JPS6152744B2 - - Google Patents

Info

Publication number
JPS6152744B2
JPS6152744B2 JP20069782A JP20069782A JPS6152744B2 JP S6152744 B2 JPS6152744 B2 JP S6152744B2 JP 20069782 A JP20069782 A JP 20069782A JP 20069782 A JP20069782 A JP 20069782A JP S6152744 B2 JPS6152744 B2 JP S6152744B2
Authority
JP
Japan
Prior art keywords
fine particles
small
diameter tube
laminar flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20069782A
Other languages
Japanese (ja)
Other versions
JPS5990647A (en
Inventor
Ichiro Aoki
Tsunetaro Shirane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20069782A priority Critical patent/JPS5990647A/en
Publication of JPS5990647A publication Critical patent/JPS5990647A/en
Publication of JPS6152744B2 publication Critical patent/JPS6152744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【発明の詳細な説明】 この発明は、例えば澱粉粒子、クラマトグラフ
用の充填材、合成樹脂微粒体、赤血球や白血球の
如き医学上の生体生成物等50μ以下の超微粒体類
(以下、「微粒体」と総称する)を効率よく分級で
きる微粒体の分級方法及びその方法を実施するに
使用される装置に関するものである。なお、本発
明の分級対象とされる微粒体はストークス近似の
あてはまるものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to ultrafine particles (hereinafter referred to as " The present invention relates to a method for efficiently classifying fine particles (collectively referred to as "fine particles") and an apparatus used to carry out the method. Incidentally, the fine particles to be classified in the present invention are those to which Stokes approximation applies.

上述の微粒体の分級は、実験室等で試験又は研
究のために、特殊な方法又は、特別の分析機器を
用いて極く微量捕集する方法は行われているが、
工業的に精度良く分級捕集する有効な方法や装置
は、現在、研究開発段階にある。
The above-mentioned classification of fine particles is carried out in laboratories etc. for testing or research using special methods or methods of collecting very small amounts using special analytical equipment.
Effective methods and equipment for industrially accurate classification and collection are currently in the research and development stage.

本発明は上記実状下において、沈降速度の遅い
微粒体を重力場で短時間に、精度良く、且つ大量
に効率良く分級し得る微粒体の分級方法及びその
方法に使用する装置を提供する目的でなされ、そ
の第1の特徴とするところは、重力場におかれた
細径管に、その管の周辺遠心力が重力の1/10以
下であるという極めて緩やかな回転を付与し、細
径管中に満されている液体中の微粒体に、それぞ
れの粒子径に応じて一定の類円形状の軌道を細径
管に偏心した状態に描かせると共に、前記液体に
層流を生ぜしめて、一定軌道を描く微粒体を層流
に依り異つた速度で細径管内を移動させ、次に、
細径管の回転速度を変えて微粒体それぞれの描く
軌道を変化させると共に層流を逆向きとなし、異
なる粒子径の微粒体を左右に振り分け状に分級す
る、点にあり、第2の特徴とするところは、複数
本の細径管を平行状に束ね、且つ、これら細径管
群を水平面に対し傾動可能として、及び、細径管
群の中心線周りに回転可能として支材に支持さ
せ、上記束ねた細径管群の一方端部若しくは両端
部に回転速度調整可能な回転付与装置、両方向へ
の層流付与装置及び分取装置を付設し構成した、
点にある。以下、具体的に本発明を詳述する。
Under the above-mentioned circumstances, the present invention aims to provide a method for classifying fine particles that can efficiently classify fine particles with a slow settling speed in a gravity field in a short time, with high accuracy, and in large quantities, and an apparatus used in the method. The first feature is that it imparts extremely gentle rotation to a small diameter tube placed in a gravitational field, with the centrifugal force around the tube being less than 1/10 of the gravity. The fine particles in the liquid filled in the liquid are caused to draw a certain quasi-circular trajectory eccentrically in the small diameter tube according to the particle size of each particle, and at the same time, a laminar flow is generated in the liquid, so that a constant Fine particles that draw orbits are moved inside a small diameter tube at different speeds using laminar flow, and then,
The second feature lies in the fact that the rotation speed of the small diameter tube is changed to change the trajectory drawn by each fine particle, and the laminar flow is reversed, so that fine particles of different particle diameters are sorted by distributing them to the left and right. This means that a plurality of small diameter tubes are bundled in parallel, and these small diameter tube groups are supported on a support so that they can be tilted relative to a horizontal plane and rotated around the center line of the small diameter tube group. and a rotation imparting device capable of adjusting the rotation speed, a laminar flow imparting device in both directions, and a fractionating device are attached to one end or both ends of the bundled small diameter tube group,
At the point. Hereinafter, the present invention will be specifically explained in detail.

