JPS6153177B2 - - Google Patents

Info

Publication number
JPS6153177B2
JPS6153177B2 JP15467279A JP15467279A JPS6153177B2 JP S6153177 B2 JPS6153177 B2 JP S6153177B2 JP 15467279 A JP15467279 A JP 15467279A JP 15467279 A JP15467279 A JP 15467279A JP S6153177 B2 JPS6153177 B2 JP S6153177B2
Authority
JP
Japan
Prior art keywords
gear
shaving
cut
shaving cutter
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15467279A
Other languages
Japanese (ja)
Other versions
JPS5676330A (en
Inventor
Hikoichi Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP15467279A priority Critical patent/JPS5676330A/en
Publication of JPS5676330A publication Critical patent/JPS5676330A/en
Publication of JPS6153177B2 publication Critical patent/JPS6153177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/06Shaving the faces of gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F23/00Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
    • B23F23/006Equipment for synchronising movement of cutting tool and workpiece, the cutting tool and workpiece not being mechanically coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Description

【発明の詳細な説明】 この発明は歯車の精密加工に用いられるシエー
ビング仕上方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaving finishing method used for precision machining of gears.

歯車加工の最終目標の1つは、複数の歯車をか
み合せたとき、運転状態でのかみ合誤差、つまり
動的なかみ合誤差が少なくなるような歯車を作
り、騒音および動的荷重変動を少なくすることで
ある。
One of the ultimate goals of gear processing is to create gears that reduce the meshing error during operation, that is, the dynamic meshing error when multiple gears are meshed together, and reduce noise and dynamic load fluctuations. The idea is to reduce it.

従来のシエービング仕上方法により加工された
歯車のかみ合精度は、砥石などを使つた他の研削
法によるものよりは一般に高いが、さらにこの発
明は、より高精度でかつ高能率に歯車を仕上げる
シエービング仕上方法を提供することを目的とす
る。
The meshing accuracy of gears machined by the conventional shaving finishing method is generally higher than that by other grinding methods using a grindstone, but this invention further provides a shaving method that finishes gears with higher precision and efficiency. The purpose is to provide a finishing method.

以下、この発明の実施例を図面にしたがつて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図において、被削歯車11はピニオン形の
シエービングカツタ12とかみ合つており、この
被削歯車11をモータ13により一定回転数で回
転駆動することにより、第2図に示すように、被
削歯車11の歯面とこれに接触するシエービング
カツタ12の歯面との間の接線力Pによつて、被
削歯車11の歯面をシエービングするようになつ
ている。
In FIG. 1, a gear to be cut 11 is meshed with a pinion-shaped shaving cutter 12, and by rotating this gear to be cut 11 at a constant rotation speed by a motor 13, as shown in FIG. The tooth surface of the gear to be cut 11 is shaved by the tangential force P between the tooth surface of the gear to be cut 11 and the tooth surface of the shaving cutter 12 that is in contact with the tooth surface of the gear to be cut.

このようなシエービング方法は、たとえば大河
出版の機械工学全書1120「歯車の設計・製作
(I)」第5・2章”シエービング仕上げ”にも記
載されている。
Such a shaving method is also described, for example, in Taiga Publishing's Mechanical Engineering Complete Book 1120 "Design and Manufacturing of Gears (I)" Chapter 5.2 "Shaving Finish".

第1図のシエービングカツタ12の回転軸14
には、ばね定数Cをもつばね部材15と慣性モー
メントIをもつフライホイール16とを直列接続
してなる調整機構17が連結されており、これら
ばね定数Cおよび慣性モーメントIは、後述する
ように、適宣変更調整される。
Rotating shaft 14 of the shaving cutter 12 in FIG.
is connected to an adjustment mechanism 17 formed by connecting in series a spring member 15 having a spring constant C and a flywheel 16 having a moment of inertia I, and the spring constant C and the moment of inertia I are determined as described below. , changes and adjustments will be made as appropriate.

さらに、被削歯車11の回転軸18に第1のエ
ンコーダ19を、シエービングカツタ12の回転
軸14に第2のエンコーダ20をそれぞれ取付け
て、被削歯車11およびシエービングカツタ12
のそれぞれの回転角を示す回転角パルス信号
Q1,Q2を作り、これら回転角パルス信号Q1,Q2
と、被削歯車11の回転を基にした基準パルス発
生器21からの基準パルス信号Q0とを、データ
処理装置22の波形処理部23へ入力し、シエー
ビングカツタ12と被削歯車11との間の動的な
かみ合誤差を検出する。
Further, a first encoder 19 is attached to the rotating shaft 18 of the gear to be cut 11, and a second encoder 20 is attached to the rotating shaft 14 of the shaving cutter 12.
Rotation angle pulse signal indicating each rotation angle of
Q 1 , Q 2 are created, and these rotation angle pulse signals Q 1 , Q 2
and a reference pulse signal Q 0 from the reference pulse generator 21 based on the rotation of the gear to be cut 11 are input to the waveform processing unit 23 of the data processing device 22, and the shaving cutter 12 and the gear to be cut 11 Detects dynamic engagement error between

