JPS5990647A - Method and device for classification of fine granule - Google Patents

Method and device for classification of fine granule

Info

Publication number
JPS5990647A
JPS5990647A JP20069782A JP20069782A JPS5990647A JP S5990647 A JPS5990647 A JP S5990647A JP 20069782 A JP20069782 A JP 20069782A JP 20069782 A JP20069782 A JP 20069782A JP S5990647 A JPS5990647 A JP S5990647A
Authority
JP
Japan
Prior art keywords
fine particles
tube
laminar flow
diameter tube
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20069782A
Other languages
Japanese (ja)
Other versions
JPS6152744B2 (en
Inventor
Ichiro Aoki
一郎 青木
Tsunetaro Shirane
白根 恒太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20069782A priority Critical patent/JPS5990647A/en
Publication of JPS5990647A publication Critical patent/JPS5990647A/en
Publication of JPS6152744B2 publication Critical patent/JPS6152744B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To enable efficient classification of fine particles having a low settling velocity in a short time and a large amt. with good accuracy in a gravity field by making a rotating speed variable, changing the range where the fine particles locate in a small diameter tube and classifying the particles by making use of laminar flow. CONSTITUTION:Extremely gentle rotation at which the peripheral centrifugal force of a small diameter tube 1 placed in a gravity field is <=1/10 of gravity is given to the tube 1 to force the fine particles in the liquid filled in the tube 1 to draw a specified track resembling circular shape in the state eccentric with the tube 1 according to the respective particle sizes and to generate laminar flow in the liquid, so that the fine particles drawing the specified track are moved in the tube 1 at different speeds effected by the laminar flow. The rotating speed of the tube 1 is then changed to change the tracks to be drawn respectively by the fine particles and to reverse the direction of the laminar flow, whereby the fine particles having different particle sizes are distributed and classified equally to the right and left. The fine particles having a low settling velocity are thus efficiently classified in a short time and a large amt. with good accuracy in the gravity field.

Description

【発明の詳細な説明】 この発明は、例えば澱粉粒子、クラマドグラフ用の充填
材、合成樹脂微粒株海血球や白血勅如き医学上の生体生
成物等50μ以下の超微粒子類(以下、「微粒体」と総
称する)を効率よく分級できる(微粒体の分級方法及び
その方法を実り′山するに使用される装置に関するもの
である。なお、本発明の分級対象とされる微粒体はスト
ークス近似のあてはまるものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to ultrafine particles (hereinafter referred to as "microparticles") of 50μ or less, such as starch particles, fillers for chromatographs, synthetic resin microparticles, medical biological products such as hemocytes and leukocytes. This article relates to a method for classifying fine particles and an apparatus used to carry out the method.The fine particles to be classified in the present invention are classified according to the Stokes approximation. It applies.

上述の微粒体の分級は、実験室等で試験又は研究のため
に、特殊な方mlモ;、特別の分析機器を用いて極<@
量捕集する方法は行われているが、工業的に精度良く分
級捕集する有効な方法や装Mは、現在、研究開発段階に
ある。
The above-mentioned classification of fine particles can be carried out in a laboratory or the like for testing or research using special methods and special analytical equipment.
Although quantitative collection methods have been used, effective methods and systems for industrially accurate classification collection are currently at the research and development stage.