重力場におかれた細径管に粘性流体を満してお
き、第1図に示すようにこの細径管に極めて緩や
かな回転(管周辺における遠心力が1/10以下、
冒述に例示した微粒体の場合は1/100以下)を
付与すると、流体中に浮遊している微粒体(分級
対象物)は、それぞれの沈降速度に応じて、管の
軸心線から偏心した且つ一部管壁に接するような
類円形軌道を描いて回転する。そして、この微粒
体の類円形軌道は、微粒体の比重を一定とした場
合、粒子径の小さな微粒体ほど大径の類円形軌道
を描き、細径管の回転速度を上げると、類円形軌
道がより大径となる。第1図イ,ロは上記類円形
軌道の説明図で、イは微粒体A,B,Cの粒子径
がra,rb,rc(ra<rb<rc)なる場合の一定回転
速度における類円形軌道を示し、同図ロは、回転
速度を上げた場合の軌道を示す。
A small-diameter tube placed in a gravitational field is filled with viscous fluid, and as shown in Figure 1, this small-diameter tube is rotated very gently (the centrifugal force around the tube is less than 1/10,
(1/100 or less in the case of the fine particles exemplified above), the fine particles (objects to be classified) suspended in the fluid will become eccentric from the axis of the tube depending on their sedimentation speed. It rotates in a nearly circular orbit that partially touches the tube wall. When the specific gravity of the fine particles is constant, the fine particles with smaller diameters draw larger diameter quasi-circular orbits, and when the rotation speed of the small diameter tube is increased, the quasi-circular orbits of the fine particles become larger. becomes larger in diameter. Figure 1 A and B are explanatory diagrams of the above-mentioned similar circular orbits, and A is a similar circular orbit at a constant rotation speed when the particle sizes of fine particles A, B, and C are ra, rb, and rc (ra<rb<rc). The figure shows the trajectory when the rotational speed is increased.

本発明は上述した微粒体の回転運動と層流の特
質とを巧みに組合せたところに成立する。
The present invention is realized by skillfully combining the above-mentioned rotational motion of fine particles and the characteristics of laminar flow.

すなわち、第2図イ〜ニは、微粒体の粒子径を
一定としておいて、細径管の周速VAと微粒体の
沈降速度V0との関係において微粒体の類円形軌
道を表示するものであり、VA/V0=1の場合は
両速度が釣り合つているゆえに管壁E点において
微粒体は上下いずれへも移動しないが、VA/V0
が1よりも大になるにつれて少しづつ大きな類円
形軌道を描く。従つて、上記各類円形軌道を描く
微粒体を含む液体に層流を付与すると、微粒体は
第3図イ〜ニに示すように、層流における一定範
囲Sイ,Sロ,Sハ,Sニにその存在域を占め
る。例えば、第2図イの場合は、第3図イに示す
Sイの範囲に存在する如くである。
That is, Figure 2 A to D show the quasi-circular trajectory of the fine particles in the relationship between the circumferential velocity V A of the small-diameter tube and the sedimentation velocity V 0 of the fine particles, with the particle diameter of the fine particles kept constant. When V A /V 0 = 1, the two velocities are balanced, so the fine particles do not move up or down at point E on the tube wall, but V A /V 0
As it becomes larger than 1, it draws a quasi-circular orbit that gradually becomes larger. Therefore, when a laminar flow is applied to a liquid containing fine particles that follow each of the above circular orbits, the fine particles will flow within certain ranges S, S, S, S, and S, as shown in Figure 3 A to D, in the laminar flow. It occupies its area of existence in Sni. For example, in the case of FIG. 2A, it appears to exist in the range S shown in FIG. 3A.