その手順は、まず、上記基準パルス信号Q0
基づく被削歯車11の基準回転角θと、回転角パ
ルス信号Q1から得た被削歯車11の実際の回転
角とから、両回転角の差を表す信号、すなわち、
第3図Aに示すような被削歯車11の遅れ角を表
す信号Q11を、基準回転角θに対して求める。
同様にして、上記基準回転角θと、回転角パルス
信号Q2から得たシエービングカツタ12の実際
の回転角とから、第3図Bに示すシエービングカ
ツタ12の遅れ角を表す信号Q12を求める。つ
ぎに、上記両信号Q11,Q12の差から、シエ
ービングカツタ12と被削歯車11との間のかみ
合誤差を示す第3図Cのようなかみ合誤差信号R
(=Q11−Q12)を作る。なお、かみ合誤差
信号Rは、この実施例のように被削歯車の基準回
転角θに対する信号ではなく、実際の回転角に対
する信号としてもよい。
The procedure is to first calculate the reference rotation angle θ of the gear to be cut 11 based on the reference pulse signal Q 0 and the actual rotation angle of the gear to be cut 11 obtained from the rotation angle pulse signal Q 1 . A signal representing the difference, i.e.
A signal Q11 representing the delay angle of the gear to be cut 11 as shown in FIG. 3A is obtained with respect to the reference rotation angle θ.
Similarly, from the reference rotation angle θ and the actual rotation angle of the shaving cutter 12 obtained from the rotation angle pulse signal Q2 , a signal representing the delay angle of the shaving cutter 12 shown in FIG. Find Q12. Next, from the difference between the two signals Q11 and Q12, a meshing error signal R as shown in FIG.
Create (=Q11-Q12). It should be noted that the meshing error signal R may be a signal corresponding to the actual rotation angle, instead of being a signal corresponding to the reference rotation angle θ of the gear to be cut as in this embodiment.

上記かみ合誤差信号を作る手順は、中田孝著、
オーム社のOHM文庫「歯車とその検査」第12・
4章”歯車の負荷噛合試験機”、および近畿歯車
懇話会編、大河出版の「歯車の精度と性能」第
10・7章”かみあい試験”によつても公知であ
る。第3図Cの縦軸に示されるかみ合誤差Aは被
削歯車11とシエービングカツタ12とのかみ合
ごとに生じる両者11,12間の回転角誤差をラ
ジアンで表示したものである。このかみ合誤差信
号Rは被削歯車11のかみ合精度を表わすもので
あるから、この信号Rの作成により被削歯車11
のかみ合検査が行なわれていることになる。
The procedure for creating the above meshing error signal is described in the book written by Takashi Nakata.
Ohmsha's OHM Bunko "Gears and their Inspection" No. 12
Chapter 4 “Gear Load Mesh Test Machine” and “Gear Accuracy and Performance” edited by Kinki Gear Association and published by Taiga Publishing.
It is also known from Chapter 10.7 "Meshing Test". The meshing error A shown on the vertical axis in FIG. 3C is the rotational angle error in radians between the gear 11 to be cut and the shaving cutter 12 that occurs each time the gear 11 and the shaving cutter 12 mesh. This meshing error signal R represents the meshing accuracy of the gear to be cut 11, so by creating this signal R, the gear to be cut 11
This means that a meshing inspection is being conducted.

上記波形処理部23の内部ではさらに、上記誤
差信号Rが周波数分解されて、大きい周波数の信
号成分から順に、第3図D,Eに示す信号成分
R1(ω),R2(ω)…が取り出され、これに
もとづいて各信号成分R1(ω),R2(ω)…
の周波数ω,ω…が検知される。勿論、信号
成分は1つだけの場合もある。
Inside the waveform processing unit 23, the error signal R is further frequency-decomposed, and the signal components shown in FIG.
R 11 ), R 22 )... are extracted, and based on this, each signal component R 11 ), R 22 )...
The frequencies ω 1 , ω 2 . . . are detected. Of course, there may be only one signal component.

