JPS6147822B2 - - Google Patents

Info

Publication number
JPS6147822B2
JPS6147822B2 JP53159270A JP15927078A JPS6147822B2 JP S6147822 B2 JPS6147822 B2 JP S6147822B2 JP 53159270 A JP53159270 A JP 53159270A JP 15927078 A JP15927078 A JP 15927078A JP S6147822 B2 JPS6147822 B2 JP S6147822B2
Authority
JP
Japan
Prior art keywords
lactic acid
manganese dioxide
reaction
acid nitrile
nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53159270A
Other languages
Japanese (ja)
Other versions
JPS5587749A (en
Inventor
Tadamitsu Kyora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15927078A priority Critical patent/JPS5587749A/en
Publication of JPS5587749A publication Critical patent/JPS5587749A/en
Publication of JPS6147822B2 publication Critical patent/JPS6147822B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、乳酸アミドの製造方法に関するもの
である。さらに詳細には、乳酸ニトリルを接触的
に水和して、乳酸アミドを製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing lactic acid amide. More specifically, the present invention relates to a method for producing lactic acid amide by catalytically hydrating lactic acid nitrile.

乳酸アミドは、従来、乳酸をアンモニアで中和
し乳酸アンモニウムとし、これを、例えば五酸化
リン等で脱水する方法で製造されており、多段の
反応操作と繁雑な分離方法が必要であつた。
Lactic acid amide has conventionally been produced by neutralizing lactic acid with ammonia to produce ammonium lactate, which is then dehydrated with, for example, phosphorus pentoxide, which requires multi-stage reaction operations and complicated separation methods.

本発明の目的とするところは、従来法のような
多段の反応操作と繁雑な分離操作を必要としな
い、新規な乳酸アミドの製造方法を提供すること
にある。
An object of the present invention is to provide a novel method for producing lactic acid amide, which does not require the multi-stage reaction operations and complicated separation operations required in conventional methods.

アミドを製造する一般的方法はニトリルの水和
である。近年、触媒を用いて接触的にニトリルの
水和を実施することが行なわれ、特に、アクリロ
ニトリルの水和によるアクリルアミドの製造が大
規模に工業化されている。
A common method for making amides is the hydration of nitriles. In recent years, catalytic hydration of nitriles has been carried out using catalysts, and in particular, the production of acrylamide by hydration of acrylonitrile has been industrialized on a large scale.

アクリルニトリルの水和には銅、特に、ラネー
銅のような金属銅触媒が極めて高い活性を示すこ
とがよく知られ工業的にも使用されている。
It is well known that copper, especially metallic copper catalysts such as Raney copper, exhibit extremely high activity in the hydration of acrylonitrile, and are also used industrially.

本発明者は、乳酸ニトリルの接触水和に用いる
触媒に関して種々研究した結果、アクリルニトリ
ルの水和に有効な銅触媒は、全く活性を示さず
に、二酸化マンガンが極めて有効であることを見
出し、本発明を完成するに至つた。
As a result of various studies on catalysts used for catalytic hydration of lactic acid nitrile, the present inventor found that copper catalysts that are effective in hydrating acrylonitrile show no activity at all, while manganese dioxide is extremely effective. The present invention has now been completed.