それゆえに、存在域の重複している部分と重複
していない部分とを何等かの方法で細径管の軸心
方向において振り分けることができれば企図する
分級が為し得られることになる。
Therefore, if the overlapping and non-overlapping regions of existence can be sorted out in the axial direction of the small-diameter tube by some method, the intended classification will be achieved.

第4図は微粒体の回転状況と微粒体の層流にお
ける移動速度Vとの関係を示すグラフであり、
V/Umax(Umaxは層流の軸流速度)を縦軸
に、そしてVA/V0を横軸に採つて示す。
FIG. 4 is a graph showing the relationship between the rotational state of the fine particles and the moving speed V of the fine particles in laminar flow.
V/Umax (Umax is laminar axial velocity) is plotted on the vertical axis, and V A /V 0 is plotted on the horizontal axis.

このグラフは、 () VA/V0=2の場合に微粒体は最大の移
動速度を有する。
This graph shows that when () V A /V 0 =2, the fine particles have the maximum moving speed.

() VA/V0=2の前後において微粒体の移
動速度が落ちることを示している。
() It is shown that the moving speed of the fine particles decreases before and after V A /V 0 =2.

従つて今、径の異なる2種の微粒体a,bを分
級する場合、 .2種の微粒体a,bを含む液体を細径管に満
し、該細径管を、第5図イに示す如く、Va=
2×Va′(Va;細径管の周速、Va′;微粒体a
の沈降速度)でまわし、第5図ロに示す矢印P
方向に層流を付与する。
Therefore, when classifying two types of fine particles a and b with different diameters, . A small-diameter tube is filled with a liquid containing two types of fine particles a and b, and the small-diameter tube is filled with Va=
2×Va′ (Va: circumferential velocity of small diameter tube, Va′: fine particle a
(sedimentation velocity)), and turn the arrow P shown in Figure 5 B.
Provides laminar flow in the direction.

この操作により微粒体aは、管壁から層流の
軸心線Oに至るまで存在することになり、その
存在確率の計算に依れば、第4図イに示す点線
部位に存在していると見看すことができる。そ
して、上記の如く層流の軸心線O近傍に存在す
る微粒体aは、他所に存在する微粒体bよりも
大きな移動速度でP方向に流れる。
Through this operation, the particulate matter a exists from the pipe wall to the axis O of the laminar flow, and according to the calculation of its existence probability, it exists at the dotted line shown in Figure 4 A. You can look at it. Then, as described above, the fine particles a existing near the axis O of the laminar flow flow in the P direction at a higher moving speed than the fine particles b existing elsewhere.

.次に、Vb=2Vb′(Vb;細径管の周速、
Vb′;微粒体bの沈降速度)となるように細径
管の回転速度を上げ(第5図ハ)、今度は第5
図ニに矢印Qで示す如く逆方向の層流を付与す
る。
.. Next, Vb = 2Vb′ (Vb; peripheral speed of small diameter pipe,
The rotation speed of the small diameter tube is increased so that Vb' is the sedimentation velocity of fine particles b) (Fig. 5 c), and this time,
A laminar flow in the opposite direction is applied as shown by arrow Q in FIG.

この操作により、今度は微粒体bが層流の軸
心線O部位にまで存在する状態となり、該軸心
線O部位に存する微粒体bは、他所に存する微
粒体aよりも大きな移動速度で矢印Q方向に移
動する。
By this operation, the fine particles b now exist in the axial center line O region of the laminar flow, and the fine particles b present in the axial center line O region move at a higher speed than the fine particles a existing elsewhere. Move in the direction of arrow Q.