ところで、ばね定数Cおよび慣性モーメントI
をもつ調整機構17が連結された上記歯車系に上
記かみ合誤差Aがあると、被削歯車11が一定速
度で回転するのに対し、シエービングカツタ12
がむらのある速度で回転することになるから、慣
性力のために歯車に動荷重が作用し、この動荷重
のために、かみ合つている歯面につぎの式で表わ
される接線力Pが生じる。
By the way, the spring constant C and the moment of inertia I
If the gear system to which the adjustment mechanism 17 is connected has the meshing error A, the gear to be cut 11 rotates at a constant speed, while the shaving cutter 12 rotates at a constant speed.
Since the gear rotates at an uneven speed, a dynamic load acts on the gear due to inertia, and due to this dynamic load, a tangential force P expressed by the following formula is applied to the meshing tooth surface. arise.

ここで、z2およびr2はシエービングカツタ12
の歯数とピツチ円半径、v0はピツチ円周速度、t
は時間、jは虚数単位をそれぞれ表わす。
where z 2 and r 2 are shaving cutters 12
number of teeth and pitch circle radius, v 0 is pitch circumferential speed, t
represents time, and j represents an imaginary unit.

上記(1)式は公知のもので、たとえば昭和42年版
のOHM文庫の「歯車とその検査」(中田孝著)の
第14・1章においても導出されている。
The above equation (1) is well known and is derived, for example, in Chapter 14.1 of "Gears and Their Inspection" (authored by Takashi Nakata) published in OHM Bunko in 1962.

上記接線力Pのピツチ円速度v0に対する変化は
第4図の特性図で表わすようになり、シエービン
グカツタ12の回転軸14の固有振動数に相当す
る共振周波数ωcで最大値をとる。この共振周波
数ωcは、 と表わされる。
The change in the above - mentioned tangential force P with respect to the pitch circular velocity v 0 is shown in the characteristic diagram in FIG. . This resonant frequency ω c is It is expressed as

一方、シエービング量は接線力Pに比例するか
ら、上記共振周波数ωcが得られるように調整機
構17のばね定数Cおよび慣性モーメントIを設
定すると、シエービング量が大きくなる。そこ
で、第1図のデータ処理装置22の演算部24に
おいて、2つの信号成分R1(ω),R2(ω
の検知された周波数ω,ωが上記共振周波数
ωcとなるようなばね定数C1,C2と慣性モーメン
トI1,I2を算出する。つまり、 となるようなC1,C2,I1、およびI2を求め、これ
らの値を出力する。
On the other hand, since the amount of shaving is proportional to the tangential force P, if the spring constant C and moment of inertia I of the adjustment mechanism 17 are set so as to obtain the above-mentioned resonance frequency ω c , the amount of shaving becomes large. Therefore, in the calculation unit 24 of the data processing device 22 shown in FIG .
Spring constants C 1 and C 2 and moments of inertia I 1 and I 2 are calculated so that the detected frequencies ω 1 and ω 2 become the resonance frequency ω c . In other words, Find C 1 , C 2 , I 1 , and I 2 such that , and output these values.

つぎに、演算部24から出力されたばね定数
C1および慣性モーメントI1にもとづき、調整機構
17のばね部材15およびフライホイール16を
手動操作もしくは自動操作により変更調整して、
そのばね定数をC1に、慣性モーメントをI1にそれ
ぞれ設定する。この状態でモータ13を駆動する
ことによりシエービングを行ない、第3図Dに示
す信号成分R1(ω)のかみ合い誤差成分A1
目標値より小さくなつたとき、第1回目のシエー
ビングを終了し、再び調整機構17を調整して、
そのばね定数をC2に、慣性モーメントをI2にそれ
ぞれ変更設定して第2回目のシエービングを行な
い、やはりかみ合誤差成分A2が目標値より小さ
くなるまで第2回目のシエービングを続ける。こ
うして、かみ合誤差Aが僅小化するまでシエービ
ングをくり返す。
Next, the spring constant output from the calculation unit 24
Based on C1 and the moment of inertia I1 , the spring member 15 and flywheel 16 of the adjustment mechanism 17 are changed and adjusted by manual or automatic operation,
Set its spring constant to C 1 and its moment of inertia to I 1 . In this state, shaving is performed by driving the motor 13, and when the engagement error component A 1 of the signal component R 11 ) shown in FIG. 3D becomes smaller than the target value, the first shaving is completed. Then, adjust the adjustment mechanism 17 again,
The second shaving is performed by changing the spring constant to C2 and the moment of inertia to I2 , and continues the second shaving until the engagement error component A2 becomes smaller than the target value. In this way, shaving is repeated until the engagement error A is minimized.

