JPS6150011B2 - - Google Patents

Info

Publication number
JPS6150011B2
JPS6150011B2 JP55039950A JP3995080A JPS6150011B2 JP S6150011 B2 JPS6150011 B2 JP S6150011B2 JP 55039950 A JP55039950 A JP 55039950A JP 3995080 A JP3995080 A JP 3995080A JP S6150011 B2 JPS6150011 B2 JP S6150011B2
Authority
JP
Japan
Prior art keywords
water
ions
water treatment
treatment agent
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55039950A
Other languages
Japanese (ja)
Other versions
JPS56136648A (en
Inventor
Akyoshi Komori
Seiichi Suezawa
Takeshi Konishiike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP3995080A priority Critical patent/JPS56136648A/en
Publication of JPS56136648A publication Critical patent/JPS56136648A/en
Publication of JPS6150011B2 publication Critical patent/JPS6150011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水処理用薬剤に関し、殊に弗素イオ
ン、りん酸イオン、アンモニウムイオン等を吸
着、除去できる水処理用薬剤に関する。 近年、都市下水、し尿排水、工場廃水等種々の
汚水に帰因して、公共水域の汚濁が進み、単に自
然環境の崩壊のみならず、水産業、農業など各種
の産業に大きな被害が続出している。 このため現在では下水道や処理場が多数設置さ
れるに到り、汚水の浄化が行われているが、現在
行われている水処理技術では公共水域の汚染は回
避できず、より高度な処理技術が要求されてい
る。 現在行われている処理はSS、BOD及びCODの
有機物除去を主目的としているが、この処理方法
では弗素イオン、りん酸イオン、アンモニウムイ
オン等の無機イオンを殆んど除去できないため
に、これらが河川や海域に蓄積され、富栄養化の
問題が生じている。 従つて、これら無機イオンを除去する方法が開
発されている。 例えばアンモニウムイオンを除去する方法とし
ては 長時間曝気してNH →NO →NO へと微生物
的に硝酸化した後、更にN2ガスまで環元する
方法、 塩素ガスを吹込むことにより、N2ガスにま
で分解する方法、 アルカリ性とした後、エアーストリツピング
によりアンモニアを揮散させる方法、 ゼオライトに吸着させる方法、 等である。 また、りん酸イオンを除去する方法としては 消石灰、硫酸アルミニウム、塩化鉄等を用い
て凝集除去する方法、 活性アルミナ、りん酸カルシウム鉱物などで
吸着する方法、 等である。 更に弗素イオンを除去する方法としては 消石灰、アルミニウム化合物、りん酸カルシ
ウム鉱物、活性アルミナ等を利用する方法、 鹿沼土あるいは鹿沼土を硫酸アルミニウム溶
液で活性化したものを使用する方法、 電気分解方法、 等である。 しかしながら、これらの方法は除去効果が充分
でなかつたり、処理費用が高価であつたり、処理
操作が煩雑である等の問題点がある。 そこで、本発明者らは殊に、これら無機イオン
を効果的に除去する方法について検討した結果、
AlまたはFeイオン、SO4イオン及び多孔性ケイ
酸物質を含む系から沈澱反応を生起させて、多孔
性ケイ酸物質上に硫酸イオンを含有したアルミニ
ウムまたは鉄の水酸化物を沈着した物質が優れた
吸着能を有することを見い出した。 そこで、先ず本発明水処理用薬剤の製造方法に
ついて述べると、本発明に使用する多孔性ケイ酸
物質としては、パーライト、シラスバルーン、バ
ーミキユライト、鹿沼土、ゼオライト等を例示す
ることができ、これらの一種またはそれ以上を
AlまたはFeイオン、SO4イオンを含む水溶液中
に懸濁する。ここで使用するAlまたはFeイオ
ン、SO4イオンを含む水溶液としては、硫酸アル
ミニウム、硫酸鉄、塩基性硫酸鉄あるいは硫酸、
アルミニウムまたは鉄以外の硫酸塩(例えば、硫
酸ナトリウム、硫酸カリウム、硫酸マグネシウ
ム)とアルミニウムまたは鉄塩(例えば塩化アル
ミニウム、塩化鉄、塩基性塩化アルミニウム、塩
基性塩化鉄、硝酸アルミニウム、硝酸鉄、有機酸
のアルミニウムまたは鉄塩)の混合水溶液であ
る。 而して、反応系に含まれるAlまたはFeイオ
ン、SO4イオンの濃度としてはAlまたはFeイオ
ン、SO4イオン供与物質、多孔性ケイ酸物質の種
類等により異なるが概ね、R2O3(但し、RはAl
または3価のFeを示す)として0.1〜5重量%、
SO4として0.1〜15重量%の範囲にあり、SO4
R2O3モル比=0.1以上含まれていることが望まし
い。そして、溶液の多孔性ケイ酸物質に対する使
用割合は概ねR2O3として2〜40重量%である。 このようにして準備された溶液は次いで、多孔
性ケイ酸物質上に硫酸イオンを含んだアルミニウ
ムまたは鉄の水酸化物を沈着させるため沈澱操作
に付される。 沈澱方法としては中和による方法が工業的操
作、原料費等を考慮して最も有利であり、中和剤
としては、アルカリ金属の水酸化物、炭酸塩、ア
ルミン酸塩等使用される。その使用量は沈澱反応
時のPHが5〜8の範囲になるように使用する。即
ち、PHが8以上になると吸着能が低下し、一方5
以下では充分な沈澱反応が期待できない。中和以
外による沈澱方法としては、例えば塩基度30〜55
%の塩基性アルミニウム塩溶液を稀釈し、加水分
解する方法を採用してもよい。 ところで、このようにして多孔性ケイ酸物質上
に沈着した沈澱物組成は、原料の種類、濃度、温
度、沈澱方法、操作条件等により異なるが、概ね
SO4/R2O3(モル比)=1.0〜0.2の範囲である。 本発明に使用する多孔性ケイ酸物質として本発
明者らが最も推奨する物質はゼオライトである。
ゼオライトは前記の如くアンモニウムイオン吸着
物質として知られているが、これに硫酸イオンを
含有のアルミニウムまたは鉄の水酸化物を沈着し
たものはりん酸イオン、弗素イオン等も同時に吸
着し、しかもアンモニウムイオン吸着能を全く防
害しないばかりか、逆に吸着能を増大させ、ゼオ
ライトの共存しない系で沈澱反応させて得た沈澱
物よりもR2O3当りで、りん酸イオンの吸着効果
は更に大きくなる。 今、この効果を具体的に説明すれば次の通りで
ある。 具体例 1 硫酸アルミニウム水溶液(Al2O32.0重量%)2
Kgに32メツシユパスのNa型ゼオライト200gを添
加し、撹拌しながら20重量%炭酸ナトリウム溶液
を30分間で添加してPH=6.7に調整し、20分間熟
成した後、沈澱物を過水洗し、105℃で、乾燥
し、本発明水処理用薬剤255gを得た。(本発明
例) 比較例としてゼオライトを添加しないで上記と
同一条件下で反応を行い105℃で乾燥して沈澱物
を得た。この沈澱物を粉砕して得た32メツシユパ
スのもの55gと本発明で用いたNa型ゼオライト
200gとを混合し、水処理用薬剤を調整した(比
較例) 上記で得られた水処理用薬剤を試水
(NH4 +13.5mg/、PO4 3-10.4mg/、PH7.9)1
に所定量添加し、20℃で2時間撹拌した後過を
行い、処理水のNH4 +及びPO4 3-濃度を測定し、併
せて除去率及び吸着量を算定した。その結果を第
1表に示す。
The present invention relates to a water treatment agent, and particularly to a water treatment agent that can adsorb and remove fluorine ions, phosphate ions, ammonium ions, etc. In recent years, public water bodies have become increasingly polluted due to various types of sewage such as urban sewage, human waste, and industrial wastewater, resulting in not only the destruction of the natural environment but also the great damage to various industries such as fisheries and agriculture. ing. For this reason, many sewers and treatment plants have now been installed to purify sewage, but the current water treatment technology cannot avoid contamination of public water bodies, so more advanced treatment technology is needed. is required. The main purpose of the current treatment is to remove organic substances such as SS, BOD, and COD, but this treatment method cannot remove most inorganic ions such as fluorine ions, phosphate ions, and ammonium ions. It accumulates in rivers and sea areas, causing the problem of eutrophication. Therefore, methods have been developed to remove these inorganic ions. For example, methods for removing ammonium ions include microbial nitrification of NH + 4 → NO 2 → NO 3 through long-term aeration, followed by ring reduction to N 2 gas, and blowing chlorine gas. There are several methods such as decomposing the ammonia into N2 gas, making it alkaline and then volatilizing the ammonia by air stripping, and adsorbing it to zeolite. Methods for removing phosphate ions include coagulation removal using slaked lime, aluminum sulfate, iron chloride, etc., and adsorption with activated alumina, calcium phosphate minerals, etc. Furthermore, methods for removing fluoride ions include methods using slaked lime, aluminum compounds, calcium phosphate minerals, activated alumina, etc., methods using Kanuma soil or Kanuma soil activated with aluminum sulfate solution, electrolysis methods, etc. However, these methods have problems such as insufficient removal effects, high processing costs, and complicated processing operations. Therefore, the present inventors particularly studied methods for effectively removing these inorganic ions, and found that