ニトリルの接触水和に二酸化マンガンが有効で
あることは古くから公知であるが、例えば
chemical communications121〜122(1966)、乳
酸ニトリルのように容易に酸化され易いアルコー
ル基を分子内に持つニトリルは、二酸化マンガン
により酸化を受けると考えられ、乳酸ニトリルの
二酸化マンガン触媒による水和は、行なわれてい
なかつた。すなわち、乳酸ニトリルはアルコール
の酸化剤として多用されているところの二酸化マ
ンガンによりピルボニトリルへ酸化され、生じた
ピルボニトリルは不安定であるため、アセトアル
デヒドと青酸に分解し、一方、二酸化マンガンは
低位のマンガン酸化物に還元され水和活性を消失
すると推定されていた。ところが、本発明者の研
究によれば、乳酸ニトリルの水溶液を30〜200℃
の温度で二酸化マンガンと接触させると、意外な
ことに、アルコールの酸化は実質的に進行せず、
ニトリルのアミドへの水和が選択的に進行するこ
と、さらに、アルコールの酸化が実質的に進行し
ないため、二酸化マンガンの還元も実質的に進行
せず、したがつて触媒活性の低下も認められない
ことを見出した。
It has been known for a long time that manganese dioxide is effective for catalytic hydration of nitriles, but for example,
Chemical Communications 121-122 (1966) Nitriles with easily oxidized alcohol groups in their molecules, such as lactic acid nitrile, are thought to be oxidized by manganese dioxide, and hydration of lactic acid nitrile with a manganese dioxide catalyst is not possible. It wasn't. In other words, lactic acid nitrile is oxidized to pyrvonitrile by manganese dioxide, which is often used as an oxidizing agent for alcohol, and the resulting pyrbonitrile is unstable, so it decomposes into acetaldehyde and hydrocyanic acid, while manganese dioxide is a low-level manganese oxidizer. It was presumed that the hydration activity would be lost by being reduced to other substances. However, according to the research of the present inventor, an aqueous solution of lactic acid nitrile was heated at 30 to 200°C.
Surprisingly, when brought into contact with manganese dioxide at a temperature of
Since the hydration of nitrile to amide proceeds selectively and the oxidation of alcohol does not substantially proceed, the reduction of manganese dioxide also does not substantially proceed, and therefore a decrease in catalytic activity is observed. I found out that there is no.

すなわち、本発明の要旨とするところは、乳酸
ニトリル水溶液を30〜200℃の温度で二酸化マン
ガンに接触させ選択的に乳酸アミドを製造するこ
とにある。
That is, the gist of the present invention is to selectively produce lactic acid amide by bringing an aqueous lactic acid nitrile solution into contact with manganese dioxide at a temperature of 30 to 200°C.

したがつて、本発明の方法によれば、乳酸ニト
リルの接触水和による一段の反応操作により、従
来法のような欠点もなく工業的に有利に乳酸アミ
ドを製造することができる。
Therefore, according to the method of the present invention, lactic acid amide can be industrially advantageously produced without the disadvantages of conventional methods by a one-step reaction operation involving catalytic hydration of lactic acid nitrile.

本発明の方法において原料物質として用いられ
る乳酸ニトリルは、アセトアルデヒドと青酸との
反応によつて、容易に製造でき、工業的に大量安
価に供給されている化合物である。
Lactic acid nitrile used as a raw material in the method of the present invention is a compound that can be easily produced by the reaction of acetaldehyde and hydrocyanic acid, and is supplied industrially in large quantities at low cost.

本発明の方法において用いる乳酸ニトリルの水
溶液は、乳酸ニトリルの濃度が1〜50wt%、好
ましくは5〜30wt%の範囲である。
The aqueous solution of lactic acid nitrile used in the method of the present invention has a lactic acid nitrile concentration in the range of 1 to 50 wt%, preferably 5 to 30 wt%.

乳酸ニトリル水溶液と触媒である二酸化マンガ
ンを接触させる反応温度は、30〜200℃、好まし
くは50〜130℃の範囲である。反応温度が上記し
た範囲より低いと、反応速度が遅く実質的でな
い、反応温度が上記範囲より高いと、乳酸ニトリ
ルの分解およびアルコール基の酸化反応が併発
し、収率が低下するので好ましくない。
The reaction temperature at which the lactic acid nitrile aqueous solution and the catalyst manganese dioxide are brought into contact is in the range of 30 to 200°C, preferably 50 to 130°C. If the reaction temperature is lower than the above range, the reaction rate is slow and not substantial, and if the reaction temperature is higher than the above range, the decomposition of lactic acid nitrile and the oxidation reaction of alcohol groups occur simultaneously, resulting in a decrease in yield, which is not preferable.

本発明の方法において用いる触媒は二酸化マン
ガンであつて、マンガン塩、例えば、硝酸マンガ
ン等の熱分解により製造するか、または、市販品
の二酸化マンガンをそのまま使用する。触媒の形
態は、粉末状、粒状または錠剤に整型したもので
あつて、懸濁床反応器に用いる場合は粉末、固定
床反応器に用いる場合には、粒状または錠剤を用
いる。二酸化マンガンを担体上に担持したものも
同様に使用できる。
The catalyst used in the process of the invention is manganese dioxide, which can be prepared by thermal decomposition of manganese salts, such as manganese nitrate, or commercially available manganese dioxide can be used as is. The catalyst may be in the form of powder, granules, or tablets; powder is used in a suspended bed reactor, and granules or tablets are used in a fixed bed reactor. A carrier in which manganese dioxide is supported can also be used.