以上の工程をブロツク線図で示すと第5図のよ
うになる。同図において各ブロツクの横に記載し
た番号は、各ブロツクの機能を果たす第1図の構
成部分を示す。この図により、ばね定数Cおよび
慣性モーメントIの設定とシエービングとをくり
返してかみ合誤差を僅小化する工程が明示され
る。
The above process is shown in a block diagram as shown in FIG. The numbers written next to each block in the figure indicate the constituent parts of FIG. 1 that perform the function of each block. This figure clearly shows the process of repeating the setting of the spring constant C and the moment of inertia I and the shaving to minimize the engagement error.

以上説明したように、この発明は、かみ合誤差
を検出してそのかみ合誤差信号を形成する信号成
分の周波数を検知し、この周波数がかみ合の接線
力を最大にするシエービングカツタ回転軸の固有
振動数に一致するよう、調整機構のばね定数およ
び慣性モーメントを設定しているから、常にかみ
合誤差を検出しながらシエービングするので、被
削歯車の仕上精度が向上するうえに、常に最大の
接線力でシエービングするのでシエービング仕上
作業の能率も向上する。
As explained above, the present invention detects the engagement error and detects the frequency of the signal component forming the engagement error signal, and the shaving cutter rotating shaft that maximizes the tangential force of the engagement by detecting the frequency of the signal component that forms the engagement error signal. Since the spring constant and moment of inertia of the adjustment mechanism are set to match the natural frequency of the Since shaving is performed with a tangential force of , the efficiency of shaving finishing work is also improved.

また、シエービング仕上加工とかみ合検査が同
時になされるいわゆるインプロセスコントロール
仕上法になつているので、従来の仕上加工後の検
査工程を省略することができる。
Furthermore, since the so-called in-process control finishing method is used in which shaving finishing and meshing inspection are performed simultaneously, the conventional inspection process after finishing can be omitted.

なお、この発明はシエービング仕上の対象の主
流である調質中硬度歯車からなる被削歯車に対し
て適用できるだけでなく、超硬材からなるシエー
ビングカツタを用いれば、浸炭焼入などの処理を
行なつた硬化歯車からなる被削歯車に対しても適
用できる。
Note that this invention is not only applicable to gears made of heat-treated medium-hardness gears, which are the main target of shaving finishing, but also can be applied to carburizing and quenching by using a shaving cutter made of carbide material. It can also be applied to gears to be machined, which are hardened gears that have been subjected to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るシエービング仕上方法
の実施に使用される装置の一例を示す概略構成
図、第2図は第1図の歯車系のかみ合部分を拡大
して示す正面図、第3図はかみ合誤差信号の波形
図、第4図はかみ合の接線力を表す特性図、第5
図はこの発明に係るシエービング仕上方法を説明
するためのブロツク線図である。 11……被削歯車、12……シエービングカツ
タ、13……駆動機、14……回転軸、17……
調整機構、19,20……エンコーダ、22……
データ処理装置、A……動的なかみ合誤差、C…
…ばね定数、I……慣性モーメント、P……接続
力、R……かみ合誤差信号、R1,R2……信号成
分、ω,ω……信号成分の周波数、ωc……
共振周波数、θ……被削歯車の回転角。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used for carrying out the shaving finishing method according to the present invention, FIG. 2 is an enlarged front view showing the meshing part of the gear system in FIG. 1, and FIG. The figure is a waveform diagram of the engagement error signal, Figure 4 is a characteristic diagram showing the tangential force of engagement, and Figure 5 is a diagram showing the tangential force of engagement.
The figure is a block diagram for explaining the shaving finishing method according to the present invention. 11... Gear to be cut, 12... Shaving cutter, 13... Drive machine, 14... Rotating shaft, 17...
Adjustment mechanism, 19, 20... Encoder, 22...
Data processing device, A...dynamic engagement error, C...
... Spring constant, I ... Moment of inertia, P ... Connection force, R ... Meshing error signal, R 1 , R 2 ... Signal component, ω 1 , ω 2 ... Frequency of signal component, ω c ...
Resonance frequency, θ...Rotation angle of the gear to be cut.