A material in which aluminum or iron hydroxide containing sulfate ions is deposited on a porous silicic acid material by causing a precipitation reaction from a system containing Al or Fe ions, SO 4 ions, and a porous silicic acid material is excellent. It was discovered that the adsorption capacity was excellent. First, the method for producing the water treatment agent of the present invention will be described. Examples of porous silicic acid materials used in the present invention include perlite, Shirasu balloon, vermiculite, Kanuma clay, and zeolite. one or more of these
Suspended in an aqueous solution containing Al or Fe ions, SO 4 ions. The aqueous solutions containing Al or Fe ions and SO 4 ions used here include aluminum sulfate, iron sulfate, basic iron sulfate or sulfuric acid,
Sulfates other than aluminum or iron (e.g. sodium sulfate, potassium sulfate, magnesium sulfate) and aluminum or iron salts (e.g. aluminum chloride, iron chloride, basic aluminum chloride, basic iron chloride, aluminum nitrate, iron nitrate, organic acids) It is a mixed aqueous solution of aluminum or iron salts). The concentration of Al or Fe ions and SO 4 ions contained in the reaction system varies depending on the type of Al or Fe ions, SO 4 ion donor, porous silicic acid material, etc., but in general, R 2 O 3 ( However, R is Al
or 0.1 to 5% by weight (indicating trivalent Fe),
It is in the range of 0.1 to 15% by weight as SO 4 , SO 4 /
It is desirable that the R 2 O 3 molar ratio is 0.1 or more. The ratio of the solution to the porous silicic acid material is approximately 2 to 40% by weight as R 2 O 3 . The solution thus prepared is then subjected to a precipitation operation to deposit aluminum or iron hydroxide containing sulfate ions onto the porous silicic material. As the precipitation method, neutralization is the most advantageous in view of industrial operations, raw material costs, etc., and as the neutralizing agent, alkali metal hydroxides, carbonates, aluminates, etc. are used. The amount used is such that the pH during the precipitation reaction is in the range of 5 to 8. That is, when the pH becomes 8 or higher, the adsorption capacity decreases;
A sufficient precipitation reaction cannot be expected below. Precipitation methods other than neutralization include, for example, basicity 30-55.
% of a basic aluminum salt solution and hydrolyzing it may be adopted. Incidentally, the composition of the precipitate thus deposited on the porous silicic acid material varies depending on the type of raw material, concentration, temperature, precipitation method, operating conditions, etc., but in general
SO 4 /R 2 O 3 (molar ratio) is in the range of 1.0 to 0.2. The material most recommended by the present inventors as a porous silicic acid material for use in the present invention is zeolite.
As mentioned above, zeolite is known as an ammonium ion adsorbing substance, but when aluminum or iron hydroxide containing sulfate ions is deposited on it, phosphate ions, fluoride ions, etc. are also adsorbed at the same time, and ammonium ions are also absorbed. Not only does it not prevent the adsorption ability at all, but on the contrary, it increases the adsorption ability, and the adsorption effect of phosphate ions is even greater per R 2 O 3 than the precipitate obtained by precipitation reaction in a system where zeolite does not coexist. Become. This effect will now be specifically explained as follows. Specific example 1 Aluminum sulfate aqueous solution (Al 2 O 3 2.0% by weight) 2
200g of Na-type zeolite of 32mesh pass was added to 105 kg, and while stirring, 20% by weight sodium carbonate solution was added over 30 minutes to adjust the pH to 6.7. After aging for 20 minutes, the precipitate was washed with water. It was dried at ℃ to obtain 255 g of the water treatment agent of the present invention. (Example of the present invention) As a comparative example, a reaction was carried out under the same conditions as above without adding zeolite, and a precipitate was obtained by drying at 105°C. 55 g of 32 mesh pass obtained by crushing this precipitate and the Na-type zeolite used in the present invention
A water treatment agent was prepared by mixing 200g of the water treatment agent (comparative example ).
After stirring at 20° C. for 2 hours, filtration was performed, and the NH 4 + and PO 4 3− concentrations of the treated water were measured, and the removal rate and adsorption amount were also calculated. The results are shown in Table 1.

