenitic steel has attracted attention for its economical advantages over Ni-Cr stainless steel, and has begun to be used as a non-magnetic steel bar.
High C high Mn austenitic steel bar has a magnetic permeability of 1.02
It is non-magnetic with values below, tensile strength, elongation,
and has excellent bendability. For example, we have obtained products that meet the standards for hot rolled deformed steel bars SD35 of JIS G3112 steel bars for reinforced concrete. However, recently there has been a demand for non-magnetic steel bars with even higher strength, and although conventional high-C, high-Mn austenitic steel bars are generally satisfactory in terms of tensile strength, they are only satisfactory in terms of yield strength. characteristics have not been obtained. In view of the above-mentioned current situation, the present inventors conducted numerous experiments based on high C, high Mn austenitic steel and succeeded in developing a high yield strength non-magnetic steel bar. The first possible way to strengthen high C, high Mn austenitic steel is to use cold working to strengthen it, but this method is economically disadvantageous, and the transformation of the structure due to cold working impairs the magnetic properties. It has the problem of deterioration. Next, there is a method that utilizes solid solution strengthening by adding alloying elements. For example, addition of Cr, Si, Al, etc. has been attempted, but it can be obtained by adding alloying elements in amounts that do not cause economic disadvantage. Increased strength by 10
It is only about Kg/mm 2 , and we cannot expect a significant improvement in yield strength. The next method is to add a strong carbide-forming alloying element to strengthen the steel by precipitation of carbides. Examples of strong carbide-forming alloying elements include Nb and V, but in the case of high C, high Mn austenitic steel, V is most advantageous from the viewpoint of solid solubility. By adding V, a yield strength of 70 kg/mm 2 can be obtained, but when using this method, post-treatments such as solution treatment and precipitation aging treatment are required after hot rolling, which complicates the manufacturing process. This is economically disadvantageous. As mentioned above, there are still problems with the conventional method of strengthening high C, high Mn austenitic steel bars, so the present inventors have researched a method that can greatly improve yield strength and is highly economical. As a result, the present invention was completed. The outline of the structure of the present invention is to control the rolling conditions during hot rolling of a high C, high Mn austenitic steel bar added with V, thereby suppressing the release of working strain during hot rolling, and suppressing the release of working strain during cooling after rolling. The method consists in producing a non-magnetic steel bar with high yield strength through double strengthening of work strengthening and precipitation strengthening by finely precipitating carbides. That is, C: 0.70~1.20%, Mn: 11.0~
The reduction ratio of the final pass during hot rolling of a high C high Mn austenitic steel bar with 16.0% V added is 10~
40%, and when the V content is 0.30% or more and less than 0.60%, the final pass rolling temperature is 800 to 950°C,
When the V content is 0.60% or more and 1.00% or less, the final pass rolling temperature is adjusted to 800 to 1050°C, and after rolling, the product is allowed to cool in the atmosphere. The steel bars produced in this way are work-strengthened by suppressing the release of working strain due to the presence of undissolved carbides consisting of V carbides, and are precipitation-strengthened by the finely precipitated V carbides during cooling, resulting in significant yield strength. Improvement can be obtained. Each condition constituting the present invention will be explained in more detail below. C is an essential element for forming an austenitic structure, and usually 0.8 to 1.5% of C is added to high C, high Mn austenitic steel, but high C reduces the amount of solid solution of V, and also 0.70 to 1.20% because it promotes the precipitation of grain boundary carbides and deteriorates toughness.
And so. Mn is also essential for the formation of the austenite structure, and it is necessary to add more than 11.0%, but adding more than 16.0% will only be economically disadvantageous.
~16.0%. The amount of V added, the rolling reduction rate in the final pass, the rolling temperature in the final pass, and the cooling rate after rolling are adjusted not only to suppress the release of hot working strain and obtain work strengthening, but also to ease the residual working strain. It is also important in terms of precipitation strengthening due to the precipitation of fine V carbides. Figures 1, 2 and 3 are each 0.71%
C-13.0%Mn; 0.71%C-13.2%Mn-0.40%
and 0.72%C-13.1%Mn-0.80%V; after heating it at 1150℃, it was heated to 800-1100℃.
Allow to cool to a specified temperature and reduce the reduction rate to 10 to 50% at the specified temperature.
After hot rolling with one pass, the steel was cooled in the atmosphere for (a) 1 second, (b) 10 seconds, and (c) 30 seconds, and then water-cooled and the hardness of the obtained steel material was measured. FIG. 2 is a diagram showing the experimental results. In addition, 〇 in the figure is the rolling reduction rate.