本発明は上記実状下において、沈降速度の遅い微粒体を
重力場で短時間に、精度良く、且つ大量に効率良く分級
し得る微粒体の分級方法及びその方法に使用する装置を
提供する目的でなされ、その第1の特徴とするところは
、重力場におかれた細径管に、その管の周辺遠心力が重
力の1/10以下であるという極めて緩・やかな回転を
付与し、径管に偏心した状態に描かせると共に、前記液
体に層流を生ぜしめて、一定軌道を描く微粒体を層流に
依シ異った速度で細径管内を移動させ、次に、細径管の
回転速度を変えて微粒体それぞれの描く軌道を変化させ
ると共に層流を逆向きとなし、異なる粒子径の微粒体を
左右に振、り分は状に分級する、点にあり、第2の特徴
とするところは、複数本の細径管を平行状に束ね、且つ
、これら細径管群を水平面に対し傾動可能として、及び
、細径管群の中心線周シに回転可能として支材に支持さ
せ、上記束ねた細径管群の一方端部若しくは両端部に回
転速度調整可能な回転付与装置、両方向への層流付与装
置及び分取装置を付設し構成した、点にある。以丁、具
体的に本発明を詳述する。
Under the above-mentioned circumstances, the present invention aims to provide a method for classifying fine particles that can efficiently classify fine particles with a slow settling speed in a gravity field in a short time, with high accuracy, and in large quantities, and an apparatus used in the method. The first feature is that it imparts extremely gentle rotation to a small-diameter tube placed in a gravitational field, with the centrifugal force around the tube being less than 1/10 of the gravity. At the same time, the liquid is drawn in an eccentric state, and a laminar flow is generated in the liquid, and the fine particles, which follow a constant trajectory, are moved inside the small diameter pipe at different speeds depending on the laminar flow. The second feature is that the rotating speed is changed to change the trajectory drawn by each fine particle, and the laminar flow is reversed, shaking fine particles of different particle sizes from side to side, and classifying them into shapes. This is because a plurality of small-diameter tubes are bundled in parallel, and the group of small-diameter tubes is made tiltable with respect to a horizontal plane, and rotatable around the center line of the group of small-diameter tubes as a support member. The present invention is characterized in that a rotation imparting device capable of adjusting the rotation speed, a laminar flow imparting device in both directions, and a separation device are attached to one end or both ends of the group of small diameter tubes that are supported and bundled. The present invention will now be described in detail.

重力場におかれた細径管に粘性流体を満してお^、第1
図に示すようにとの細径管に極めて緩やかな回転(管周
辺における遠心力が1/10以下、冒述に例示した微粒
体の場合1−L1/100以下)を付与すると、流体中
に浮遊している微粒体(分級対象物)は、それぞれの沈
降速度に応じて、管の軸心線から偏心した且つ一部管壁
に接するような類円形軌道を描いて回転する。そして、
この微粒体の類円形軌道は、微粒体の比重を一定とした
場合、粒子径の小さな微粒体はど大径の類円形軌道を描
き、細径管の回転速度を上げると、類円形軌道がよシ大
径となる。第1図(イ)(ロ)は上記類円形軌道の説明
図で、(イ)は微粒体(〜(B)(0)の粒子径が(r
−) 、(rb) 、(re)(r&(rb (ro)
なる場合の一定回転速度における類円形軌道を示し、同
図(ロ)は、回転速度を上げた場合の軌道を示す。
A small diameter tube placed in a gravitational field is filled with viscous fluid.
As shown in the figure, when a very gentle rotation (centrifugal force around the tube is less than 1/10, in the case of the fine particles exemplified above, less than 1-L1/100) is applied to a small diameter tube, The floating fine particles (objects to be classified) rotate in a quasi-circular orbit that is eccentric from the axis of the tube and partially in contact with the tube wall, depending on their sedimentation speed. and,
If the specific gravity of the fine particles is constant, fine particles with small particle diameters will draw quasi-circular orbits of larger diameter particles, and if the rotation speed of the small diameter tube is increased, the quasi-circular orbit will change. It has a large diameter. Figures 1 (a) and 1 (b) are explanatory diagrams of the above-mentioned similar circular orbits, and (a) shows fine particles (~ (B) (0) whose particle size is (r
−) , (rb) , (re)(r&(rb (ro)
This figure shows a quasi-circular trajectory at a constant rotational speed when the rotational speed is increased.

本発明は上述した微粒体の回転運動とItff流の特質
とを巧みに組合せたところに成立する。
The present invention is realized by skillfully combining the above-mentioned rotational motion of the fine particles and the characteristics of the Itff flow.

すなわち、第2図(イ)〜に)は、微粒体の粒子径を一
定としておいて、細径管の周速(VA)と微粒体の沈降
速度(VO)との関係において微粒体の類円形軌道を表
示するものであり、VA/V0=1の場合は両速度が約
9合ってAるゆえに管m(ト)点において微粒体は上下
いずれへも移動しないが% VA/v0が1よシも大に
なるにつれて少しづつ大きな類円形軌道を描く。従って
、上記各類円形軌道を描く微粒体を含む液体に層流を付
与すると、微粒体は第3図(イ)〜に)に示すように、
層流における一定範囲(Sイ、 Sa 、 sハ、S=
)にその存在域を占める。例えば、第2図(イ)の場合
は、第3図(イ)に示すSイの範囲に存在する如くであ
る。
In other words, Fig. 2 (a) to 2) show the relationship between the circumferential velocity (VA) of the small diameter tube and the sedimentation velocity (VO) of the fine particles when the particle diameter of the fine particles is kept constant. It shows a circular trajectory, and when VA/V0 = 1, both velocities match about 9 and A, so at point m (g) of the tube, the fine particles do not move either up or down, but % VA/v0 is 1. As Yoshi grows older, it gradually draws larger circular orbits. Therefore, when a laminar flow is applied to a liquid containing fine particles that follow each of the above circular orbits, the fine particles will flow as shown in Figure 3 (a) to
A certain range in laminar flow (Si, Sa, sha, S=
). For example, in the case of FIG. 2(a), it appears to exist within the range of Sb shown in FIG. 3(a).

