JPS6147811B2 - - Google Patents

Info

Publication number
JPS6147811B2
JPS6147811B2 JP54011809A JP1180979A JPS6147811B2 JP S6147811 B2 JPS6147811 B2 JP S6147811B2 JP 54011809 A JP54011809 A JP 54011809A JP 1180979 A JP1180979 A JP 1180979A JP S6147811 B2 JPS6147811 B2 JP S6147811B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
rhodium
group
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54011809A
Other languages
Japanese (ja)
Other versions
JPS54115325A (en
Inventor
Kurutei Fuiritsupu
Razareuitsuchi Rabinoitsuchi Georugii
Nosonoichi Masuryansukii Gudaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANSUCHICHU FURANSE DEYU PETOROORU
Original Assignee
ANSUCHICHU FURANSE DEYU PETOROORU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANSUCHICHU FURANSE DEYU PETOROORU filed Critical ANSUCHICHU FURANSE DEYU PETOROORU
Publication of JPS54115325A publication Critical patent/JPS54115325A/en
Publication of JPS6147811B2 publication Critical patent/JPS6147811B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/20Hydrogen being formed in situ, e.g. from steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アンステイテユ・フランセ・デユ・
ペトロール(Institut Francais du Petrole)と
ソビエト連邦石油精製・石油化学省VN
Neftekhin(レニングラード)の双方の研究室に
おける共同開発によるものであり、トルエン及び
その他のアルキルベンゼン類の脱アルキル化によ
つてベンゼンあるいはその低級同族体を製造する
ための水蒸気による脱アルキル化法に関する。 芳香族炭化水素の水蒸気による脱アルキル化用
触媒としては、多孔質担体と、担体に担持せしめ
た少なくとも1種の金属を含む多くのものが提案
されている。その例としては下記のものを挙げる
ことができる。即ち、 ソ連特許第213776号によれば、触媒はロジウ
ム、ニツケル及びアルミナを含んでいる。 米国特許第3595932号によれば、触媒は、アル
ミナあるいはアルミナとニツケルもしくはコバル
トの組合わせより成る担体上の白金族の1種の貴
金族(白金、パラジウム、ロジウム、イリジウ
ム、リチウム)を含んでいる。 米国特許第3436433号によれば、触媒はアルミ
ナ、1種のアルカリ金属、酸化第二鉄、ロジウム
及びクロムを含んでいる。 米国特許第3649706号及び同第3649707号によれ
ば、触媒は1種のアルカリ金属と、酸化第二鉄
と、クロムと、白金、パラジウム及びロジウムの
中より選んだ1種の金属との混合物を含んでい
る。 ドイツ特許出願第2262000号によれば、触媒は
アルミナ、酸化ウラン及びロジウムを含んでい
る。 米国特許第4013734号によれば、触媒はアルミ
ナ、白金族の1種の貴金属及びバナジウム、ニオ
ブ及びタンタルを含んでいる。 フランス特許第2317962号によれば、触媒はア
ルミナあるいはアルミノ珪酸塩ならびにロジウム
及び第A族の1種の金属、特に錫を含んでい
る。 現在用いられている触媒は、活性の面において
はかなり良好な性能を示しているが、一方におい
て、その安定性は十分ではないし、他方におい
て、その選択特異性は十分に高くはない。事実、
アルキル芳香族化合物のベンゼンへの転化に伴つ
て、芳香族核のハイドロクラツキング及び/又は
スチームクラツキング副反応が見られ、これは、
CO,CO2,CH4の如き望ましからざるガスの生
成を惹起し、水素収率及び芳香族化合物収率に不
利をもたらすものである。 本発明は、これらの重大な不都合を除去し、安
定な触媒の選択によつて最終生成物の収率の向上
を可能にする方法を提案ることを目的としてい
る。 この目的は、アルキルベンゼン類(トルエン、
キシレン等……)を特定の触媒の存在下において
水蒸気によつて転化して脱アルキル化し、ベンゼ