10%, △ indicates a rolling reduction of 30%, ● indicates a rolling reduction of 50%. In the case of steel that does not contain V, the release of working strain occurs rapidly as shown in FIG. 1, and there is no precipitation strengthening, so the hardness is low. As shown in Figure 2, steel containing 0.40% V tends to suppress the release of working strain and undergo precipitation strengthening, resulting in an increase in hardness. In addition, the strain was released, and a very small amount of V carbide precipitated within a short period of time, and no precipitation strengthening occurred. In steel containing 0.80% V, the degree of suppression of processing strain release and precipitation strengthening is further increased as shown in Figure 3, but when the processing temperature is 1100°C, the effects of suppressing processing strain release and precipitation strengthening are small. It's summery. Based on these findings, in the present invention, the upper limit of the rolling temperature in the final pass is set to 950°C in the case of 0.30 to 0.60% V steel; 1050°C in the case of 0.60 to 1.0% V steel.
℃ because the purpose was to suppress the release of processing strain and obtain precipitation strengthening.
The lower limit of the rolling temperature for the final pass was set at 800°C, because not only would hot rolling itself be difficult at a temperature lower than 800°C, but the temperature would be too low, making it difficult for V carbide to precipitate during cooling. It is. The rolling reduction ratio in the final pass was set at 10 to 40%, but if it is less than 10%, it will not be possible to give sufficient machining strain for strengthening, and if the rolling reduction ratio exceeds 40%, it will result in high C, including V.
This is because not only is Mn steel difficult to roll due to its large deformation resistance, but also an increase in the working rate promotes release of working strain and reduces precipitation strengthening. Cooling after rolling was performed by air cooling, but if machining distortion remains, precipitation of V carbides occurs in a short period of time, and sufficient precipitation strengthening can be obtained by air cooling. is no longer needed. Next, the effects of the present invention will be shown in Examples in comparison with comparative examples. Table 1 shows the chemical components of the joint test steels in the examples of the present invention and comparative examples. All of the steel ingots were made into 100 kg steel ingots by melting in a high frequency furnace, and after being forged into pillars, they were heated at 1150°C and rolled into steel bars with a diameter of 10 to 15 mm under the rolling conditions shown in Table 2. Table 3 shows the mechanical properties and physical properties of Examples of the present invention and Comparative Examples. Comparative Examples 1 to 3 do not contain V, or the amount added is small, so the yield strength is low. Comparative Examples 4 and 5 involve steel containing 0.40% or more of V, but because the rolling temperature in the final pass is high or the rolling reduction rate in the final pass is small, sufficient processing strain and carbide precipitation cannot be obtained, resulting in a decrease in yield strength. Improvement is not enough. In the example of the present invention, the yield strength is greatly improved to 80Kg/
reaching up to mm 2 . In the examples of the present invention, although the yield strength is improved, the total elongation is decreased and the limit bending radius is increased, but the steel bars have sufficient ductility and bendability as steel bars for reinforced concrete. In addition, the magnetic permeability in the examples of the present invention is 1.01 in all cases,
It can be said that this is an excellent non-magnetic steel with no difference from Comparative Examples 1 and 2, which used the chemical composition and rolling conditions of conventional high C, high Mn austenitic steel bars. Since the non-magnetic steel bar obtained by the present invention has a high yield strength, it can be used for reinforcement of reinforced concrete that requires large reinforcement.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図はV含有量を変えた3種の鋼について圧延温
度、圧下率、圧延後の空冷時間をそれぞれ(a)1
秒、(b)10秒、(c)30秒に変化させて圧延した場合の
硬度の変化を示す図であり、第1図は0.71%C−
13.0%Mn鋼;第2図は0.71%C−13.2%Mn−
0.40%V鋼;第3図は0.72%C−13.1%Mn−0.80
%V鋼の場合を示す。 〇……圧下率10%の場合、△……圧下率30%の
場合、●……圧下率50%の場合。
The figure shows rolling temperature, reduction ratio, and air cooling time after rolling for three types of steel with different V contents (a) 1
Fig. 1 is a diagram showing changes in hardness when rolling is performed for 10 seconds, (b) 10 seconds, and (c) 30 seconds.
13.0%Mn steel; Figure 2 shows 0.71%C-13.2%Mn-
0.40%V steel; Figure 3 shows 0.72%C-13.1%Mn-0.80
%V steel is shown. 〇...When the rolling reduction rate is 10%, △...When the rolling reduction rate is 30%,●...When the rolling reduction rate is 50%.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.70〜1.20%、Mn:11.0〜16.0%にV:
0.30〜1.00%を添加した高C高Mnオーステナイ
ト鋼棒鋼の熱間圧延時の最終パス圧下率を10〜40
%とし且つV含有量に対応して最終パスの圧延温
度をV含有量が0.30%以上0.60%未満の場合は
800〜950℃の範囲で、V含有量が0.60%以上1.00
%以下の場合は800〜1050℃の範囲に設定して圧
延後、大気放冷することを特徴とする高耐力非磁
性棒鋼製造方法。
1 C: 0.70-1.20%, Mn: 11.0-16.0%, V:
The final pass reduction rate during hot rolling of high C high Mn austenitic steel bar with addition of 0.30 to 1.00% is 10 to 40.
%, and the final pass rolling temperature is set according to the V content when the V content is 0.30% or more and less than 0.60%.
In the range of 800 to 950℃, V content is 0.60% or more 1.00
% or less, the method for manufacturing a high strength non-magnetic steel bar is characterized in that the temperature is set in the range of 800 to 1050°C, and after rolling, the steel bar is allowed to cool in the atmosphere.
JP1031679A 1979-02-02 1979-02-02 Production of high yield sprength non-magnetic bar steel Granted JPS55104428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031679A JPS55104428A (en) 1979-02-02 1979-02-02 Production of high yield sprength non-magnetic bar steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031679A JPS55104428A (en) 1979-02-02 1979-02-02 Production of high yield sprength non-magnetic bar steel