それゆえに、存在域の重複している部分と重複していな
い部分とを何等かの方法で細径管の軸心方向において振
シ分けることができれば企図する分級が為し得られるこ
とKなる。
Therefore, if the overlapping and non-overlapping regions of existence can be sorted out in the axial direction of the small-diameter tube by some method, the intended classification will be achieved.

第4図は微粒体の回転状況と微粒体の層流におケル移動
速度(V)との関係を示すグラフであり、V/Umax
 (Uri+axは層流の軸流速度)を縦軸に、そして
VA/Voを横軸に採って示す。
Figure 4 is a graph showing the relationship between the rotational state of the fine particles and the laminar flow velocity (V) of the fine particles, where V/Umax
(Uri+ax is laminar axial velocity) is plotted on the vertical axis, and VA/Vo is plotted on the horizontal axis.

このグラフは、 (I)  vA/vo = 2の場合に微粒体は最大の
移動速度を有する。
This graph shows that (I) When vA/vo = 2, the fine particles have the maximum moving speed.

(II)  V)/Vo = 2の@後において微粒体
の移動速度が落ちることを示している。
(II) It is shown that the moving speed of the fine particles decreases after V)/Vo = 2.

従って今、径の異なる2種の微粒体(&)(b)を分級
する場合、 0.2種の微粒体(a)(b)を含む液体を細径管に満
し、該細径管を、第5図0)に示す如(、Va−2xv
a (Va; 細径管o1tfl速、 vj ; 微粒
体(a)の沈降速度)でまわし、第5図(イ5に示す矢
印ψ)方向に層流を付与する。
Therefore, when classifying two types of fine particles (&) (b) with different diameters, fill a small diameter tube with a liquid containing 0.2 types of fine particles (a) and (b), and , as shown in Figure 5 (0) (, Va-2xv
a (Va: small diameter tube o1tfl speed, vj: sedimentation speed of fine particles (a)) to provide a laminar flow in the direction of the arrow ψ shown in Fig. 5 (A5).

この操作によシ微粒体(a)は、管壁から層流の軸心線
(0)に至るまで存在することになシ、その存在確率の
計算に依れば、第4図(イ)に示す点線部位に存在して
いると見看すことができる。そして、上記の如く層流の
軸心線(0)近傍に存在する微粒体(a)は、他所に存
在する微粒体(b)よシも大きな移動速度でP方向に流
れる。
Through this operation, the fine particles (a) are found to exist from the pipe wall to the axis (0) of the laminar flow, and according to the calculation of the probability of their existence, as shown in Fig. 4 (a). It can be seen that it exists in the area indicated by the dotted line. As described above, the fine particles (a) existing near the axis (0) of the laminar flow flow in the P direction at a higher moving speed than the fine particles (b) existing elsewhere.

01次に、vb=zvb (vb ;細径管の周速、v
b’;微粒体(b)の沈降速度)となるように細径管の
回転速度を上げ(第5図(ロ))、今度は第5同前に矢
印(ψで示す如く逆方向の層流を付与する。
01 Next, vb = zvb (vb; circumferential velocity of the small diameter pipe, v
The rotation speed of the small diameter tube is increased so that the sedimentation rate of the fine particles (b) becomes b' (Fig. 5 (b)), and this time, the layer in the opposite direction as shown by the arrow (ψ) is placed in front of the fifth tube. Give flow.

この操作によシ、今度は微粒体(b)が層流の軸心線(
0)部位にまで存在する状態となり、該軸心線(0)部
位に存する微粒体(b)は、他所に存する微粒体(a)
よシも大きな移動速度で矢印(0方向に移動する。
Through this operation, the fine particles (b) now move along the axis of the laminar flow (
0), and the fine particles (b) present in the axis (0) region are different from the fine particles (a) existing elsewhere.
Yoshi also moves in the direction of the arrow (0) at a high movement speed.