Claims (1)

【特許請求の範囲】[Claims] 1 ピニオン形シエービングカツタと、駆動機に
より回転駆動される被削歯車との動的なかみ合誤
差を検出して、被削歯車の回転角に対する上記か
み合誤差を表わすかみ合誤差信号を作り、このか
み合誤差信号を形成する信号成分の周波数を検知
し、上記周波数が上記シエービングカツタの回転
軸の固有振動数に合致することにより上記シエー
ビングカツタと被削歯車とのかみ合の接戦力が最
大となるように、シエービングカツタの回転軸に
連結された調整機構のばね定数および慣性モーメ
ントを調整して、上記被削歯車のシエービングを
行なう歯車のシエービング仕上方法。
1 Detecting the dynamic meshing error between the pinion type shaving cutter and the gear to be cut that is rotationally driven by the drive machine, and generating a meshing error signal representing the meshing error with respect to the rotation angle of the gear to be cut. The frequency of the signal component forming this engagement error signal is detected, and when the frequency matches the natural frequency of the rotating shaft of the shaving cutter, the engagement between the shaving cutter and the gear to be cut is detected. A method for shaving and finishing a gear, in which the spring constant and moment of inertia of an adjustment mechanism connected to a rotating shaft of a shaving cutter are adjusted so that the contact force of the shaving cutter is maximized.
JP15467279A 1979-11-28 1979-11-28 Finishing of gear by shaving Granted JPS5676330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15467279A JPS5676330A (en) 1979-11-28 1979-11-28 Finishing of gear by shaving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15467279A JPS5676330A (en) 1979-11-28 1979-11-28 Finishing of gear by shaving

Publications (2)

Publication Number Publication Date
JPS5676330A JPS5676330A (en) 1981-06-23
JPS6153177B2 true JPS6153177B2 (en) 1986-11-17

Family

ID=15589370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15467279A Granted JPS5676330A (en) 1979-11-28 1979-11-28 Finishing of gear by shaving

Country Status (1)

Country Link
JP (1) JPS5676330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170097A (en) * 1987-01-07 1988-07-13 金澤 政男 Card in which fingerprint is used for identifying person in question and method of detecting said card
JPH03112366U (en) * 1990-03-01 1991-11-18
JPH0675772U (en) * 1993-04-12 1994-10-25 株式会社ワイ・イー・データ ID card

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215396A (en) * 1983-05-20 1984-12-05 Nippon Funmatsu Gokin Kk Sintered friction material
JPS6078U (en) * 1983-06-10 1985-01-05 エヌオーケー株式会社 Jig for installing oil seal
JPS60213417A (en) * 1984-04-03 1985-10-25 Honda Motor Co Ltd Finishing work for gear
JP6781228B2 (en) 2018-10-02 2020-11-04 ファナック株式会社 Disturbance component identification method and disturbance component identification device
JP6856598B2 (en) 2018-10-02 2021-04-07 ファナック株式会社 Gear processing machine control device
CN110788414B (en) * 2018-11-29 2020-09-29 合肥工业大学 Multi-axis synchronous motion control method of flexible electronic gear box

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170097A (en) * 1987-01-07 1988-07-13 金澤 政男 Card in which fingerprint is used for identifying person in question and method of detecting said card
JPH03112366U (en) * 1990-03-01 1991-11-18
JPH0675772U (en) * 1993-04-12 1994-10-25 株式会社ワイ・イー・データ ID card

Also Published As

Publication number Publication date
JPS5676330A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
JP2550038B2 (en) Method for grinding teeth of a bevel gear pair with helical teeth and apparatus for carrying out this method
JPS6153177B2 (en)
JPH01252316A (en) Method of manufacturing and/or finishing crown gear
JPS6239114A (en) Method and apparatus for controlling main shaft speed of cutting disc
US4555871A (en) Method and apparatus for eliminating undulation errors on gear-tooth flanks in production gear-fabricating machines
US5022293A (en) Method and working machine for producing surfaces of non-circular but regular cross sections
US1515034A (en) Method of balancing crank shafts
US5001408A (en) Control device for indexing rotor on balancing machine
JP2001347423A (en) Honing work machine of gear
US4537537A (en) Method of shaping by generating for producing profiles on workpieces, and apparatus for performing this method
JPH03252704A (en) Rotational synchronization corrective control system
KR20180080298A (en) Methods of creating or machining teeth on a workpiece
JP6856598B2 (en) Gear processing machine control device
FR2587254A1 (en) Method for finishing gearwheels by grinding
JPH02139117A (en) Gap eliminator for numerically controlled gear grinding machine
EP0248344A2 (en) Method of finishing gear tooth surfaces
JPS62282814A (en) Nc gear processing machine
JPH02109630A (en) Device for converting phase
JPS5981017A (en) Correcting method of error in tooth trace direction in hobbing machine
JP3149649B2 (en) Tooth finishing machine
SU671950A1 (en) Machine for finish-working of bevel and hypoid gears
CA1301494C (en) Method and working machine for producing surfaces of non-circular but regular cross sections
JPS59146715A (en) Gear fabricating apparatus
SU831439A1 (en) Method of finishing cylindrical toothed gears
JPH01222840A (en) Main spindle of machine tool