そして、上記,の操作を1サイクルとして
多数回繰返すことにより、微粒体aは矢印P方向
に、そして微粒体bは矢印Q方向に振り分け分離
されることになる。
By repeating the above operation many times as one cycle, the fine particles a are distributed and separated in the direction of arrow P, and the fine particles b are distributed and separated in the direction of arrow Q.

なお、第5図イ,ハに示された微粒体aとb
は、その粒径がaの方がbより小さく、周速の大
小に拘らず常にbのものより外側を回動する。こ
のことは本発明方法が周知の遠心力を利用するも
のではなく、重力の1/10以下であるという極め
て緩やかな回転を利用することによる特殊な運動
現象であるということができる。
In addition, the fine particles a and b shown in Fig. 5 A and C
The grain size of a is smaller than that of b, and it always rotates on the outside of that of b, regardless of the circumferential speed. This means that the method of the present invention does not utilize the well-known centrifugal force, but is a special motion phenomenon that utilizes extremely slow rotation, which is less than 1/10 of gravity.

次に、本発明方法の実施に好適な装置につい
て、例示図面に基き詳述する。
Next, an apparatus suitable for carrying out the method of the present invention will be described in detail with reference to illustrative drawings.

第6図は本発明装置の1実施例を示す正面図
で、2は長さ約50cm、直径約2.25mm程度の細径管
1を多数束ねた細径管群を示し、各細径管1,1
………は両端においてそれぞれ収束管3,3′の
一端に連通一体化されている。なお、細径管1,
1……の配置は第7図イ,ロに示すいずれであつ
ても支障はない。
FIG. 6 is a front view showing one embodiment of the device of the present invention, and 2 indicates a group of small diameter tubes in which a large number of small diameter tubes 1 with a length of about 50 cm and a diameter of about 2.25 mm are bundled. ,1
. . . are integrally connected to one end of the converging tubes 3 and 3' at both ends. In addition, the small diameter tube 1,
There is no problem if the arrangement of 1... is either shown in Figure 7 A or B.

4は回転付与装置であり、前記細径管群2及び
これと一体の収束管3,3′を該収束管3,3′の
軸心線周りに回転させるためのモータ5、一方の
収束管3に外嵌固着したギヤ6、減速歯車(図示
せず)とから成り、モータ5を駆動してギヤ6を
回転させ、以つて各細径管1,1………を一括し
て回転させる構成としてある。又、図示していな
いが上記モータ5には回転力を段階的に調整し、
且つ後述の層流付与装置15,15′を制動する
ミツシヨンを連設している。
Reference numeral 4 denotes a rotation imparting device, which includes a motor 5 for rotating the small-diameter tube group 2 and the converging tubes 3, 3' integrated therewith around the axes of the converging tubes 3, 3', and one converging tube. 3 and a reduction gear (not shown), which drives the motor 5 to rotate the gear 6, thereby rotating each of the small diameter tubes 1, 1... all at once. There is a structure. Also, although not shown, the motor 5 has a rotating force that is adjusted in stages.
In addition, a transmission for braking laminar flow imparting devices 15 and 15', which will be described later, is provided in series.

そして、上述の如く細径管群2を一体化した収
束管3,3′は、支板7上に固着された軸受8,
8′により支持され、この収束管3,3′の両端部
には、バルブ25,25′を介して層流付与装置
15,15′から突設された液溜り室9,9′が、
上記収束管3,3′の回転を許容し得る構成とし
て嵌着されている。
The convergent tubes 3 and 3', which are integrated with the small diameter tube group 2 as described above, are connected to the bearings 8 and 3' fixed on the support plate 7, respectively.
At both ends of the convergent tubes 3, 3', there are liquid reservoir chambers 9, 9' which protrude from the laminar flow imparting devices 15, 15' via valves 25, 25'.
The convergent tubes 3, 3' are fitted in a configuration that allows rotation of the converging tubes 3, 3'.