そして、上記■■の操作をfサイクルとして多数回繰返
すことによシ、微粒体(、)は矢印(P)方向に、そし
て微粒体(b)は矢印(4)方向に振り分は分離される
ことになる。
By repeating the above operation many times as f cycles, the fine particles (,) are separated in the direction of arrow (P), and the fine particles (b) are separated in the direction of arrow (4). That will happen.

次に、本発明方法の実施に好適な装置について、例示図
面に基き詳述する。
Next, an apparatus suitable for carrying out the method of the present invention will be described in detail with reference to illustrative drawings.

第6図は本発明装置の1実施例を示す正面図で、(2)
は長さ約50 cm 、直径約&25瓢程鹿の細径管(
1)を多数束ねた細径管群を示し、各細径管(1)fl
)・・・・・・・・・は両端においてそれぞれ収束管(
3)(3)の一端に連通一体化されている。なお、細径
管[1)(1)・・・・・・の配置は第7図(イ)(ロ
)に示すいずれであっても支障はない。
FIG. 6 is a front view showing one embodiment of the device of the present invention, (2)
The length is approximately 50 cm, and the diameter is approximately 25 mm.
1) is shown, each small diameter tube (1) fl
)...... are convergent tubes (
3) It is integrated in communication with one end of (3). It should be noted that the arrangement of the small diameter tubes [1], (1), etc. may be any of those shown in Fig. 7 (a) and (b) without any problem.

(4)は回転付与装置であジ、前記細径管群(2)及び
これと一体の収束管(3)(3)’を該収束管(3)(
3’)の軸心線間りに回転させるためのモータ(5)、
一方の収束管(3)に外嵌固着したギヤ(6〕、減速歯
車(図示せず)とから成り、モータ(5)を駆動してギ
ヤ(6)を回転させ、以って各細径管(1)(1)・・
・・・・・・・を一括して回転さする構成としである。
(4) is a rotation imparting device which rotates the small diameter tube group (2) and the convergent tubes (3) (3)' integrated therewith.
a motor (5) for rotating between the axes of 3');
It consists of a gear (6) and a reduction gear (not shown) which are externally fitted onto one of the converging tubes (3), and drive the motor (5) to rotate the gear (6). Pipe (1) (1)...
. . . are rotated all at once.

又、図示していないが上記モータ(5)には回転力を段
階的に調整し、且つ後述の層流付与装置(151(+5
)を制動するミッションを連設している。
Although not shown, the motor (5) is equipped with a laminar flow imparting device (151 (+5) to be described later) whose rotational force is adjusted in stages.
) has a series of missions to brake the engine.

そして、上述の如く細径管群(2)を一体化した収束管
+3)(3)は、支板(7)上尾固着された軸受(8)
(8’)により支持され、この収束管(3)(3)の両
端部には、パルプ(ハ)−を介して層流付与装置α5)
(15)から突設された液溜シ室(9)(υ)が、上記
収束yt3> t:Aの回転を許容し得る構成として嵌
着されでいる。
As mentioned above, the convergent tube +3) (3), which integrates the small diameter tube group (2), is connected to the support plate (7) and the bearing (8) fixed at the upper end.
(8'), and both ends of this converging tube (3) (3) are provided with a laminar flow imparting device α5) via a pulp (c).
A liquid reservoir chamber (9) (υ) protruding from (15) is fitted so as to allow rotation of the convergence yt3>t:A.

αΦ06は、液溜り室(9)(4の上部に接続された洗
浄液注入管、(U) (U)は該注入管α0)α6に付
設されたパルプ、6z)r)i)は液溜シ室(+1)(
95の下部に接続された分取管、0a)Q4は分取管(
ロ)04に付設されたバルブ、0→0イは液溜シ室(9
)(95内に配設された攪拌装置を示す。
αΦ06 is the cleaning liquid injection pipe connected to the upper part of the liquid reservoir chamber (9) (4), (U) is the pulp attached to the injection pipe α0)α6, 6z) r) i) is the liquid reservoir system Room (+1) (
The preparative tube connected to the lower part of 95, 0a) Q4 is the preparative tube (
b) The valve attached to 04, 0→0a is the liquid reservoir chamber (9
) (Shows a stirring device disposed within 95.