ン及び/あるいはその低級同族体を製造すること
によつて達せられる。 一般に、300乃至600℃望ましくは350乃至550℃
の温度と、1乃至20気圧望ましくは3乃至10気圧
に含まれる圧力下において、触媒容量1について
1時間あたり炭化水素容量0.1乃至10望ましくは
1乃至5の間に含まれるLHSV(「液体空間速
度」)即ち液体V.V.H.(空間速度)と、1乃至20
望ましくは3乃至15の間に含まれるH2O/炭化水
素比(モル)以て操作を行う。 この工程の過程において、ベンゼンの如き全脱
アルキル化物も、また、例えば、キシレンからト
ルエンの如き部分的脱アルキル化物も得られる。 なお、明確に云えば、本法によれば、ベンゼ
ン、トルエン、キシレン、エチルベンゼン及び大
量の水素を得ることができる。本法によれば、例
えば、トルエン、キシレン、エチルベンゼン、プ
ロピルベンゼン、あるいはさらに、ナフタレン、
フエナントレン、アントラセン等……の如き縮合
環を有する炭化水素をも脱アルキル化することが
できる。メシチレン、プソイドクメン、ヘミメリ
テンをも挙げることができる。また、本法によれ
ば、アルキルシクロヘキサン、アルキルテトラリ
ン、アルキルデカリン及びアルキルジヒドロアン
トラセンの如き炭化水素を芳香族化し、次いでこ
れを脱アルキル化することもできる。 本法によれば、例えばピリジン誘導体の如き、
含窒芳香族化合物を脱アルキル化することもまた
できるが、この場合窒素はNH3あるいはN2形態で
除去される。 本法は、接触リフオーミング反応あるいは芳香
族炭化水素生成反応(芳香族化)において得られ
るアルキル芳香族炭化水素の脱アルキル化に際し
ても効果的である。 本発明による触媒を以てすれば、脱アルキル化
芳香族化合物についての高い収率(例えばベンゼ
ンの高い収率)を得ることができるが、同時に伴
う芳香族核の減少率は低い。また、容易に使用価
値を見出し得る水素リツチ反応性ガス(水素を容
量にして約30%乃至約70%含んでいる)を得るこ
とができる。さらに、最も苛酷な操作条件下にお
いてもすぐれた安定性を示すものである。 本発明において用いる特定の触媒は下記のもの
を含んでいる、即ち、 (a) 本質的にアルミナ(望ましくは50m2/g以
上、さらに詳細には80m2/g以上の比表面積を
有するもの)より成る担体。 (b) ルテニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム及び白金のうちより選ばれた
少なくとも1種の周期率表第族の貴金属0.1
乃至2重量% (c) 銅、銀及び金のうちより選ばれた少なくとも
1種の第B族の金属0.05乃至2重量%。銅及
び銀が最も望ましい金属である。 (d) リチウム、ナトリウム、カリウム、ルビジウ
ム及びセシウムのうちより選ばれた少なくとも
1種のアルカリ金属(第A族)0.01乃至5重
量%。一般にカリウムが望ましい金属である。 好んで用いられる触媒は、第族の金属を少な
くとも2種含んでいるものである。例えば、 ロジウム0.1乃至1重量%、及び 第族の他の1種の貴金属、望ましくはルテニ
ウムあるいはパラジウムあるいは白金0.2乃至1.5
重量%を含むものである。ロジウムは、触媒中に
含まれる第族金属の全重量の約20乃至80重量%
を占める。 もう1つの好ましい触媒は、 ロジウム 0.25乃至0.65重量% 銅 0.1乃至0.9重量%及び カリウム 0.5乃至3重量%を 含むのである。 さらにもう1つの好ましい触媒は、 ロジウム0.2乃至0.65重量%、ルテニウム、パ
ラジウム及び白金より成る群から選ばれた少なく
とも1種の貴金属0.10乃至0.90重量%、銅0.1乃至
1.9重量%及びカリウム0.5乃至3重量% を含むものである。 本発明による触媒の担体は、望ましくは、η―
立方晶系、γ―立方晶系、γ―正方晶系、x―立
方晶系、k―斜方晶系、θ―単斜晶系、δ―斜方
晶系及びρ―無定形のアルミナの中より選ばれ
る。 担体は50乃至400m2/g、望ましくは8.0乃至
350m2/gの間に含まれる比表面積、30乃至150
ml/100gの間に含まれる総細孔容積を有するも
のである。 触媒の製造方法は本発明の臨界的な特徴を成す
ものではないので、一切の既知の方法を用いても
よい。活性を有する各元素は、該活性元素の可溶
性塩の水溶液あるいは適当な溶媒の溶液からの含
浸によつて、同時にまたは別々に担体に担持され
る。 含浸は、乾式、即ち担体の細孔容積を等容積の
含浸液を以て満たし、次いで、必要に応じて熟成
せしめた後、前記の担体を乾燥する方法による
か、あるいは過剰量の含浸液を用い、担体の細孔
容積以上の容積の含浸液に前記担体を接触せし
め、含浸液中に含まれている金属イオンが担体上
にイオン交換反応によつて固着するに足る時間を
待つ方法のいずれかによつて、行うことができ
る。 前記可溶性金属塩としては次のものを挙げるこ
とができる。即ち、ハロゲン化物、硝酸塩、酢酸
塩、塩基性炭酸塩、蟻酸塩、蓚酸塩、クエン酸
塩、クロロ金属酸及びそのアンモニウム塩ならび
にアミン塩、前記の金属の少なくとも1種を、蓚
酸塩、クエン酸及びそのクエン酸塩、酒石酸及び
酒石酸塩、またはその他のポリ酸、アルコール
酸、アルコールアミン及びその塩、アセチルアセ