10,10′は、液溜り室9,9′の上部に接続
された洗浄液注入管、11,11′は該注入管1
0,10′に付設されたバルブ、12,12′は液
溜り室9,9′の下部に接続された分取管、1
3,13′は分取管12,12′に付設されたバル
ブ、14,14′は液溜り室9,9′内に配設され
た撹拌装置を示す。
10, 10' are cleaning liquid injection pipes connected to the upper part of the liquid reservoir chambers 9, 9', and 11, 11' are the injection pipes 1.
0, 10' are attached to valves, 12, 12' are separation tubes connected to the lower part of the liquid reservoir chambers 9, 9', 1
Reference numerals 3 and 13' indicate valves attached to the separation tubes 12 and 12', and reference numerals 14 and 14' indicate stirring devices disposed within the liquid reservoir chambers 9 and 9'.

又、層流付与装置15,15′は突設した前記
液溜り室9,9′の他側に、撹拌装置14a,1
4a′を備えたシリンダ16,16′とピストン1
7,17′と前記シリンダ16,16′の液溜り室
9,9′寄り位置に接続された液体供給管18,
18′とを備えてなるもので、液溜り室9,9′へ
分離すべき微粒体を含む液体を送り込むと同時に
細径管1,1……内の液体に層流を付与する。1
9,19′は液体供給管18,18′に付設された
バルブ、20,20′は各シリンダ16,16′を
支板7上に固定する支架材である。
Further, the laminar flow imparting devices 15, 15' are provided with stirring devices 14a, 1 on the other side of the protruding liquid reservoir chambers 9, 9'.
Cylinder 16, 16' with 4a' and piston 1
7, 17' and a liquid supply pipe 18 connected to the liquid reservoir chambers 9, 9' of the cylinders 16, 16'.
18', it feeds the liquid containing the fine particles to be separated into the liquid reservoir chambers 9, 9' and at the same time imparts a laminar flow to the liquid in the small diameter tubes 1, 1, . . . 1
Numerals 9 and 19' are valves attached to the liquid supply pipes 18 and 18', and 20 and 20' are support members for fixing each cylinder 16 and 16' on the support plate 7.

そして上記支板7は、液体中の微粒体の流速を
微調整できるよう、又、場合によつては移動速度
を早めるように具体的には水平面に対して傾動可
能となるように、基材21上に立設された支柱2
2の上端に、その中央部が蝶ナツト23により枢
着固定されている。その他、24,24′は分取
容器で上記分取管12,12′、バルブ13,1
3′と共に分取装置26を構成する。
The support plate 7 is made of a base material such that it can be tilted with respect to a horizontal plane in order to finely adjust the flow velocity of the fine particles in the liquid, or to accelerate the movement speed in some cases. Post 2 erected on 21
The center portion thereof is pivotally fixed to the upper end of 2 by a wing nut 23. In addition, 24, 24' are fraction containers, the aforementioned fraction tubes 12, 12', valves 13, 1.
3' constitutes a fractionating device 26.

本発明装置は、以上説明したような構成とさ
れ、次の如くして使用される。
The device of the present invention has the configuration described above and is used in the following manner.

まず、始めに適宜バルブを開放して各細径管
1,1……、両液溜り室9,9′、両シリンダ1
6,16′内に分級対象たる液体を満し、支板7
に一定の傾斜角度を付与すると共に、両撹拌装置
14,14′を駆動して両液溜室9,9′内の液体
中の微粒体a,bを均一な混合状態となし、以つ
て準備態勢を整える。
First, open the valves as appropriate to open each small diameter pipe 1, 1..., both liquid reservoir chambers 9, 9', and both cylinders 1.
6, 16' are filled with the liquid to be classified, and the support plate 7 is
At the same time, both stirring devices 14 and 14' are driven to uniformly mix the fine particles a and b in the liquid in both liquid storage chambers 9 and 9', thereby preparing the liquid. Get ready.