又、層流付与装置Cl5)(ロ)は突設した前記液溜シ
室(9)(95の他側に、攪拌装置(14a) (14
a)’を備えたシリンダQn)(16)とピストンα7
)(l#)と前記シリンダ(16) 鏑の液溜り室(9
)(95寄り位置に接続された液体供給管(ホ)0局と
をω11えてなるもので、液溜シ室(9)(1?’)へ
分離すべき微粒体を含む液体を送り込むと同時に細径管
(1)(1)・・・・・・内の液体に層流を付与する。
In addition, the laminar flow imparting device Cl5) (b) has a stirring device (14a) (14
a) Cylinder Qn) (16) with ' and piston α7
) (l#) and the cylinder (16).
) (The liquid supply pipe (E) connected to the 0 station near 95 is connected to the 0 station by ω11.) At the same time, the liquid containing the fine particles to be separated is sent to the liquid reservoir chamber (9) (1?'). A laminar flow is applied to the liquid inside the small diameter tube (1) (1).

θfl)θ金は液体供給管(ホ)鏑に付設されたバルブ
、(イ)iは各シリンダθ6)鏑を支板(7)上に固定
する支架材である。
θfl) θ gold is a valve attached to the liquid supply pipe (e), and (a) i is a support member for fixing each cylinder θ6) to the support plate (7).

そして上記支板(γ)は、液体中の微粒体の流速を微調
整できるよう、又、場合によっては移動速度を早めるよ
うに具体的には水平面に対して傾動可能となるように、
基材QD上に立設された支柱に)の上端に、その中央部
が蝶ナツトに)によシ枢蕩固定されている。その他、(
ハ)iは分取容器で上記分取管(ロ)θ6、パルプθ8
)α6と共に分取装置に)を構成する。
The support plate (γ) is designed so that it can be tilted with respect to a horizontal plane in order to finely adjust the flow velocity of the fine particles in the liquid, and in some cases to accelerate the movement speed.
The central part of the support is fixed to the upper end of the support that is erected on the base material QD by means of a wing nut. others,(
C) i is a preparative container, the above preparative tube (b) θ6, pulp θ8
) in the preparative separation device together with α6.

本発明装置は、以上説明したような構成とされ、次の如
くして使用される。
The device of the present invention has the configuration described above and is used in the following manner.

まず、始めに適宜パルプを開放して各細径管(1)(1
)・・・・・・、両液溜り室(9)(9)、両シリンダ
(16)Q6)内に分級対象たる液体を満し、支板(γ
)に一定の傾斜角度を付与すると共に、両攪拌装置04
9閲を駆動して両液溜室(9)(95内の液体中の微粒
体(II)(1=)を均−役混合状態となし、以って準
備態勢を整える。
First, the pulp is opened appropriately and each small diameter tube (1) (1
)...... Both liquid reservoir chambers (9) (9) and both cylinders (16) Q6) are filled with the liquid to be classified, and the base plate (γ
) with a certain inclination angle, and both stirring devices 04
9 is driven to bring the fine particles (II) (1=) in the liquid in both liquid reservoir chambers (9) (95) into a uniformly mixed state, thereby preparing for preparation.

次にモータ(5)を駆動して細径管群(2)をVa=2
X V a の速度で回転させ、バルブに)鏑を開状態
にぞしてその他のバルカ1)(IE) 、 o3)c+
a5 、 cu+X!を閉状態としておいて一方のピス
トン(1つを液溜り室(9′)側に例えば5 yes/
 seeの速度で前進させると同時に他方のピストンα
7)を同速度で液溜シ室(9)から離れる方向に後退さ
せ、細径管(11(1)・・・・・・内の液体如矢印(
P)方向の層流を付与して微粒体(IL)を矢印(P)
(IIに大きく移動させる。
Next, drive the motor (5) to move the small diameter tube group (2) to Va=2
Rotate at the speed of
a5, cu+X! is in the closed state, and place one piston (one on the liquid reservoir chamber (9') side, for example, 5 yes/
At the same time, the other piston α is moved forward at a speed of
7) at the same speed in the direction away from the liquid reservoir chamber (9), and move the liquid in the small diameter tube (11 (1)...
Apply a laminar flow in the P) direction to move the fine particles (IL) in the direction of the arrow (P)
(Move greatly to II.