【表】 上表から明らかなように本発明のごとく製造さ
れた吸着剤は沈澱物とゼオライトとを単に混合し
た場合に比較して沈澱物とゼオライトのもつそれ
ぞれの吸着能を更に高める相乗効果がある。 本発明に使用する多孔性ケイ酸物質の粒度に関
しては、後述する廃水の処理形態にあわせ、粉末
状のものから数10mmの径のものまで使用できる。 本発明水処理用薬剤の使用形態としては、多孔
性ケイ酸物質とAlまたはFeイオンとSO4イオン
とを含む系が沈澱反応を生起させて得られたスラ
リーをそのまま用いてもよいし、沈澱物を溶液と
分離した後、乾燥して用いてもよく、乾燥するこ
となく用いてもよい。 而して、本発明水処理剤の使用態様としては、
被処理水中に添加して撹拌してもよいし、公知の
吸着装置に充填して被処理水を処理してもよい。
被処理水PHが5.5〜8.5の時本発明水処理用薬剤は
その効果がもつとも発揮される。 尚、本発明薬剤は使用後は土壌改良剤として用
いることもできるが、再利用を所望するときは、
硫酸、塩酸等により、沈澱物を溶解し、多孔性ケ
イ酸物質を再利用することもできる。 以下に本発明の実施例を挙げて更に説明する。 実施例 1 硫酸アルミニウム溶液(Al2O32.5%)1Kgに
3.2メツシユパスの鹿沼土150gを添加し、撹拌し
つつ、20%炭酸ナトリウム溶液をPH6.5になるま
で添加し、20分間熟成した後、沈澱物を過水洗
し、105℃で乾燥し、本発明水処理剤188gを得
た。(本発明例)比較例として上記硫酸アルミニ
ウム溶液1Kgに鹿沼土150gを添加し、10分間撹
拌した後、過し、105℃で乾燥し活性化した水
処理用薬剤(比較例1)鹿沼土を添加しないこと
を除いては本発明例と同一の条件で沈澱反応を行
ない沈澱生成物を過後、105℃で乾燥し、乾燥
物を粉砕して得た32メツシユパスのもの38gと本
発明例で用いた鹿沼土150gを混合し、水処理用
薬剤を調整した。(比較例2) 上記で得られた水処理用薬剤を試水
(PO4 3-10.1mg/)1に所定量添加し、20℃で
2時間撹拌した後、過を行ない、処理水の
PO4 3-濃度を測定し、併せて除去率及び吸着量を
算定した。その結果を第1表に示す。
[Table] As is clear from the above table, the adsorbent produced according to the present invention has a synergistic effect that further enhances the respective adsorption capacities of the precipitate and zeolite compared to the case where the precipitate and zeolite are simply mixed. be. Regarding the particle size of the porous silicic acid material used in the present invention, it can range from powdery to several tens of millimeters in diameter, depending on the form of wastewater treatment described below. As for the usage form of the water treatment agent of the present invention, a slurry obtained by causing a precipitation reaction in a system containing a porous silicic acid material, Al or Fe ions, and SO 4 ions may be used as it is; After separating the substance from the solution, it may be used after drying, or it may be used without drying. Therefore, the usage mode of the water treatment agent of the present invention is as follows:
It may be added to the water to be treated and stirred, or the water to be treated may be treated by filling it into a known adsorption device.
When the pH of the water to be treated is between 5.5 and 8.5, the water treatment agent of the present invention exhibits its effects. The chemical of the present invention can be used as a soil conditioner after use, but if reuse is desired,
It is also possible to dissolve the precipitate with sulfuric acid, hydrochloric acid, etc. and reuse the porous silicic acid material. The present invention will be further explained below with reference to Examples. Example 1 1 kg of aluminum sulfate solution (Al 2 O 3 2.5%)
3.2 Add 150g of Kanuma clay from Metsuyupas, add 20% sodium carbonate solution while stirring until the pH reaches 6.5, age for 20 minutes, wash the precipitate with water, dry at 105℃, and prepare the present invention. 188 g of water treatment agent was obtained. (Example of the present invention) As a comparative example, 150 g of Kanuma soil was added to 1 kg of the above aluminum sulfate solution, stirred for 10 minutes, filtered, dried at 105°C, and activated. (Comparative example 1) Kanuma soil was added. The precipitation reaction was carried out under the same conditions as in the inventive example except that no additive was added, and the precipitated product was filtered, dried at 105°C, and the dried product was crushed. A water treatment chemical was prepared by mixing 150g of Kanuma soil. (Comparative Example 2) A predetermined amount of the water treatment agent obtained above was added to sample water (PO 4 3-10.1 mg/) 1, stirred at 20°C for 2 hours, filtered, and treated water was
The PO 4 3- concentration was measured, and the removal rate and adsorption amount were also calculated. The results are shown in Table 1.