トネート等……とともに含む錯体である。 操作は、例えば、以下の如くに行い得る。即
ち、白金族(第族)の金属の少なくとも1種を
含む溶液を以て担体を含浸し、次いでこれを例え
ば100乃至250℃の間で少なくとも1時間乾燥し、
次いで加熱によつて活性化(少なくとも10容量%
の水素を含むガスの存在下において約300乃至500
℃の間で少なくとも1時間〓焼及び/又は約200
乃至500℃の間で少なくとも1時間還元)し、次
いで第B族の金属(Cu、Ag、Au)の少なくと
も1種、ならびに場合によつては第A族の金属
(Li、Na、K、Pb、Cs)の少なくとも1種を含
む溶液を以て含浸し、乾燥、次いで上記の如く〓
焼及び/又は還元を行い、次いでさらに必要に応
じてこれを第A族の金属(Li、Na、K、Pb、
Cs)の少なくとも1種を含む溶液を以て含浸
し、乾燥し、次いで上述の如く〓焼及び/又は還
元する。 また、例えば、第B族の金属(Cu、Ag、
Au)の少なくとも1種及び、場合によつては、
第A族の金属(Li、Na、k、Rb、Cs)の少な
くとも1種を含む溶液を以て担体を含浸し、次い
でこれを乾燥し、300乃至700℃の間で少なくとも
1時間〓焼して、担体のアルミナと第B族の金
属(Cu、Ag、Au)の少なくとも1種とも部分的
にあるいは全体的に結合せしめて、Al2O3nMmO
(n=1.2又は3、m=1又は2、M=Cu、Ag、
Au)なる式を有するアルミン酸塩型の混合酸化
物を形成することもできる。 また、前記の金属を含浸せしめた担体を、〓焼
後200乃至500℃で少なくとも1時間還元し、次い
で白金族(第族)の金属の少なくとも1種を含
む溶液を以てこれを含浸し、次いでこれを乾燥
し、前述の如く活性化及び/又は還元し、次い
で、さらに必要に応じて第A族の金属(Li、
Na、K、Rb、Cs)の少なくとも1種を含む溶液
を以て含浸し、乾燥し、次いで前述の如く〓焼及
び/又は還元を行うこともできる。 さらに、例えば、白金族(第族)の金属の少
なくとも1種と、第B族の金属(Cu、Ag、
Au)の少なくとも1種と、第A族の金属
(Li、Na、K、Rb、Cs)の少なくとも1種とを
含む溶液を調製し、この溶液を以て担体を含浸
し、次いでこれを乾燥し、上に示した条件に従つ
て〓焼及び/又は還元することもできる。 一般的に、乾燥は、例えば、約100℃次いで約
200℃において1時間あるいはそれ以上行い、加
熱による活性化は、窒素の存在下または酸素を含
むガスの存在下において、300乃至600℃で1時間
あるいはそれ以上行う。 還元は、水素を少なくとも10容量%含むガスの
存在下に200乃至400℃において1時間あるいはそ
れ以上行う。 望ましくは、脱アルキル化すべきアルキル芳香
族炭化水素との一切の接触を行う前に、100乃至
500℃において水素流によつて触媒の還元処理を
行う。 以下に記載する実施例は、限定的なものではな
いが、本発明の各種の態様を例示するのを目的と
している。 これらの実施例は、本発明による触媒の調製及
び水蒸気の存在下におけるトルエンの脱アルキル
化のための該触媒の利用に関する。この特定の炭
化水素が触媒の使用に対する限定を成すものでは
ない。この炭化水素は脱アルキル化に対する触媒
の活性及び選択性をテストするために選定したも
のであり、ちようどノルマル―ヘプタンがリフオ
ーミング触媒の性質テストするために、あるいは
エチルベンゼンが芳香族炭化水素の異性化触媒の
テストのために選ばれる如きものである。上に述
べた如く、アルキル芳香族炭化水素は極めて多種
多様のものを仕込物として用いることができる。 まず最初に、触媒AからKまでの調製について
記載する。但し、触媒A及びFは本発明によるも
のではない。 次に、トルエンのベンゼンへの脱アルキル化テ
スト反応において得た成積を第表及び第表に
示す。トルエンの転化率、ならびにベンゼン、キ
シレン及び副産物の収率はモル%で示してある。 テストの操作条件は下記の通りである。 仕込物:硫黄0.16重量ppmを含む99.85重量%
のトルエン 圧力:7気圧 L.H.S.V.:触媒容量1に対し1時間あたりト
ルエン1.5容量 H2O/トルエン:6モル/モル 初期活性は10時間操作後に測定 表によれば次のことがわかる。すなわち、第
B族の金属(Cu、Ag、Au)の少なくとも1種
を、第族の貴金属(Ru、Rh、Pd、Os、Ir、
Pt)の少なくとも1種及び第A族の金属(Li、
Na、K、Rb、Cs)の少なくとも1種より構成さ
れている1組の金属に添加すれば、少なくとも同
程度の活性を有する触媒が得られるが、さらに、
一層特殊性のある、換言すれば、与えられた転化
反応についてより以上に高いベンゼン収率を与え
る触媒を得ることができる(触媒A及びB、触媒
E及びFの比較)。 第表によれば、本発明における触媒(例えば
触媒B)が、比較のための触媒(例えば触媒A)
に比して、より以上に特異的でありながらも、経
済的に一層安定であることを示している。 実施例1(比較例) 80℃の恒温器(水蒸気圧=飽和圧)に入れて予
め湿気を与えた、直径1.2mm、長さ5乃至7mmの
押出成型物よりなり、比表面積260m2/g及び総
細孔容積58ml/100gのγ―立方晶系及びγ―正