その後、例えば5分経過後安定させて、今度はVb=2
XVl:+  なる回転速度を与えると共にそれぞれの
ピストン0すαうを逆方向に同速(スカラー量)で移動
させ矢印(り側に微粒体(1,)を大きく移動させる。
After that, for example, after 5 minutes, it is stabilized and this time Vb=2
A rotational speed of XVl:+ is given, and each piston 0su is moved in the opposite direction at the same speed (scalar amount) to move the fine particles (1,) largely in the direction of the arrow.

このようにしてピストン0フ)θ力の動きを一定時間毎
に切換え操作することに依υ、微粒体(→は液溜シ室(
9)内へ移動し、微粒体(b)は液溜シ室(95内に移
動する。
In this way, by switching the movement of the piston θ force at regular intervals, fine particles (→ is the liquid reservoir chamber (
9), and the fine particles (b) move into the liquid reservoir chamber (95).

そこで、例えば液溜り室(9)に分級された微粒体(=
lば、パルプ(ハ)及び0功を閉じ、パルプ(11)及
び0→を開いて洗浄液を液溜シ室(9)に流し込み、分
級された微粒体(→を含む液体を分取管02)を介し分
取容器(ハ)へと取り出し、その後、バルブ(ハ)θ8
)を開き新しく分級すべき液体を液溜り室(,1)に注
ぎ込むのである。
Therefore, for example, the classified fine particles (=
1, close the pulp (c) and 0 →, open the pulp (11) and 0 →, and pour the cleaning liquid into the liquid reservoir chamber (9), and transfer the liquid containing the classified fine particles (→ to the fraction tube 02). ) to the preparative container (c), and then the valve (c) θ8
) is opened and the liquid to be newly classified is poured into the liquid reservoir chamber (,1).

勿論、液溜り室(9)側においても同様の操作が行われ
微粒体(1,)が取り出される。
Of course, the same operation is performed on the liquid reservoir chamber (9) side to take out the fine particles (1,).

