JPS6152120B2 - - Google Patents

Info

Publication number
JPS6152120B2
JPS6152120B2 JP5613179A JP5613179A JPS6152120B2 JP S6152120 B2 JPS6152120 B2 JP S6152120B2 JP 5613179 A JP5613179 A JP 5613179A JP 5613179 A JP5613179 A JP 5613179A JP S6152120 B2 JPS6152120 B2 JP S6152120B2
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
substrate
layer
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5613179A
Other languages
Japanese (ja)
Other versions
JPS55149195A (en
Inventor
Toshiki Inooku
Takeshi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5613179A priority Critical patent/JPS55149195A/en
Publication of JPS55149195A publication Critical patent/JPS55149195A/en
Publication of JPS6152120B2 publication Critical patent/JPS6152120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は炭化珪素(SiC)結晶を製造する方法
に関するもので、特に珪素基板を用いて珪素の融
点以下で炭化珪素を成長し、その後珪素基板を熔
融し又はエツチング除去してその裏面(珪素基板
に接していた面)上に更に第2の炭化珪素層を形
成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing silicon carbide (SiC) crystals, and in particular, the present invention relates to a method for manufacturing silicon carbide (SiC) crystals, in particular, growing silicon carbide using a silicon substrate at a temperature below the melting point of silicon, and then melting or etching the silicon substrate. The present invention relates to a method for further forming a second silicon carbide layer on the back surface (the surface that was in contact with the silicon substrate).

炭化珪素は、耐熱、耐腐蝕、耐放射線特性に優
れ硬度が大で大きい禁制帯幅(結晶多形により
2.4乃至3.3エレクトロンボルト)をもち、容易に
p形及びn形に不純物添加できる半導体材料であ
るが、工業的に半導体装置を形成するために十分
な大きさと製造再現性をもつてウエハー状の結晶
を供給できなかつた為に炭化珪素を用いた半導体
装置も、試験的に製造されるにとどまり広く実用
化するには至つていない。
Silicon carbide has excellent heat resistance, corrosion resistance, radiation resistance, high hardness, and a large forbidden band width (due to crystal polymorphism).
2.4 to 3.3 electron volts), and can be easily doped with p-type and n-type impurities. Because of the inability to supply silicon carbide, semiconductor devices using silicon carbide have only been manufactured on a trial basis and have not yet been widely put into practical use.

発明者らは先にSi基板上に○イSiC単結晶、○ロ界
面に於てグレインの方位の配向した多結晶、○ハ界
面に於て結晶方位の配向したグレインを含む多結
晶、又は○ニSiとSiCとの混在物等より成る種層を
形成し、Si基板の裏面に炭素原料を存在させた状
態に於てSi基板を熔融させこのSi融液から種層裏
面上にSiC(SiC2次層という)を液相成長させる
方法を提案し、熔融基板からのエピタキシー
(Epitaxy from Molten Substrate EMSと略称す
る)と命名した。このEMS法によればSiC2次層
は最初のSi基板の大きさに且つ薄板状(ウエハー
状)に作製できるので現在半導体工業で主流とな
つている所謂プレーナー技術及びメサ技術を適用
でき、炭化珪素半導体装置の工業化に大きく貢献
するものである。
The inventors previously developed SiC single crystals with ○a SiC single crystals, ○b polycrystals with grains oriented at the ○b interface, ○c polycrystals containing grains with crystal orientation oriented at the ○c interfaces, or ○ (2) A seed layer consisting of a mixture of Si and SiC is formed, and the Si substrate is melted with a carbon raw material present on the back surface of the Si substrate, and SiC (SiC2 We proposed a method of liquid-phase growth of the next layer, which we named Epitaxy from Molten Substrate (abbreviated as EMS). According to this EMS method, the SiC secondary layer can be produced in the size of the initial Si substrate and in the form of a thin plate (wafer shape), so the so-called planar technology and mesa technology that are currently mainstream in the semiconductor industry can be applied, and silicon carbide This will greatly contribute to the industrialization of semiconductor devices.

本発明は上記EMS法の改良に係り、更に詳細
には液相成長工程中の原料となる層の改良を目的
とするものである。
The present invention relates to improvements in the above-mentioned EMS method, and more specifically, its purpose is to improve the layer that serves as a raw material during the liquid phase growth process.