次にモータ5を駆動して細径管群2をVa=2
×Va′の速度で回転させ、バルブ25,25′を
開状態にそしてその他のバルブ11,11′,1
3,13′,19,19′を閉状態としておいて一
方のピストン17′を液溜り室9′側に例えば5
mm/secの速度で前進させると同時に他方のピス
トン17を同速度で液溜り室9から離れる方向に
後退させ、細径管1,1……内の液体に矢印P方
向の層流を付与して微粒体aを矢印P側に大きく
移動させる。
Next, drive the motor 5 to move the small diameter tube group 2 to Va=2
×Va', the valves 25, 25' are opened, and the other valves 11, 11', 1
3, 13', 19, 19' are in the closed state, and one piston 17' is placed on the side of the liquid reservoir chamber 9', for example, 5
While moving the piston forward at a speed of mm/sec, the other piston 17 is moved back at the same speed in a direction away from the liquid reservoir chamber 9, thereby imparting a laminar flow in the direction of arrow P to the liquid inside the small diameter pipes 1, 1... to move the fine particles a largely toward the arrow P side.

その後、例えば5分経過後安定させて、今度は
Vb=2×Vb′なる回転速度を与えると共にそれぞ
れのピストン17,17′を逆方向に同速(スカ
ラー量)で移動させ矢印Q側に微粒体bを大きく
移動させる。
After that, let it stabilize after 5 minutes, for example, and then
A rotational speed of Vb=2×Vb' is applied, and the respective pistons 17 and 17' are moved in opposite directions at the same speed (scalar amount) to move the fine particles b largely in the direction of the arrow Q.

このようにしてピストン17,17′の動きを
一定時間毎に切換え操作することに依り、微粒体
aは液溜り室9内へ移動し、微粒体bは液溜り室
9′内に移動する。
By switching the movements of the pistons 17, 17' at regular intervals in this manner, the fine particles a move into the liquid reservoir chamber 9, and the fine particles b move into the liquid reservoir chamber 9'.

そこで、例えば液溜り室9に分級された微粒体
aは、バルブ25及び19を閉じ、バルブ11及
び13を開いて洗浄液を液溜り室9に流し込み、
分級された微粒体aを含む液体を分取管12を介
し分取容器24へと取り出し、その後、バルブ2
5,18を開き新しく分級すべき液体を液溜り室
9に注ぎ込むのである。
Therefore, for example, the fine particles a that have been classified into the liquid reservoir chamber 9 are cleaned by closing the valves 25 and 19, opening the valves 11 and 13, and flowing the cleaning liquid into the liquid reservoir chamber 9.
The liquid containing the classified fine particles a is taken out through the separation tube 12 into the separation container 24, and then the valve 2
5 and 18 are opened and the liquid to be newly classified is poured into the liquid reservoir chamber 9.

勿論、液溜り室9′側においても同様の操作が
行われ微粒体bが取り出される。
Of course, the same operation is performed on the liquid reservoir chamber 9' side, and the fine particles b are taken out.

なお、バルブ11,11′の液溜室9,9′側に
フイルターを配し、洗浄液注入管10,10′に
液圧を逃がす機能を付与してもよく、又、分級操
作については、液溜り室9′側から液体を流し込
んで、軽量の微粒体を液溜り室9に送り込み、そ
の後、順次回軽を上げて2番目、3番目……と軽
い微粒体を次々分級してゆく精密分級も可能であ
る。
Note that a filter may be provided on the liquid reservoir chambers 9, 9' side of the valves 11, 11', and a function to release liquid pressure may be provided to the cleaning liquid injection pipes 10, 10'. Precise classification in which the liquid is poured from the reservoir chamber 9' side and lightweight fine particles are sent into the liquid reservoir chamber 9, and then the lightness is increased one after another to classify the lightest particles one after another in the second, third, and so on. is also possible.