なお、バルブ(1υ06の液溜室(9) (9’)側に
フィルターを配し、洗浄液注入管0す06に液圧を逃が
す機能を付与し又もよく、又、分級操作については、液
溜シ室(9)側から液体を流し込んで、軽量の微粒体を
液溜り室(9)に送り込み、その後、順次同径を上げて
2番目、3番目・・・・・・と軽い微粒体を次々分級し
以上説明したように本発明は、回転速度を可変すること
によシ、細径管内の微粒体の存在範囲を変え、層流を利
用して分級するものであり、従来、長時間を要しても疑
しかった微粒体の分級が極めて単時間で行えるため工業
化に有効であり、本発明装置はセルフタイマーを組み込
んだ電気機器を利用して充分自動制御のできるものであ
り、生化学界の工業進出が活発な今日期する処の大きな
発明である。
In addition, a filter may be placed on the liquid storage chamber (9) (9') side of the valve (1υ06), and a function to release liquid pressure may be provided to the cleaning liquid injection pipe 0su06. The liquid is poured from the reservoir chamber (9) side, and the lightweight fine particles are sent into the liquid reservoir chamber (9).Then, the same diameter is successively raised to the second, third, and so on. As explained above, the present invention changes the range of existence of fine particles in a small diameter tube by varying the rotation speed, and classifies using laminar flow. It is effective for industrialization because it can perform the classification of questionable fine particles in a very short time even if it takes a long time, and the device of the present invention can be fully automatically controlled using electric equipment incorporating a self-timer. This is a major invention at a time when the biochemical world is actively expanding into industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)(ロ)ケよ類円形軌道の説明図、第2図(
イ)〜に)は回転速度(周速)と沈降速度との関係にお
いて類円形軌道を説明する図、第4図は周速と層流方向
への移動速度の関係を示すグラフ、第3図(イ)〜に)
は層流における微粒体の存在域の説明図で第2図(イ)
〜に)に対応して示すもの、第5図(イ)菌及び(ロ)
關は本発明方法の説明図、第6図は本発明装置の1実施
例を示す正面図、第7図は第6図におけ乞■−■線拡大
断面図である。 (1)は細径管、(4)は回転付与装置、(“r)は支
板、<15)06は層流付与装置、IIは分取装置。 特許出願人  青 木 −部 特許出)頭人  白 根 恒太部 第 1 図 (イノ 第 1 図C口) 角15 図(イ) 第5図(ロ) 第5図(イ)′ 第5図< 0)/ 手続補正書(ハ) 昭和58年3 月19日 特許庁長官 殿 昭和57年特許願200697号 2、発明の名称 微粒体の分級方法およびその装置 3、補正をする者 事件との関係 特 詐 出願人 氏名(名称)      青  木  −部  (ほか
1名)4、代 理 人 5、補正命令 の日付  昭和58年 2 月22日(
1)、明細書第6頁第10行目に「第5図(f)」とあ
るを、「第5図(ロ)」と訂正する。 (2)、同書第7頁第2行目に「第5図←)」とあるを
、1′第5図(ハ)」と訂正する。 (3)、同書同頁第3行目に「第5図(ロ)」とあるを
、「第5図に)」と訂正すZ)。 (4)2同書第12頁第17行目〜第18行目[第5図
(イ)0)及び←)禰は本発明方法の説明図、」とある
を、「第5図(イ)は微粒体(a)’を中心部に集める
図を示し、同図(ロ)は第5図0)の状態下に層流(P
)を与えた状態を示し、第5図(ハ)は微粒体(b)を
中心部に集める図を示し、同図に)は第5図(ハ)の状
態下に層流(Φを与えた状態を示し、」と訂正する。 (5)1図面中、第5図(イ)聞(ロ)←5を別紙の通
り、第5図(イ)←)(ハ)に)と補正する。 &添付書類の目録 補正図面   ・・・・・・1通 第5図(イ) 第5図(h、’ 第5図(口9 第5図にジ
Figure 1 (a) (b) Explanatory diagram of similar circular orbits, Figure 2 (
A) ~) is a diagram explaining a quasi-circular trajectory in terms of the relationship between rotational speed (peripheral speed) and sedimentation speed, Figure 4 is a graph showing the relationship between peripheral speed and movement speed in the laminar flow direction, and Figure 3 (a) to)
Figure 2 (a) is an explanatory diagram of the area where fine particles exist in laminar flow.
Figure 5 (A) Bacteria and (B)
6 is a front view showing one embodiment of the apparatus of the present invention, and FIG. 7 is an enlarged sectional view taken along the line 1--2 in FIG. 6. (1) is a small diameter tube, (4) is a rotation imparting device, (“r” is a support plate, <15) 06 is a laminar flow imparting device, and II is a fractionating device. Patent applicant: Aoki - Department patent) Head person Shirone Kotabe Figure 1 (Inno Figure 1 Portion C) Corner 15 Figure (A) Figure 5 (B) Figure 5 (A)' Figure 5 < 0) / Procedural Amendment (C) Showa March 19, 1958 Director General of the Patent Office 1988 Patent Application No. 200697 2 Name of the invention Method for classifying fine particles and its device 3 Relationship with the case of the person making the amendment Special fraud Applicant's name (name) Aoki - Department (and 1 other person) 4, Agent 5, Date of amendment order February 22, 1982 (
1) The text "Figure 5 (f)" on page 6, line 10 of the specification is corrected to "Figure 5 (b)." (2), ``Figure 5←)'' in the second line of page 7 of the same book is corrected to ``1'Figure 5 (c)''. (3) In the third line of the same page of the same book, the text ``Figure 5 (b)'' is corrected to ``in Figure 5)''. (4) 2 Ibid., page 12, lines 17 to 18 [Figure 5 (a) 0) and ←) are explanatory diagrams of the method of the present invention.'' Figure 5 shows a diagram in which fine particles (a)' are concentrated in the center, and Figure 5 (b) shows a laminar flow (P) under the condition of Figure 5 0).
) is shown, and Figure 5 (c) shows a diagram in which the fine particles (b) are gathered in the center. (5) In one drawing, correct Figure 5 (A) ← (B) ← 5 to Figure 5 (A) ←) (C) as shown in the attached sheet. . & Corrected catalog drawings for attached documents...1 copy Figure 5 (a) Figure 5 (h,' Figure 5 (mouth 9)

Claims (2)