方晶系アルミナの担体を用いる。 この担体100gを、三塩化ロジウムの形でロジ
ウム0.61g及び純塩酸(d20℃=1.19)4mlを含
む溶液120mlに浸漬して含浸せしめる。 溶液を除去した後(溶液中に塩化第一錫を加え
てもロジウムを検出しない。ロジウムが存在すれ
ば、特長のある赤色に着色するはずである)、触
媒を取し、100℃において2時間、次いで200℃
において2時間乾燥し、次に400℃の空気中にお
いて2時間活性化する。 さらに、容量55mlの硝酸カリウム水溶液の形で
カリウム1.1%を担体に含浸せしめ、次に100℃に
おいて2時間、次いで200℃において1時間乾燥
し、300℃において2時間水素ガス下で還元す
る。Rh0.6重量%及びK1重量%を含む触媒Aを得
る。 実施例 2 実施例1において用いた担体100gと、塩化第
二銅の形で銅0.41g及び純塩酸(d20℃=1.19)
0.5mlを含む溶液120mlと接触せしめる。3時間
後、銅は担体上において全部交換される。それか
ら担体を取し、100℃において1時間、次いで
150℃において2時間乾燥し、400℃で5時間空気
下において活性化する。それから触媒を、三塩化
物としてロジウム0.61g、硝酸塩してカリウム
1.1g、クエン酸1水塩1.5g及び純塩酸(d20
=1.19)2mlを含む溶液55mlを以て含浸せしめ
る。20℃において4時間焼成させた後、触媒を
120℃におて10時間乾燥し、次いで400℃で1時間
空気下において活性化し、終りに混合ガス(窒素
ガス0.8容、水素ガス0.2容)の存在下、350℃に
おいて2時間還元する。 得られる触媒(触媒B)はCu0.4重量%、
Rh0.6重量%及びK1重量%を含んでいる。 実施例 3 硝酸カリウムの水溶液に硝酸銀0.61gを加え
て、実施例1と同様に調製する。得られた触媒
C)はRh0.6重量%、Ag0.6重量及びK1重量%を
含んでいる。 実施例 4 硝酸カルウム水溶液に塩化金酸の形で金0.92g
を加え、溶液の全容量を依然として55mlとし、実
施例1と同様に調製する。含浸した触媒を前述の
如く乾燥し、次いで430℃において空気下2時間
活性化し、終わりに窒素ガス0.8容、水素ガス0.2
容の混合ガスの存在下において500℃で1時間還
元する。 得られた触媒(触媒D)はRh0.6重量%、
Au0.9重量%及びK1重量%を含んでいる。 実施例 5 60℃の恒温器(水蒸気圧=飽和圧)に入れて予
め湿気を与えた、0.8乃至1.5mmの間に含まれる直
径の球形で、比表面積240m2/g及び総細孔容積
55ml/100gのγ―立方晶系アルミナの市販品担
体を用いる。 この担体100gを、三塩化物としてロジウム
0.32g、塩化物としてパラジウム0.42g及び純塩
酸(d20℃=1.19)4mlを含む溶液100mlに浸漬
して含浸せしめる。溶液の除去後、Pd及びRhが
球状担体内において均一に分配されているのが認
められる。脱水後、含浸しめた担体を150℃にお
いて4時間乾燥し、次いで水素の存在下において
300℃で直接還元する。還元された触媒は、それ
から、塩化物として銅0.61g、クエン酸1水塩1
g及び硝酸塩としてカリウム1.6gを含む溶液50
mlを以て含浸せしめる。3時間熟成せしめ、150
℃において2時間乾燥した後、触媒を400℃にお
いて2時間活性化する。 Rh0.3重量%、Pd0.4重量%、Cu0.6重量%、
K1.55重量%を含む触媒Eを得る。 実施例6(比較例) 銅を除いて、実施例5と正確に同様の調製を行
う。 Rh0.3重量%、Pd0.4重量%、K1.55重量%を含
む触媒Fを得る。 実施例 7 実施例5に記載した担体を用いる。 60℃の恒温器に予め入れた担体100gを、三塩
化物としてロジウム0.42g、塩化白金酸して白金
0.42g及び純塩酸(d20℃=1.19)5mlを含む溶
液120ml中に浸漬して、含浸せしめる。溶液の除
去後、Pd及びPtが球状担体において均一に分配
されていることが認められる。脱水後、100℃に
おいて1時間、次いで200℃におて2時間乾燥
し、次に400℃において2時間〓焼する。それか
ら、触媒を、銅0.53g、銀0.11g及び硝酸塩して
カリウム1.6gを含む溶液50mlを以つて含浸せし
める。空気中において、3時間熟成せしめ、150
℃において2時間乾燥した後、触媒は400℃にお
いて2時間活性化、次いで350℃において水素下
2時間還元する。 Rh0.4重量%、Pt0.4重量%、Cu0.5重量%、
Ag0.1重量%及びK1.55重量%を含む触媒Gを得
る。 実施例 8 依然として実施例5に記載した担体を用いる。 70℃の恒温器に予め入れた担体100gに下記を
含む溶液54.5mlを乾式含浸せしめる。 Rh(RhCl3) 0.31g Ru(RuCl4) 0.41g Cu(CuCl2) 0.52g K(KNO3) 1.60g HCl(d=1.19) 4ml クエン酸1水塩 5g 4時間熟成せしめ、気流下において200℃で気
速に乾燥し(容積速度:触媒1容1時間あたり空
気2000容(TPN))、370℃において2時間〓焼
し、400℃において1時間(H2sec.)還元すれ
ば、Rh0.3重量%、Ru0.4重量%、Cu0.5重量%及