【表】 即ち、上表から鹿沼土上に硫酸イオン含有の水
酸化アルミニウムを沈着することにより一層りん
酸イオン吸着能が高まることが判る。 実施例 2 塩基性硫酸アルミニウム溶液(塩基度50%、
Al2O32.00重量%、SO42.38重量%)1.00Kgに100
メツシユパスに粉砕したパーライト200gを加
え、撹拌しながら5.0%水酸化ナトリウムをPH6.8
になるまで添加し、20分間熟成した後、沈澱物を
過水洗し、105℃で乾燥し、本発明水処理用薬
剤236gを得た。この水処理用薬剤1.0gを試水
(F-28.5mg/)1に添加し、2時間撹拌した
後過を行い、F-イオン濃度を測定した結果
F-3.7mg/であつた。 一方、パーライトに代え100メツシユパスに粉
砕した二水石こうを用いて、上記と同様の操作を
行い試水を処理し、F-イオン濃度を測定した結
果F-11.6mg/であつた。 実施例 3 塩化第2鉄と硫酸の混合水溶液(Fe2O30.40重
量%、cl0.53重量%、SO40.36重量%)4.00Kgに
60メツシユパスに粉砕したシラスバルーン300g
を加え撹拌しつつアルミン酸ソーダ水溶液
(Al2O31.53重量%、Na2O1.39重量%)1.88Kgを40
分間で添加し、15分間熟成した後、沈澱物を過
水洗し、ウエツトケーキ1.39Kg(水分73.4%)を
得た。乾燥することなく、この沈澱物5.0gを試
水(As2.65mg/)1に添加し、2時間撹拌し
た後、過を行いAs濃度を測定した結果0.21mg/
であつた。 実施例 4 硫酸第2鉄水溶液(Fe2O33.03重量%)10.0Kg
に32メツシユパスのバーミキユライト1Kgを加え
撹拌しながら7.0%水酸化カリウム溶液をPH6.1に
なるまで添加し、20分間熟成した後、沈澱物を
過水洗し、105℃で乾燥し、本発明水処理用薬剤
1.49Kgを得た。この水処理薬剤を試水(TOC32.6
mg/)1に2.0g添加し0.5時間撹拌後過
し、処理水のTOCを測定した結果19.6mg/であ
つた。 実施例 5 塩基性硫酸アルミニウム水溶液(Al2O33.56
%、SO46.03%)2Kgに32メツシユパスのH型ゼ
オライト200gを添加し、撹拌しながら20%炭酸
ナトリウム溶液をPH6.1になるまで添加し、20分
間熟成した後、沈澱物を過水洗し、105℃で乾
燥し、本発明水処理用薬剤314gを得た。この水
処理用薬剤2.0gを試水(NH4 +6.5mg/、
PO4 3-23.8mg/、PH6.8)1に添加し、20℃で
2時間撹拌した後、過を行い、処理水
(NH4 +0.7mg/、PO4 3-0.2mg/、PH6.6)を得
た。 実施例 6 塩基性硫酸アルミニウムと塩化アルミニウムの
混合水溶液(Al2O33.01%、cl1.46%、SO42.12
%)1Kgに32メツシユパスのH型ゼオライト200
gを添加し、撹拌しながら2.0%水酸化ナトリウ
ム溶液を50分で添加してPH=7.3に調整し、10分
間熟成した後、沈澱物を過水洗し、本発明水処
理用薬剤814g(水分69.3%)を得た。この水処
理用薬剤4.9gを試水(NH4 +10.8mg/、
PO4 3-14.6mg/、PH7.4)1に添加し、20℃で
2時間撹拌した後、過を行い、処理水
(NH4 +2.9mg/、PO4 3-0.4mg/、PH7.3)を得
た。 尚、比較例として上記混合水溶液に代えて塩化
アルミニウム水溶液(Al2O33.04%、cl6.34%)
を用いて同一条件下で処理を行い、水処理用薬剤
906g(水分73.2%)を得た。この水処理用薬剤
5.6gを用いて同様に試水を処理したところ、処
理水(NH4 +3.7mg/、PO4 3-2.5mg/、PH7.3)を
得た。 実施例 7 塩化アルミニウムと硫酸の混合水溶液
(Al2O30.70%、SO40.99%、cl1.46%)1Kgに7
〜32メツシユのCa型ゼオライト250gを添加し、
撹拌しながらアルミン酸カリウム溶液
(Al2O31.03%、K2O1.43%)1940gを60分で添加
し、30分間熟成した後、沈澱物を過水洗し、
105℃で乾燥し、本発明水処理用薬剤284gを得
た。この水処理用薬剤を試水(PO4 3-31.2mg/、
F-33.4mg/、PH6.9)500mlに所定量添加し、18
℃で3時間撹拌した後過を行い、処理水の
PO4 3-及びF-濃度を測定し、併せて除去率を算定
した。その結果を第2表に示す。
[Table] That is, from the above table, it can be seen that the phosphate ion adsorption capacity is further increased by depositing aluminum hydroxide containing sulfate ions on Kanuma soil. Example 2 Basic aluminum sulfate solution (basicity 50%,
Al 2 O 3 2.00 wt%, SO 4 2.38 wt%) 100 to 1.00Kg
Add 200g of crushed perlite to the mesh paste, and add 5.0% sodium hydroxide to pH 6.8 while stirring.
After aging for 20 minutes, the precipitate was washed with water and dried at 105°C to obtain 236 g of the water treatment agent of the present invention. 1.0 g of this water treatment chemical was added to sample water (F - 28.5 mg/) 1, stirred for 2 hours, filtered, and the F - ion concentration was measured.
F - It was 3.7mg/. On the other hand, in place of pearlite, dihydrate gypsum crushed to 100 mesh passes was used to treat the sample water in the same manner as above, and the F - ion concentration was measured, and the result was F - 11.6 mg/. Example 3 Mixed aqueous solution of ferric chloride and sulfuric acid (Fe 2 O 3 0.40% by weight, cl 0.53% by weight, SO 4 0.36% by weight) to 4.00Kg
300g shirasu balloons crushed into 60 pieces
Add 1.88 kg of sodium aluminate aqueous solution (Al 2 O 3 1.53% by weight, Na 2 O 1.39% by weight) to 40% while stirring.