以上説明したように本発明は、回転速度を可変
することにより、細径管内の微粒体の存在範囲を
変え、層流を利用して分級するものであり、従
来、長時間を要しても難しかつた微粒体の分級が
極めて単時間で行えるため工業化に有効であり、
本発明装置はセルフタイマーを組み込んだ電気機
器を利用して充分自動制御のできるものであり、
生化学界の工業進出が活発な今日期する処の大き
な発明である。
As explained above, the present invention changes the range of existence of fine particles in a small diameter tube by varying the rotation speed, and classifies the particles using laminar flow. It is effective for industrialization because it can perform difficult classification of fine particles in an extremely short time.
The device of the present invention can be fully automatically controlled using electric equipment incorporating a self-timer,
This is a major invention at a time when the biochemical world is actively expanding into industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロは類円形軌道の説明図、第2図イ
〜ニは回転速度(周速)と沈降速度との関係にお
いて類円形軌道を説明する図、第4図は周速と層
流方向への移動速度の関係を示すグラフ、第3図
イ〜ニは層流における微粒体の存在域の説明図で
第2図イ〜ニに対応して示すもの、第5図イは微
粒体aを中心部に集める図を示し、同図ロは第5
図イの状態下に層流Pを与えた状態を示し、第5
図ハは微粒体bを中心部に集める図を示し、同図
ニは第5図ハの状態下に層流Qを与えた状態を示
し、第6図は本発明装置の1実施例を示す正面
図、第7図は第6図における―線拡大断面図
である。 1は細径管、4は回転付与装置、7は支板、1
5,15′は層流付与装置、26は分取装置。
Figure 1 A and B are explanatory diagrams of a quasi-circular orbit, Figure 2 A to D are diagrams that explain a quasi-circular orbit in terms of the relationship between rotational speed (circumferential speed) and sedimentation velocity, and Figure 4 is a diagram that illustrates the circumferential velocity and layer layer. Graphs showing the relationship between moving speeds in the flow direction, Figure 3 A to D are explanatory diagrams of the existence area of fine particles in laminar flow, and are shown corresponding to Figure 2 A to D. Figure 5 A shows fine particles. The figure shows the body a centered in the center, and the figure b shows the fifth point.
Figure 5 shows a state in which laminar flow P is applied under the state in Figure A.
Figure C shows a diagram in which the fine particles b are collected in the center, Figure D shows a state in which a laminar flow Q is applied under the condition in Figure 5 C, and Figure 6 shows an embodiment of the device of the present invention. The front view and FIG. 7 are enlarged sectional views taken along the line -- in FIG. 6. 1 is a small diameter tube, 4 is a rotation imparting device, 7 is a support plate, 1
5 and 15' are laminar flow imparting devices, and 26 is a fractionating device.

Claims (1)