触媒の使用量は特に制限はないが、他の触媒反
応の場合に比較して多量の触媒を用いる。例え
ば、固定床で反応を実施する際には、触媒床と乳
酸ニトリル水溶液との接触時間は2〜10時間の範
囲である。
Although there is no particular restriction on the amount of catalyst used, a larger amount of catalyst is used than in the case of other catalytic reactions. For example, when carrying out the reaction in a fixed bed, the contact time between the catalyst bed and the aqueous lactic acid nitrile solution ranges from 2 to 10 hours.

反応終了後、反応液から触媒を分離すれば、乳
酸アミド水溶液が得られ、これを減圧下に濃縮す
れば、固体状の乳酸アミドが白色粉末として析出
する。
After the reaction is completed, the catalyst is separated from the reaction solution to obtain an aqueous lactic acid amide solution, which is concentrated under reduced pressure to precipitate solid lactic acid amide as a white powder.

本発明の方法で得られる乳酸アミドは、乳酸、
乳酸エステル、および有機薬品の合成原料とし
て、有用な化合物である。
The lactic acid amide obtained by the method of the present invention includes lactic acid,
It is a useful compound as a raw material for the synthesis of lactic acid esters and organic drugs.

以下、実施例および比較例により、本発明を説
明する。
The present invention will be explained below with reference to Examples and Comparative Examples.

比較例 1 乳酸ニトリルの10wt%水溶液50gに、常法に
よつて展開したラネー銅触媒、〔アクリロニトリ
ルの水和に高活性を示す〕2gを添加し、還流冷
却器を付けた三角フラスコ中で、90〜95℃で5時
間撹拌した。反応液から触媒を分離し、ガスクロ
マトグラフイーで生成物を分析したところ、乳酸
アミドの生成は痕跡量であり、乳酸ニトリルから
乳酸アミドへの転化は、実質的に進行しない。
Comparative Example 1 To 50 g of a 10 wt % aqueous solution of lactic acid nitrile, 2 g of Raney copper catalyst [which shows high activity in hydrating acrylonitrile] developed by a conventional method was added, and the mixture was placed in an Erlenmeyer flask equipped with a reflux condenser. Stirred at 90-95°C for 5 hours. When the catalyst was separated from the reaction solution and the product was analyzed by gas chromatography, it was found that only a trace amount of lactic acid amide was produced, and the conversion of lactic acid nitrile to lactic acid amide did not substantially proceed.

実施例 1 還流冷却器を付けた100c.c.三角フラスコ中に
10wt%の乳酸ニトリル水溶液50g、市販特級試
薬の二酸化マンガン粉末8gを仕込み、80℃で5
時間撹拌しながら反応させた。反応液から触媒を
分離し、ガスクロマトグラフイーで生成物を分析
したところ、乳酸ニトリルの転化率92%、乳酸ア
ミドへの選択率81%であつた。副生物はアセトア
ルデヒドおよび微量の酢酸が認められた。反応液
を減圧下に蒸発乾固し、得られた白色粉末の赤外
吸収スペクトルを測定したところ、標品のそれと
よく一致した。
Example 1 In a 100 c.c. Erlenmeyer flask equipped with a reflux condenser.
Prepare 50g of 10wt% lactic acid nitrile aqueous solution and 8g of manganese dioxide powder, a commercially available special reagent, and heat at 80℃ for 50 minutes.
The reaction was allowed to take place while stirring for hours. When the catalyst was separated from the reaction solution and the product was analyzed by gas chromatography, the conversion rate of lactic acid nitrile was 92% and the selectivity to lactic acid amide was 81%. Acetaldehyde and trace amounts of acetic acid were observed as by-products. The reaction solution was evaporated to dryness under reduced pressure, and the infrared absorption spectrum of the resulting white powder was measured, and it matched well with that of the standard product.