びK1.55重量%を含む触媒Hを得る。 実施例 9 70℃の恒温器に入れて予め湿気を与えた、0.8
乃至1.5mmの間に含まれる直径の球状物より成
り、比表面積260m2/g及び総細孔容積80ml/100
gを有するγ―立方晶系アルミナの市販品担体を
下記の如くに含浸せしめる。 担体100gを、ルテニウム0.83g、三塩化物と
してロジウム0.26g、純塩酸(d20℃=1.19)4
ml、エタノール30ml及びクエン酸1水塩5gを含
む溶液160mlと接触せしめる。溶液の除去後、Ru
及びRhが球状担体において均一に分配されてい
ることが認められる。脱水後、100℃において1
時間、200℃において3時間乾燥し、次いで380℃
において2時間〓焼し、窒素ガス0.8容、水素ガ
ス0.2容の混合ガスの存在下において400℃で5時
間還元する。 それから、触媒に銀0.93g及び硝酸塩としてカ
リウム1.60g(溶液容量75ml)を含浸せしめ、空
気中において1間熟成せしめ、200℃において乾
燥空気下で乾燥し、430℃において窒素下で2時
間活性化する。 Ru0.8重量%、Rh0.25重量%、Ag0.9重量%及
びK1.55重量%を含む触媒Jを得る。 実施例 10 銀0.93g及び硝酸塩としてカリウム1.60gを、
銅0.62g及び塩化物としてカリウム1.60gに代え
て、実施例9(触媒J)と同様に調製する。調製
法のその他の部分、乾燥及び熱による活性化の条
件は同一である。Ru0.8重量%、Rh0.25重量%、
Cu0.6重量%及びK1.55重量%を含む触媒Kを得
る。
The present invention
Petrole (Institut Francais du Petrole) and the Ministry of Petroleum Refining and Petrochemicals of the Soviet Union VN
A joint development between the two laboratories of Neftekhin (Leningrad) concerns a steam dealkylation process for the production of benzene or its lower congeners by dealkylation of toluene and other alkylbenzenes. Many catalysts have been proposed for dealkylating aromatic hydrocarbons with steam, including a porous carrier and at least one metal supported on the carrier. Examples include the following: Thus, according to USSR Patent No. 213776, the catalyst contains rhodium, nickel and alumina. According to US Pat. No. 3,595,932, the catalyst comprises a noble metal of the platinum group (platinum, palladium, rhodium, iridium, lithium) on a support consisting of alumina or a combination of alumina and nickel or cobalt. There is. According to US Pat. No. 3,436,433, the catalyst contains alumina, an alkali metal, ferric oxide, rhodium and chromium. According to U.S. Pat. Nos. 3,649,706 and 3,649,707, the catalyst comprises a mixture of an alkali metal, ferric oxide, chromium, and a metal selected from platinum, palladium, and rhodium. Contains. According to German Patent Application No. 2262000, the catalyst contains alumina, uranium oxide and rhodium. According to US Pat. No. 4,013,734, the catalyst contains alumina, a noble metal of the platinum group, and vanadium, niobium and tantalum. According to French Patent No. 2,317,962, the catalyst contains alumina or an aluminosilicate as well as rhodium and a metal of group A, especially tin. The currently used catalysts show fairly good performance in terms of activity, but on the one hand, their stability is not sufficient and, on the other hand, their selective specificity is not high enough. fact,