After aging for 15 minutes, the precipitate was washed with water to obtain 1.39 kg of wet cake (moisture 73.4%). Without drying, 5.0 g of this precipitate was added to 1 sample water (2.65 mg/As), stirred for 2 hours, filtered, and the As concentration was determined to be 0.21 mg/1.
It was hot. Example 4 Ferric sulfate aqueous solution (Fe 2 O 3 3.03% by weight) 10.0Kg
1 kg of vermiculite of 32 mesh passes was added to the solution, and while stirring, a 7.0% potassium hydroxide solution was added until the pH reached 6.1. After aging for 20 minutes, the precipitate was washed with water and dried at 105°C. Water treatment chemicals
Obtained 1.49Kg. Test water with this water treatment agent (TOC32.6
2.0g was added to 1 mg/), stirred for 0.5 hours, filtered, and the TOC of the treated water was measured and found to be 19.6mg/. Example 5 Basic aluminum sulfate aqueous solution (Al 2 O 3 3.56
%, SO 4 6.03%) to 2 kg of 32 mesh pass H-type zeolite, added 20% sodium carbonate solution with stirring until the pH reached 6.1, aged for 20 minutes, and washed the precipitate with water. , and dried at 105°C to obtain 314 g of the water treatment agent of the present invention. 2.0g of this water treatment chemical was added to the sample water (NH 4 + 6.5mg/,
PO 4 3- 23.8 mg/, PH 6.8) 1, stirred at 20°C for 2 hours, filtered, and treated water (NH 4 + 0.7 mg/, PO 4 3- 0.2 mg/, PH 6. 6) obtained. Example 6 Mixed aqueous solution of basic aluminum sulfate and aluminum chloride (Al 2 O 3 3.01%, cl 1.46%, SO 4 2.12
%) H type zeolite 200 with 32 mesh passes per 1kg
2.0% sodium hydroxide solution was added over 50 minutes while stirring to adjust the pH to 7.3, and after aging for 10 minutes, the precipitate was washed with water and 814 g of the water treatment agent of the present invention (water 69.3%). 4.9g of this water treatment chemical was added to the sample water (NH 4 + 10.8mg/,
PO 4 3- 14.6 mg/, PH 7.4) 1, stirred at 20°C for 2 hours, filtered, and treated water (NH 4 + 2.9 mg/, PO 4 3- 0.4 mg/, PH 7. 3) got it. As a comparative example, an aluminum chloride aqueous solution (Al 2 O 3 3.04%, cl 6.34%) was used instead of the above mixed aqueous solution.
under the same conditions using water treatment chemicals.
906g (moisture 73.2%) was obtained. This water treatment agent
When sample water was treated in the same manner using 5.6 g, treated water (NH 4 + 3.7 mg/, PO 4 3- 2.5 mg/, PH 7.3) was obtained. Example 7 Mixed aqueous solution of aluminum chloride and sulfuric acid (Al 2 O 3 0.70%, SO 4 0.99%, cl 1.46%) 7 to 1 kg
~250g of Ca-type zeolite of ~32 mesh was added,
While stirring, 1940 g of potassium aluminate solution (Al 2 O 3 1.03%, K 2 O 1.43%) was added over 60 minutes, and after aging for 30 minutes, the precipitate was washed with water,
It was dried at 105°C to obtain 284 g of the water treatment agent of the present invention. Test water with this water treatment chemical (PO 4 3- 31.2mg/,
F - 33.4mg/, PH6.9) Add the specified amount to 500ml, 18
After stirring at ℃ for 3 hours, filtration was carried out and the treated water
The PO 4 3- and F - concentrations were measured, and the removal rate was also calculated. The results are shown in Table 2.