EMS法の炭素原料としては炭化珪素又は炭素
層をSi基板の裏側に設置する。このうち炭化珪素
を用いる場合は、グラフアイトに被覆した炭化珪
素被覆層を用いる方法とSi基板裏面にSiC層を例
えばCVD法により被着させる方法がすでに本発
明者らにより提案されているが、これらはいずれ
も工程的にかなりのコストを要するものである。
本発明は原料炭化珪素層を別工程により予め製造
した炭化珪素板でもつて代用することにより製造
方法を簡便化したものである。原料炭化珪素板は
成形・焼成して板状のバルク炭化珪素を製造して
もよく、又タングステン等の高融点金属やアルミ
ナ磁器などからなる下地基板上にスクリーン印刷
により炭化珪素を含む層を形成し焼付けて、下地
基板・焼付炭化珪素の2層構造にしてもよい。
As the carbon raw material for the EMS method, silicon carbide or a carbon layer is placed on the back side of the Si substrate. Among these, when using silicon carbide, the present inventors have already proposed a method using a silicon carbide coating layer coated on graphite and a method in which a SiC layer is deposited on the back surface of a Si substrate by, for example, CVD method. All of these processes require considerable costs.
The present invention simplifies the manufacturing method by substituting a silicon carbide plate previously manufactured in a separate process for the raw material silicon carbide layer. The raw material silicon carbide plate may be formed and fired to produce a plate-shaped bulk silicon carbide, or a layer containing silicon carbide may be formed by screen printing on a base substrate made of a high melting point metal such as tungsten or alumina porcelain. It may be baked to form a two-layer structure consisting of a base substrate and baked silicon carbide.

以下、本発明を実施例に従つて更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 第1図に本実施例に使用される反応装置の一例
を示す。水冷式縦形二重石英反応管22内に黒鉛
製支持棒24により支持された炭化珪素被覆黒鉛
製試料台26を置き反応管22の外胴部に巻回さ
れたワークコイル28に高周波電流を流して、こ
の試料台26を誘導加熱する。反応管22の下端
はステンレス鋼製のフランジ30と0−リングで
シールされている。フランジ30上にはガスの出
口となる継手32及び支柱台34が設けられてい
る。支柱台34に石英製の支柱36が保持され、
支柱36に上記支持棒24が継ぎ足される。出口
側の継手32には排気用管が接続され、廃ガス処
理装置(図示しない)に導かれている。反応管2
2の上端側にはガス流入口となる枝管38が設け
られ、搬送ガスが反応管22内へ供給される。試
料台26上には原料炭化珪素板62が載置され、
その上には下地基板となる珪素基板2が載置され
ている。
Example FIG. 1 shows an example of a reaction apparatus used in this example. A silicon carbide-coated graphite sample stand 26 supported by a graphite support rod 24 is placed inside a water-cooled vertical double quartz reaction tube 22 , and a high-frequency current is passed through a work coil 28 wound around the outer body of the reaction tube 22 . Then, the sample stage 26 is heated by induction. The lower end of the reaction tube 22 is sealed with a stainless steel flange 30 and an O-ring. A joint 32 serving as a gas outlet and a support stand 34 are provided on the flange 30. A pillar 36 made of quartz is held on a pillar stand 34,
The support rod 24 is attached to the support column 36. An exhaust pipe is connected to the joint 32 on the outlet side and led to a waste gas treatment device (not shown). Reaction tube 2
A branch pipe 38 serving as a gas inlet is provided at the upper end of the reaction tube 22, and a carrier gas is supplied into the reaction tube 22. A raw material silicon carbide plate 62 is placed on the sample stage 26,
A silicon substrate 2 serving as a base substrate is placed on top of it.

次に本実施例の炭化珪素成長方法について第2
図A,B,C,Dを参照しながら説明する。
Next, we will discuss the silicon carbide growth method of this example in the second section.
This will be explained with reference to Figures A, B, C, and D.

(1a) 反応管22を排気して水素で置換し、公知
の塩化水素・水素混合ガスで試料台26上に載
置された{111}面を主面とする珪素基板2の
表面をエツチング除去する(第2図A参照)。
(1a) The reaction tube 22 is evacuated and replaced with hydrogen, and the surface of the silicon substrate 2 whose main surface is the {111} plane placed on the sample stage 26 is etched away using a known hydrogen chloride/hydrogen mixed gas. (See Figure 2A).