Along with the conversion of alkyl aromatic compounds to benzene, hydrocracking and/or steam cracking side reactions of aromatic nuclei are observed, which is caused by
This causes the formation of undesirable gases such as CO, CO 2 , and CH 4 , which is detrimental to hydrogen yield and aromatic compound yield. The present invention aims at proposing a process which eliminates these important disadvantages and makes it possible to increase the yield of the final product through the selection of stable catalysts. This purpose is based on alkylbenzenes (toluene,
This can be achieved by dealkylating xylene, etc.) with steam in the presence of a specific catalyst to produce benzene and/or its lower homologues. Generally 300 to 600℃, preferably 350 to 550℃
LHSV (Liquid Hourly Space Velocity) of 0.1 to 10 hydrocarbon volumes per hour per catalyst volume at a temperature of 1 to 20 atmospheres, preferably 3 to 10 atmospheres. ”) i.e. liquid VVH (space velocity) and 1 to 20
The operation is preferably carried out with a H 2 O/hydrocarbon ratio (mol) comprised between 3 and 15. During the course of this process, both fully dealkylated products such as benzene and also partially dealkylated products such as eg toluene from xylene are obtained. Specifically, according to this method, benzene, toluene, xylene, ethylbenzene and a large amount of hydrogen can be obtained. According to the present method, for example, toluene, xylene, ethylbenzene, propylbenzene, or even naphthalene,
Hydrocarbons having fused rings such as phenanthrene, anthracene, etc. can also be dealkylated. Mention may also be made of mesitylene, pseudocumene and hemimelitene. According to this method, hydrocarbons such as alkylcyclohexane, alkyltetralin, alkyldecalin, and alkyldihydroanthracene can also be aromatized and then dealkylated. According to this method, for example, pyridine derivatives,