【表】 実施例 8 工業用硫酸アルミニウム水溶液(Al2O31.00
%)2Kgに7〜20メツシユのNa型ゼオライト500
gを添加し、撹拌しながら10%炭酸ナトリウム溶
液を20分で添加してPH=6.5に調整し、20分間熟
成した後、沈澱物を過水洗し、105℃で乾燥
し、本発明水処理用薬剤521gを得た。この水処
理用薬剤40gを直径2cm、長さ20cmのガラス製カ
ラムに充填し、試水(NH4 +12.8mg/)を連続的
にカラム下部から5ml/minの速度で供給し、カ
ラム上部からの溢流水を連続的にフラクシヨンコ
レクターで採取してアンモニウムイオンの濃度を
測定した。通水開始後、47.5時間までの処理水の
NH4 +イオン濃度は1.0mg/以下であり、それ以
後NH4 +イオン濃度は上昇し、吸着は飽和状態に
達した。この水処理用剤1g当りのNH4 +イオン
吸着量は4.31mgであつた。 実施例 9 硫酸第二鉄と硫酸アルミニウムとの混合水溶液
(Fe2O31.01%、Al2O30.50%)1Kgに32メツシユ
パスのH型ゼオライト300gを添加し、撹拌しな
がら5.0%炭酸カリウム溶液を30分で添加してPH
=6.3に調整し、10分間熟成した後、沈澱物を
過水洗し、105℃で乾燥し、本発明水処理用薬剤
326gを得た。この水処理用薬剤20gを試水
(NH4 +240mg/、PO4 3-33mg/、PH8.2)1に
添加し、20℃で2時間撹拌した後、過を行い、
処理水(NH4 +8.6mg/、PO4 3-2.8mg/ PH7.9)
を得た。 実施例 10 水10を撹拌しながら、これに塩基性硫酸アル
ミニウム水溶液(Al2O35.0%、SO47.99%)500g
と32メツシユパスのNa型ゼオライト200gとの混
合スラリーを添加し、20分間熟成した後、沈澱物
を水洗過し、105℃で乾燥し、本発明水処理用
薬剤247gを得た。この水処理用薬剤を酢酸含有
廃水1(TOC40.7mg/、PH5.8)に所定量添加
し、TOCの除去試験を行つた。その結果を第3
表に示す。
[Table] Example 8 Industrial aluminum sulfate aqueous solution (Al 2 O 3 1.00
%) 7 to 20 mesh Na-type zeolite 500 per 2 kg
10% sodium carbonate solution was added over 20 minutes while stirring to adjust the pH to 6.5, and after aging for 20 minutes, the precipitate was washed with water and dried at 105°C, and the water treatment of the present invention was carried out. 521g of the drug for use was obtained. 40g of this water treatment chemical was packed into a glass column with a diameter of 2cm and a length of 20cm, and sample water (NH 4 + 12.8mg/) was continuously supplied from the bottom of the column at a rate of 5ml/min. The overflow water was continuously collected using a fraction collector and the concentration of ammonium ions was measured. Treated water for up to 47.5 hours after starting water flow
The NH 4 + ion concentration was below 1.0 mg/, and after that the NH 4 + ion concentration increased and the adsorption reached a saturated state. The amount of NH 4 + ions adsorbed per gram of this water treatment agent was 4.31 mg. Example 9 Add 300 g of H-type zeolite of 32 mesh to 1 kg of mixed aqueous solution of ferric sulfate and aluminum sulfate (Fe 2 O 3 1.01%, Al 2 O 3 0.50%), and add 5.0% potassium carbonate solution while stirring. was added in 30 minutes to adjust the pH.
= 6.3 and aged for 10 minutes, the precipitate was washed with water, dried at 105°C, and the water treatment agent of the present invention was prepared.
Obtained 326g. 20 g of this water treatment agent was added to sample water (NH 4 + 240 mg/, PO 4 3- 33 mg/, PH 8.2) 1, stirred at 20°C for 2 hours, and then filtered.
Treated water (NH 4 + 8.6mg/, PO 4 3- 2.8mg/ PH7.9)
I got it. Example 10 Add 500g of basic aluminum sulfate aqueous solution (Al 2 O 3 5.0%, SO 4 7.99%) to 10% of water with stirring.
A mixed slurry of 200 g of Na-type zeolite of 32 mesh pass was added, and after aging for 20 minutes, the precipitate was washed with water and dried at 105° C. to obtain 247 g of the water treatment agent of the present invention. A predetermined amount of this water treatment agent was added to acetic acid-containing wastewater 1 (TOC 40.7 mg/, PH 5.8), and a TOC removal test was conducted. The result is the third
Shown in the table.