Publications (2)

Publication Number Publication Date
JPS55104428A JPS55104428A (en) 1980-08-09
JPS6153407B2 true JPS6153407B2 (en) 1986-11-18

Family

ID=11746828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031679A Granted JPS55104428A (en) 1979-02-02 1979-02-02 Production of high yield sprength non-magnetic bar steel

Country Status (1)

Country Link
JP (1) JPS55104428A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842732B2 (en) * 2012-05-18 2016-01-13 新日鐵住金株式会社 Billet manufacturing method
BR112017005540A2 (en) 2014-10-01 2017-12-05 Nippon Steel & Sumitomo Metal Corp ? high strength steel material for oil well and oil industry tubular goods?
JP7135737B2 (en) * 2018-10-31 2022-09-13 日本製鉄株式会社 Austenitic hot-rolled steel sheet, manufacturing method thereof, and wear-resistant parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS52150720A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Nonmagnetic steel material superior in mechanical properties
JPS52150721A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Nonmagnetic reinforcing iron
JPS579610A (en) * 1980-06-16 1982-01-19 Shin Meiwa Ind Co Ltd Powder conveyor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118917A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Jinseinosugureta kokyodooosutenaitokono seizoho
JPS52150720A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Nonmagnetic steel material superior in mechanical properties
JPS52150721A (en) * 1976-06-10 1977-12-14 Sumitomo Metal Ind Ltd Nonmagnetic reinforcing iron
JPS579610A (en) * 1980-06-16 1982-01-19 Shin Meiwa Ind Co Ltd Powder conveyor

Also Published As

Publication number Publication date
JPS55104428A (en) 1980-08-09

Similar Documents

Publication Publication Date Title
EP3395980B1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
JPS6130017B2 (en)
JPH10235447A (en) Manufacture of ferrite plus pearlite type non-heattreated steel forged product having high toughness and high yield strength
EP0327042A1 (en) Maraging steel
JPH0213007B2 (en)
US5393358A (en) Method for producing abrasion-resistant steel having excellent surface property
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JPH09279233A (en) Production of high tension steel excellent in toughness
JPH06322440A (en) Method for rolling high manganese nonmagnetic steel slab
JPS6153407B2 (en)
JP3228986B2 (en) Manufacturing method of high strength steel sheet
GB1597278A (en) Hot rolled wire rod having a fine-grain structure and a method of manufacturing such hot rolled wire rod
JPH0672258B2 (en) Method for producing rolled steel bar with excellent homogeneity
EP0141661A2 (en) Work-hardenable substantially austenitic stainless steel and method
JPS6137333B2 (en)
JP2581267B2 (en) Method for producing high strength, high ductility 13Cr stainless steel
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JP3298718B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP2687067B2 (en) Method for producing high Cr ferritic steel sheet having excellent creep strength and good workability
JPH04193908A (en) Production of high strength reinforcing bar excellent in yield elongation
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH09125141A (en) Production of high strength and high corrosion resistant martensitic stainless steel
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
KR940008059B1 (en) Making method of non-heat treatment steel bar