It is also possible to dealkylate nitrogen-containing aromatics, in which case the nitrogen is removed in the form of NH 3 or N 2 . This method is also effective in dealkylating alkyl aromatic hydrocarbons obtained in catalytic reforming reactions or aromatic hydrocarbon production reactions (aromatization). With the catalyst according to the invention, high yields of dealkylated aromatic compounds (for example high yields of benzene) can be obtained, with a concomitant low rate of reduction of aromatic nuclei. In addition, a hydrogen-rich reactive gas (containing about 30% to about 70% hydrogen by volume) can be obtained that can be easily used. Furthermore, it exhibits excellent stability even under the harshest operating conditions. Particular catalysts for use in the present invention include: (a) essentially alumina (desirably having a specific surface area of 50 m 2 /g or more, more particularly 80 m 2 /g or more); A carrier consisting of (b) 0.1 of at least one noble metal from Group Group of the Periodic Table selected from ruthenium, rhodium, palladium, osmium, iridium, and platinum;
(c) 0.05 to 2% by weight of at least one Group B metal selected from copper, silver and gold. Copper and silver are the most preferred metals. (d) 0.01 to 5% by weight of at least one alkali metal (group A) selected from lithium, sodium, potassium, rubidium and cesium. Potassium is generally the preferred metal. Preferred catalysts are those containing at least two Group metals. For example, 0.1 to 1% by weight of rhodium, and one other noble metal of the group, preferably ruthenium or palladium or 0.2 to 1.5% of platinum.
This includes weight percent. Rhodium is approximately 20 to 80% by weight of the total weight of group metals contained in the catalyst.
occupies Another preferred catalyst contains 0.25-0.65% rhodium, 0.1-0.9% copper and 0.5-3% potassium. Yet another preferred catalyst includes 0.2 to 0.65% by weight of rhodium, 0.10 to 0.90% by weight of at least one noble metal selected from the group consisting of ruthenium, palladium and platinum, and 0.1 to 0.90% by weight of copper.
It contains 1.9% by weight and 0.5-3% by weight of potassium. The support for the catalyst according to the invention is preferably η-
cubic, γ-cubic, γ-tetragonal, x-cubic, k-orthorhombic, θ-monoclinic, δ-orthorhombic and ρ-amorphous alumina. Selected from among. The carrier has an area of 50 to 400 m 2 /g, preferably 8.0 to 400 m 2 /g.