【表】 実施例 11 硫酸第二鉄水溶液(Fe2O3.13%)1Kgに20〜
100メツシユのNa型ゼオライト100gを添加し、
撹拌しながら10%炭酸ソーダ溶液を40分で添加し
てPH=7.2に調整し、15分間熟成した後、沈澱物
を過水洗し、105℃で乾燥し、本発明水処理用
薬剤139gを得た。この水処理用薬剤1.5gを試水
(NH4 +5.8mg/、PO4 3-13.5mg/、PH6.8)1に
添加し、18℃2時間撹拌した後過を行い、処理
水(NH4 +0.9mg/、PO4 3-0.1mg/、PH7.0)を得
た。 実施例 12 アルミン酸ナトリウム水溶液(Al2O32.0%)1
Kgと無水硫酸ナトリウム25.1gとの混合溶液に32
〜300メツシユのNa型ゼオライト100gを添加
し、撹拌しながら5.0%塩酸を30分で添加してPH
=7.0に調整し、10分間熟成した後、沈澱物を
過水洗し、105℃で乾燥し、本発明水処理用薬剤
127gを得た。 この水処理用薬剤2.0gを試水(As3.04mg/、
PH7.5)1に添加し、25℃で3時間撹拌した
後、過を行い、処理水(As0.43mg/、PH7.3)
を得た。
[Table] Example 11 Ferric sulfate aqueous solution (Fe 2 O3.13%) 20 to 1 kg
Add 100 g of 100 mesh Na-type zeolite,
While stirring, 10% sodium carbonate solution was added over 40 minutes to adjust the pH to 7.2, and after aging for 15 minutes, the precipitate was washed with water and dried at 105°C to obtain 139 g of the water treatment agent of the present invention. Ta. 1.5 g of this water treatment agent was added to sample water (NH 4 + 5.8 mg/, PO 4 3- 13.5 mg/, PH 6.8) 1, stirred for 2 hours at 18°C, filtered, and treated water (NH 4 + 0.9mg/, PO 4 3- 0.1mg/, PH7.0). Example 12 Sodium aluminate aqueous solution (Al 2 O 3 2.0%) 1
32 kg in a mixed solution of 25.1 g of anhydrous sodium sulfate.
Add 100g of ~300 mesh Na-type zeolite and adjust the pH by adding 5.0% hydrochloric acid over 30 minutes while stirring.
= 7.0 and aged for 10 minutes, the precipitate was washed with water, dried at 105°C, and the water treatment agent of the present invention was prepared.
Obtained 127g. 2.0g of this water treatment chemical was sampled (As3.04mg/,
PH7.5) 1, stirred at 25℃ for 3 hours, filtered, and treated water (As0.43mg/, PH7.3)
I got it.