【特許請求の範囲】[Claims] (1)1重力場におかれた細径管に、その管の周辺遠心
力が重力の1/10以下であるという極めて緩やかな回
転を付与し、細径管中に満されている液体中の微粒体に
、それぞれの粒子径に応じて一定の類円形状の軌道を細
径管に偏心した状態に描かせると共に、前記液体に層流
を生せしめて、一定軌道を描く微粒体を層流に依り異っ
た速度で細径管内を移動させ、次に、細径管の回転速度
を変えて微粒体それぞれの描く軌道を変化させると共に
層流を逆向きとなし、塁なる粒子径の微粒体を左右に振
り分は状に分級することを特徴とする微粒体の分級方法
(1) A small-diameter tube placed in a 1-gravity field is given extremely gentle rotation in which the peripheral centrifugal force of the tube is less than 1/10 of gravity, and the liquid filled in the small-diameter tube is The fine particles are caused to draw a certain quasi-circular trajectory according to their respective particle diameters in an eccentric state in a small diameter tube, and the liquid is caused to generate a laminar flow to cause the fine particles to draw a certain trajectory in a layered manner. The fine particles are moved in the small diameter tube at different speeds depending on the flow, and then the rotational speed of the small diameter tube is changed to change the trajectory drawn by each fine particle, and the laminar flow is reversed to change the base particle size. A method for classifying fine particles, which is characterized by dividing the fine particles from side to side.
(2)、複数本の細径管を平行状に束ね、且つ、これ、
ら細径管群を水平面に対し傾動可能として、及び細径管
群の中心線層りに回転可能として支持さ亡、上記束ねた
細径管群の一方端部若しくは両端部に回転速度調整可能
な回転付与装置度、両方向への層流付与装置及び分取装
置を付設し構成したことを特徴とする微粒体の分級装置
a0
(2), a plurality of small diameter tubes are bundled in parallel, and this,
The small-diameter tube group can be tilted with respect to a horizontal plane, and the rotation speed can be adjusted at one end or both ends of the bundled small-diameter tube group. A device for classifying fine particles a0, characterized in that it is configured with a rotation imparting device, a laminar flow imparting device in both directions, and a fractionating device.
JP20069782A 1982-11-15 1982-11-15 Method and device for classification of fine granule Granted JPS5990647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20069782A JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20069782A JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Publications (2)

Publication Number Publication Date
JPS5990647A true JPS5990647A (en) 1984-05-25
JPS6152744B2 JPS6152744B2 (en) 1986-11-14

Family

ID=16428730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20069782A Granted JPS5990647A (en) 1982-11-15 1982-11-15 Method and device for classification of fine granule

Country Status (1)

Country Link
JP (1) JPS5990647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525742A (en) * 2004-12-27 2008-07-17 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Differential assembly with welded differential case

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242158A (en) * 1986-04-09 1987-10-22 Toa Seisa Kk Builtup structure of chain crossing part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525742A (en) * 2004-12-27 2008-07-17 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Differential assembly with welded differential case
JP4847968B2 (en) * 2004-12-27 2011-12-28 ゲー カー エヌ ドライブライン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Differential assembly with welded differential case

Also Published As

Publication number Publication date
JPS6152744B2 (en) 1986-11-14

Similar Documents

Publication Publication Date Title
Mijalkov et al. Sorting of chiral microswimmers
Leung Centrifugal separations in biotechnology
Coakley et al. Analytical scale ultrasonic standing wave manipulation of cells and microparticles
Matsumoto et al. On the mechanism of suspension of particles in horizontal pneumatic conveying: Monte Carlo simulation based on the irregular bouncing model
Davis Hydrodynamic diffusion of suspended particles: a symposium
Marshall et al. Adhesive particle flow
Baker et al. Shape-programmed 3D printed swimming microtori for the transport of passive and active agents
Joseph et al. Aggregation and dispersion of spheres falling in viscoelastic liquids
Hameed et al. Chromatography as an efficient technique for the separation of diversified nanoparticles
JPS62289246A (en) Mineral separator
JPS5990647A (en) Method and device for classification of fine granule
Whitby A rapid general purpose centrifuge sedimentation method for measurement of size distribution of small particles—apparatus and method
CN87104432A (en) Separation method and equipment
Bailey The formation of comets in wind-driven shells around protostars
JPH1024253A (en) Separation of particles by centrifugal separation technique particularly in biological field and device therefor
JP2668070B2 (en) Weightless powder classification method and apparatus
JP2967894B2 (en) Sedimentation type classification method and apparatus
JP2004314068A (en) Method and device for classifying particulate
JP4080035B2 (en) Airflow type magnetic separator
JPS6350063B2 (en)
RU2232650C2 (en) Method of sorting-out loose materials
Clay Mcmichael Sedimentation in inclined tubes and its application for the design of high rate sedimentation devices
Acevedo-Escalante et al. Lift on side by side intruders of various geometries within a granular flow
JP2665551B2 (en) Method and apparatus for classifying powder and granules
Aly et al. Hydraulic classifier system for fractionation of nano CaCO 3 particles