【特許請求の範囲】 1 重力場におかれた細径管に、その管の周辺遠
心力が重力の1/10以下であるという極めて緩や
かな回転を付与して、細径管中に満たされている
液体中の被分級微粒体に、その夫々の粒径に応じ
た異なる大きさの類円形軌道を上記細径管に偏心
した状態で描かせるようにした後、上記細径管の
回転速度を分級すべき粒径の異なる2つの微粒体
毎にその夫々の沈降速度と周速の比が2となるよ
うに交互に変化させると共に、細径管の両端から
移動用層流を交互に付与することを繰返して行な
うことにより、被分級微粒体を選択的に粒径差に
より相反する方向に分離移動させて細径管の両端
から夫々連続的に捕集することを特徴とする微粒
体の分級方法。 2 複数本の細径管を平行状に束ね、且つ、これ
ら細径管群を水平面に対し傾動可能として、及び
細径管群の中心線周りに回転可能として支持さ
せ、上記束ねた細径管群の一方端部若しくは両端
部に回転速度調整可能な回転付与装置、両方向へ
の層流付与装置及び分取装置を付設し構成したこ
とを特徴とする微粒体の分級装置。
[Claims] 1. A small-diameter tube placed in a gravitational field is given an extremely gentle rotation in which the circumferential centrifugal force of the tube is less than 1/10 of the gravity, and the narrow-diameter tube is filled with water. After causing the fine particles to be classified in the liquid to draw quasi-circular orbits of different sizes depending on their respective particle sizes in an eccentric state in the small diameter tube, the rotation speed of the small diameter tube is adjusted. The ratio between the sedimentation velocity and circumferential velocity of each of two fine particles with different particle sizes to be classified is changed alternately to 2, and laminar flow for movement is alternately applied from both ends of the small diameter tube. By repeating this process, the fine particles to be classified are selectively separated and moved in opposite directions based on the difference in particle size, and are continuously collected from both ends of a small diameter tube. Classification method. 2 A plurality of small-diameter tubes are bundled in parallel, and the group of small-diameter tubes is supported so as to be tiltable with respect to a horizontal plane and rotatable around the center line of the group of small-diameter tubes, and the bundled small-diameter tubes are A device for classifying fine particles, characterized in that a rotation imparting device capable of adjusting the rotation speed, a laminar flow imparting device in both directions, and a sorting device are attached to one end or both ends of a group.
JP20069782A 1982-11-15 1982-11-15 Method and device for classification of fine granule Granted JPS5990647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20069782A JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20069782A JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Publications (2)

Publication Number Publication Date
JPS5990647A JPS5990647A (en) 1984-05-25
JPS6152744B2 true JPS6152744B2 (en) 1986-11-14

Family

ID=16428730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20069782A Granted JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Country Status (1)

Country Link
JP (1) JPS5990647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220866B2 (en) * 1986-04-09 1990-05-10 Toa Seisa Kk

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847968B2 (en) * 2004-12-27 2011-12-28 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Differential assembly with welded differential case

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220866B2 (en) * 1986-04-09 1990-05-10 Toa Seisa Kk

Also Published As

Publication number Publication date
JPS5990647A (en) 1984-05-25

Similar Documents

Publication Publication Date Title
US6652136B2 (en) Method of simultaneous mixing of samples
Joseph et al. Aggregation and dispersion of spheres falling in viscoelastic liquids
Coakley et al. Analytical scale ultrasonic standing wave manipulation of cells and microparticles
US5715946A (en) Method and apparatus for sorting particles suspended in a fluid
Sawyer et al. TheConifuge'-A Size-separating Sampling Device for Airborne Particles
JPS60157036A (en) Aerosol sample sampler by cascade impaction and uniform deposition
CN1872431A (en) Rotation type separation facility for sieving round wood from powder
JPS6152744B2 (en)
US5511880A (en) Method and apparatus for storing and mixing a plurality of fluids and body fluid sampling cartridge using same
EP2576071B1 (en) A method and a device for separating particles of a determined synthetic material from particles of different synthetic materials
CN87104432A (en) Separation method and equipment
US20100062480A1 (en) Device, system and method for storing and sorting cellular samples
JP2517872B2 (en) Aerosol mass spectrometry
US5605529A (en) High efficiency centrifuge rotor
CA1144394A (en) Rotating riffler
Boettcher et al. Lab-on-chip-based cell separation by combining dielectrophoresis and centrifugation
CN110339948B (en) Low-rotation-speed micro particle separation device
RU2232650C2 (en) Method of sorting-out loose materials
JPH03500741A (en) Method and apparatus for classifying particles
JP2967894B2 (en) Sedimentation type classification method and apparatus
Zhao et al. Finite element analysis of the lift on a slightly deformable and freely rotating and translating cylinder in two-dimensional channel flow
JP2001070832A (en) Centrifugal concentration device
CN114574332B (en) Microfluidic cell sorting device for medical instrument and method thereof
CN218014180U (en) Sorting device
JPS6350063B2 (en)