Claims (1)

【特許請求の範囲】 1 AlイオンまたはFeイオン、SO4イオン及び
多孔性ケイ酸物質を含む系から沈澱反応を生起さ
せて得た水処理用薬剤。 2 多孔性ケイ酸物質がゼオライトである特許請
求の範囲第1項記載の水処理用薬剤。
[Claims] 1. A water treatment agent obtained by causing a precipitation reaction from a system containing Al ions or Fe ions, SO 4 ions, and a porous silicic acid material. 2. The water treatment agent according to claim 1, wherein the porous silicic acid material is a zeolite.
JP3995080A 1980-03-27 1980-03-27 Chemical agent for water treatment Granted JPS56136648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3995080A JPS56136648A (en) 1980-03-27 1980-03-27 Chemical agent for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3995080A JPS56136648A (en) 1980-03-27 1980-03-27 Chemical agent for water treatment

Publications (2)

Publication Number Publication Date
JPS56136648A JPS56136648A (en) 1981-10-26
JPS6150011B2 true JPS6150011B2 (en) 1986-11-01

Family

ID=12567235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3995080A Granted JPS56136648A (en) 1980-03-27 1980-03-27 Chemical agent for water treatment

Country Status (1)

Country Link
JP (1) JPS56136648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234418A (en) * 1988-07-25 1990-02-05 Mazda Motor Corp Suspension device of car

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0100371L (en) * 2001-02-07 2002-08-08 Bmt Bio Mineral Technologies A Filter department and process for purification of wastewater containing inorganic, organic pollutants and / or pathogens
DE102004031181A1 (en) * 2004-06-28 2006-01-19 Vifor (International) Ag phosphate adsorbent
FI20050700A0 (en) 2005-07-01 2005-07-01 Turun Yliopisto Process for Improving Vermiculite's Intake of Ammonium Ions, Absorbent Materials, Its Use, and Method for Removing Ammonium from the Environment
JP4940873B2 (en) * 2006-10-04 2012-05-30 パナソニック株式会社 Electric vacuum cleaner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842998A (en) * 1971-10-08 1973-06-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842998A (en) * 1971-10-08 1973-06-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234418A (en) * 1988-07-25 1990-02-05 Mazda Motor Corp Suspension device of car

Also Published As

Publication number Publication date
JPS56136648A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
US4377483A (en) Method of removing dissolved heavy metals from aqueous waste liquids
KR100525360B1 (en) Processes and Compositions for Water Treatment
US3499837A (en) Waste water treatment phosphate removal by iron oxide
JP5792664B2 (en) Method for regenerating used activated carbon, activated activated carbon and method for producing the same
CA2292582A1 (en) A process for the treatment of effluent streams
US4707270A (en) Process for treating waste water containing phosphorus compounds and/or organic cod substances
JPH0226557B2 (en)
JP2005193167A (en) Drainage purification method and purification method
JPS6150011B2 (en)
JP3764009B2 (en) Adsorbent and water treatment method
JP4936453B2 (en) Adsorbent for water treatment having a pH of less than 4 and containing iron ions and ions containing arsenic and method for purifying the water
JPH10277541A (en) Zeolite type water purifying agent
CA2138259A1 (en) Process for the removal of phosphorous
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP6888798B2 (en) Boron removal method and boron removal device
JP2004512930A (en) Water treatment processes and compositions
RU2209782C2 (en) Method for underground water treatment
JP4392493B2 (en) Method for removing and recovering phosphorus
JPH05269474A (en) Filter agent for rainwater purifying device
JPH0435238B2 (en)
RO137649A2 (en) Process and adsorbent material for adsorption of organic pollutants from aqueous solutions
JPH11239785A (en) Agent and method for simultaneously removing nitrogen and phosphorus from wastewater
JP2003088880A (en) Method for removing water-soluble phosphorus by using calcium sulfate
JP2005028246A (en) Treatment method for heavy metal-containing wastewater
JPS6230596A (en) Method for treating fluorine in waste water