実施例 2 内径12m/mφのガラス管の外側にジヤケツト
を付け、80℃の温水を循環させる固定床反応器と
した。上記反応器に粒径1〜2m/mφの粒状二
酸化マンガン9mlを充填(層高10cm)した。充填
塔の底部より上方に向けて10wt%の乳酸ニトリ
ル水溶液を、定量ポンプにより2.5g/Hrの流速
で注入し、上部より流出する反応液を冷却補集し
た。補集液を分析したところ乳酸ニトリルの転化
率90%、乳酸アミドへの選択率82%であつた。
Example 2 A jacket was attached to the outside of a glass tube with an inner diameter of 12 m/mφ to form a fixed bed reactor in which hot water at 80°C was circulated. The reactor was filled with 9 ml of granular manganese dioxide having a particle size of 1 to 2 m/mφ (bed height 10 cm). A 10 wt % lactic acid nitrile aqueous solution was injected upward from the bottom of the packed tower at a flow rate of 2.5 g/Hr using a metering pump, and the reaction liquid flowing out from the top was collected by cooling. Analysis of the collected solution revealed that the conversion rate of lactic acid nitrile was 90% and the selectivity to lactic acid amide was 82%.

Claims (1)

【特許請求の範囲】[Claims] 1 乳酸ニトリルの水溶液を30〜200℃の温度
で、二酸化マンガンと接触させることを特徴とす
る乳酸アミドの製造方法。
1. A method for producing lactic acid amide, which comprises bringing an aqueous solution of lactic acid nitrile into contact with manganese dioxide at a temperature of 30 to 200°C.
JP15927078A 1978-12-26 1978-12-26 Preparation of lactamide Granted JPS5587749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15927078A JPS5587749A (en) 1978-12-26 1978-12-26 Preparation of lactamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15927078A JPS5587749A (en) 1978-12-26 1978-12-26 Preparation of lactamide

Publications (2)

Publication Number Publication Date
JPS5587749A JPS5587749A (en) 1980-07-02
JPS6147822B2 true JPS6147822B2 (en) 1986-10-21

Family

ID=15690095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15927078A Granted JPS5587749A (en) 1978-12-26 1978-12-26 Preparation of lactamide

Country Status (1)

Country Link
JP (1) JPS5587749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691130B2 (en) 2003-06-19 2014-04-08 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104543922A (en) * 2014-12-31 2015-04-29 南通双和食品有限公司 Food acidulant and preparing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691130B2 (en) 2003-06-19 2014-04-08 Eastman Chemical Company Process of making water-dispersible multicomponent fibers from sulfopolyesters
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate

Also Published As

Publication number Publication date
JPS5587749A (en) 1980-07-02

Similar Documents

Publication Publication Date Title
JPH0348638A (en) Production of methyl methacrylate
CN110088085B (en) Method for producing methionine
JPS6147822B2 (en)
US4242525A (en) Process for producing salts of pyruvic acid
CN112479171B (en) Metal phosphate, preparation method thereof and application thereof in catalytic esterification reaction
JPS5851936B2 (en) Ethanol manufacturing method
US3994973A (en) Catalysts for the hydration of nitriles to amides
US4895985A (en) Preparation of cyclopentanone
JPS6251269B2 (en)
JPH01290653A (en) Production of methyl methacrylate
JPH0546253B2 (en)
CN114436803B (en) Preparation method of 3- (4-chlorophenyl) -1, 5-diphenylpentane-1, 5-dione compound
JP2581759B2 (en) Method for producing adipic acid
RU2063961C1 (en) Method of formamide synthesis
JPH0798785B2 (en) Method for producing oximes
JPS58146562A (en) Preparation of indoline
JPH0366644A (en) Production of methyl methacrylate
JPH02121946A (en) Continuous production of succinic acid
JPH0248543B2 (en)
JPS60197646A (en) Preparation of dl-asparagine
US6504055B1 (en) Catalysts and processes for the conversion of succinates to citraconates or itaconates
JPS58120507A (en) Continuous manufacture of hydrazine
JPH07233122A (en) Production of lactic acid ester
CN115650997A (en) One-dimensional chain Cu (II) complex, preparation method thereof and application of one-dimensional chain Cu (II) complex in catalytic conversion of carbon dioxide
CN1155575C (en) Production process of heterocyclic nitrile