(1b) 珪素基板2の温度を珪素の融点以下の温
度、好ましくは1100乃至1200℃に設定し、一般
的な気相成長法で炭化珪素を珪素基板2上に成
長させる。搬送ガスにはアルゴン(Ar)ヘリ
ウム(He)などの稀ガス又は水素ガス(H2)が
用いられる。珪素原料としては、四塩化珪素
(SiCl4)、二塩化シラン(SiH2Cl2)、シラン
(SiH4)などが、また炭素原料としては四塩化
炭素(CCl4)やプロパン(C3H8)、メタン
(CH4)をはじめとする炭化水素が用いられる。
本実施例では流量1/分の水素ガスを搬送ガ
スとし、二塩化シラン(SiH2Cl2)及びプロパン
(C3H8)をそれぞれの原料ガスとする。濃度は
原子比で二塩化シランを7.5×10-4、プロパン
を1.5×10-3に設定し、30分間の成長で30μm
厚の珪素と3C形炭化珪素との混在層4を形成
した。珪素基板2の側面にも珪素と炭化珪素と
の混在層16が同時に形成される。
(1b) The temperature of silicon substrate 2 is set to a temperature below the melting point of silicon, preferably 1100 to 1200° C., and silicon carbide is grown on silicon substrate 2 by a general vapor phase growth method. A rare gas such as argon (Ar), helium (He), or hydrogen gas (H 2 ) is used as the carrier gas. Silicon raw materials include silicon tetrachloride (SiCl 4 ), silane dichloride (SiH 2 Cl 2 ), and silane (SiH 4 ), and carbon raw materials include carbon tetrachloride (CCl 4 ) and propane (C 3 H 8 ) . ), methane (CH 4 ), and other hydrocarbons.
In this example, hydrogen gas at a flow rate of 1/min is used as the carrier gas, and silane dichloride (SiH 2 Cl 2 ) and propane (C 3 H 8 ) are used as the respective source gases. The concentration was set at an atomic ratio of 7.5 x 10 -4 for dichlorosilane and 1.5 x 10 -3 for propane, and a growth of 30 μm was achieved in 30 minutes of growth.
A mixed layer 4 of thick silicon and 3C type silicon carbide was formed. A mixed layer 16 of silicon and silicon carbide is also formed on the side surface of silicon substrate 2 at the same time.

このとき混在層4の珪素基板2との界面に存
在するSiCグレイン(1000Å程度のオーダーの
粒径と考えられる)は珪素基板の方位に従つて
配向している。即ち、Si<111>SiC<111>
かつSi<110>SiC<110>となつてい
る。但し、記号は平行を表わす。
At this time, the SiC grains (estimated to have a grain size on the order of 1000 Å) existing at the interface of the mixed layer 4 with the silicon substrate 2 are oriented in accordance with the orientation of the silicon substrate. That is, Si<111>SiC<111>
And Si<110>SiC<110>. However, the symbol represents parallelism.

(1c) 原料ガスの送り込みを停止し、流量1/
分の水素雰囲気だけにする。
(1c) Stop feeding the raw material gas and reduce the flow rate to 1/
Create only a hydrogen atmosphere for 1 minute.

ワークコイル28に流す高周波出力を増して
原料炭化珪素板62の温度を1500℃程度に昇温
し、珪素基板2を熔融する。熔融後、1450℃乃
至1650℃程度の一定温度に設定してこの状態を
維持する。本実施例では原料炭化珪素板62に
於いて1500℃になるように設定し、2時間の成
長で10μm厚の単結晶炭化珪素2次層14を形
成した。
The high frequency output applied to the work coil 28 is increased to raise the temperature of the raw material silicon carbide plate 62 to about 1500°C, and the silicon substrate 2 is melted. After melting, the temperature is set at a constant temperature of about 1450°C to 1650°C and this state is maintained. In this example, the temperature of the raw material silicon carbide plate 62 was set to 1500° C., and a single crystal silicon carbide secondary layer 14 having a thickness of 10 μm was formed by growth for 2 hours.

加熱方式は高周波加熱方式を用いているた
め、試料台26がヒーターになり試料台26の
表面と混在層4との間には自然に温度差がで
き、液相成長したものである。
Since the heating method uses a high frequency heating method, the sample stage 26 acts as a heater, and a temperature difference is naturally created between the surface of the sample stage 26 and the mixed layer 4, resulting in liquid phase growth.

側面の混在層16は混在層4と試料台26と
の間隔をとるためのスペーサとして作用し、混
在層4が試料台26に対して傾くのを防止する
効果を有する。(第2図C参照) (1d) 高周波出力を停止して降温し、原料炭化珪
素板62を弗酸硝酸混液に浸漬して珪素をエツ
チング除去し、原料炭化珪素板62から成長層
4,14を取り外す。(第2図D参照) なお本実施例によれば原料炭化珪素板62は当
初から反応管内に置かれるから工程は連続して行
なえる。一方、工程(1b)と(1c)との間で一
旦降温しても、かまわなければ当初は原料炭化珪
素を挿入せず、工程(1b)と(1c)との間にこ
れを挿入してもかまわない。
The mixed layer 16 on the side surface acts as a spacer to maintain a distance between the mixed layer 4 and the sample stage 26, and has the effect of preventing the mixed layer 4 from tilting with respect to the sample stage 26. (See Figure 2C) (1d) Stop the high-frequency output, lower the temperature, and immerse the raw material silicon carbide plate 62 in a hydrofluoric acid/nitric acid mixture to remove silicon by etching. Remove. (See FIG. 2D) According to this embodiment, the raw material silicon carbide plate 62 is placed in the reaction tube from the beginning, so the steps can be performed continuously. On the other hand, if you do not mind the temperature decreasing once between steps (1b) and (1c), do not insert the raw material silicon carbide at first, but insert it between steps (1b) and (1c). I don't mind.

本発明によれば原料炭化珪素板を別に設けるか
ら高価な試料台を毎回交換することがなく生産性
が向上する。更に、上記実施例のように試料台を
誘導加熱するのでなく、例えば原料炭化珪素板の
両端を広くしてそこに電極を付け電流を流して抵
抗加熱するなど他の加熱方法を用いることもでき
る。
According to the present invention, since the raw material silicon carbide plate is provided separately, there is no need to replace an expensive sample stage every time, and productivity is improved. Furthermore, instead of inductively heating the sample stage as in the above embodiment, other heating methods can be used, such as widening both ends of the raw material silicon carbide plate and attaching electrodes thereto to conduct resistance heating by passing an electric current through the ends. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に供する反応装置の要部
断面を示す斜視図、第2図A,B,C,Dは本発
明の一実施例の製造工程を説明する断面図であ
る。 2……珪素基板、4……種層、12……珪素融
液、14……炭化珪素2次層、62……原料炭化
珪素板。
FIG. 1 is a perspective view showing a cross section of a main part of a reaction apparatus used for implementing the present invention, and FIGS. 2A, B, C, and D are cross-sectional views illustrating the manufacturing process of an embodiment of the present invention. 2...Silicon substrate, 4...Seed layer, 12...Silicon melt, 14...Silicon carbide secondary layer, 62...Raw material silicon carbide plate.

Claims (1)

【特許請求の範囲】 1 珪素基板上に次工程に於て炭化珪素結晶成長
の種となる炭化珪素種結晶を含む種層を形成する
第1工程と、 上記珪素基板の種層形成面と反対側の面を原料
炭化珪素板に接した状態で上記珪素基板を熔融
し、この珪素融液から上記種層の珪素融液に接触
した面上に炭化珪素層を形成させる工程と よりなる炭化珪素基板の製造方法。
[Claims] 1. A first step of forming a seed layer containing a silicon carbide seed crystal that will become a seed for silicon carbide crystal growth in the next step on a silicon substrate; Silicon carbide comprising the steps of melting the silicon substrate with its side surface in contact with a raw material silicon carbide plate, and forming a silicon carbide layer from this silicon melt on the surface of the seed layer in contact with the silicon melt. Substrate manufacturing method.
JP5613179A 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate Granted JPS55149195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5613179A JPS55149195A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5613179A JPS55149195A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Publications (2)

Publication Number Publication Date
JPS55149195A JPS55149195A (en) 1980-11-20
JPS6152120B2 true JPS6152120B2 (en) 1986-11-12

Family

ID=13018513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5613179A Granted JPS55149195A (en) 1979-05-07 1979-05-07 Manufacture of silicon carbide substrate

Country Status (1)

Country Link
JP (1) JPS55149195A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707612B2 (en) * 2010-12-24 2015-04-30 東洋炭素株式会社 Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method
US9252206B2 (en) 2010-12-24 2016-02-02 Toyo Tanso Co., Ltd. Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
JP5707614B2 (en) * 2010-12-24 2015-04-30 東洋炭素株式会社 Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method
JP5707613B2 (en) * 2010-12-24 2015-04-30 東洋炭素株式会社 Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method

Also Published As

Publication number Publication date
JPS55149195A (en) 1980-11-20

Similar Documents

Publication Publication Date Title
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6152120B2 (en)
JPS6120514B2 (en)
JP3788836B2 (en) Vapor growth susceptor and manufacturing method thereof
US3340110A (en) Method for producing semiconductor devices
JP3322740B2 (en) Semiconductor substrate and method of manufacturing the same
JPS6120519B2 (en)
JPS6120518B2 (en)
JPS6152119B2 (en)
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JPS63283014A (en) Silicon carbide semiconductor element
JPS623119B2 (en)
JPS6121197B2 (en)
JPS6045159B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6120520B2 (en)
JPS6121198B2 (en)
JPS626644B2 (en)
JPS6120517B2 (en)
JPS6120516B2 (en)
JPS6115150B2 (en)
JPH0443878B2 (en)
JPS6121196B2 (en)