Specific surface area included between 350m 2 /g, 30 to 150
with a total pore volume comprised between ml/100g. Since the method of manufacturing the catalyst does not form a critical feature of the invention, any known method may be used. Each active element is supported on the carrier simultaneously or separately by impregnation from an aqueous solution of a soluble salt of the active element or a solution of a suitable solvent. The impregnation can be carried out dryly, that is, by filling the pore volume of the carrier with an equal volume of impregnating liquid, and then, optionally aging, drying the carrier, or by using an excess amount of impregnating liquid. Either method involves contacting the carrier with an impregnating solution having a volume greater than the pore volume of the carrier, and waiting for sufficient time for the metal ions contained in the impregnating solution to adhere to the carrier by an ion exchange reaction. Therefore, it can be done. Examples of the soluble metal salts include the following. Namely, halides, nitrates, acetates, basic carbonates, formates, oxalates, citrates, chlorometallic acids and their ammonium salts and amine salts, at least one of the foregoing metals, in combination with oxalates, citric acids. and its citrate, tartaric acid, tartrate, or other polyacid, alcoholic acid, alcoholamine and its salt, acetylacetonate, etc.. The operation can be performed, for example, as follows. That is, a carrier is impregnated with a solution containing at least one metal of the platinum group (Group), and then dried for at least 1 hour at, for example, between 100 and 250°C.
then activated by heating (at least 10% by volume)
300 to 500 in the presence of a gas containing hydrogen.
Bake for at least 1 hour at between 200 °C and/or about 200 °C.
and 500°C for at least 1 hour) and then at least one group B metal (Cu, Ag, Au) and optionally a group A metal (Li, Na, K, Pb). , Cs), dried, and then as described above.
calcination and/or reduction, and then optionally further treated with Group A metals (Li, Na, K, Pb,
Cs), dried and then calcined and/or reduced as described above. Also, for example, group B metals (Cu, Ag,
At least one of Au) and optionally,
impregnating the support with a solution containing at least one group A metal (Li, Na, K, Rb, Cs), then drying it and calcining it for at least 1 hour between 300 and 700°C; Al 2 O 3 nMmO is partially or totally bonded to the alumina of the support and at least one group B metal (Cu, Ag, Au).
(n=1.2 or 3, m=1 or 2, M=Cu, Ag,
It is also possible to form mixed oxides of the aluminate type with the formula Au). Further, the carrier impregnated with the metal described above is reduced after calcination at 200 to 500°C for at least 1 hour, and then impregnated with a solution containing at least one metal of the platinum group (Group). dried, activated and/or reduced as described above, and then optionally further treated with Group A metals (Li,
It is also possible to impregnate with a solution containing at least one of Na, K, Rb, Cs), dry, and then sinter and/or reduce as described above. Further, for example, at least one metal of the platinum group (Group) and a metal of Group B (Cu, Ag,
Prepare a solution containing at least one metal (Au) and at least one group A metal (Li, Na, K, Rb, Cs), impregnate a carrier with this solution, and then dry it, It is also possible to calcinate and/or reduce according to the conditions indicated above. Generally, drying is carried out at, for example, about 100°C and then about
Activation by heating is performed at 200° C. for 1 hour or more, and activation by heating is performed at 300 to 600° C. for 1 hour or more in the presence of nitrogen or oxygen-containing gas. The reduction is carried out in the presence of a gas containing at least 10% by volume of hydrogen at 200-400°C for one hour or more. Preferably, before any contact with the alkyl aromatic hydrocarbon to be dealkylated,
The catalyst is reduced by a stream of hydrogen at 500°C. The examples described below are intended to illustrate, but not limit, various aspects of the invention. These examples relate to the preparation of a catalyst according to the invention and its use for the dealkylation of toluene in the presence of steam. This particular hydrocarbon does not constitute a limitation on the use of the catalyst. The hydrocarbons were selected to test the activity and selectivity of the catalyst for dealkylation, just as normal-heptane was used to test the properties of the reforming catalyst, or ethylbenzene was used to test the isomerization of aromatic hydrocarbons. It is the one chosen for testing catalysts. As stated above, a wide variety of alkyl aromatic hydrocarbons can be used as feedstock. First, the preparation of catalysts A to K will be described. However, catalysts A and F are not according to the present invention. Next, the products obtained in the test reaction of dealkylation of toluene to benzene are shown in Tables 1 and 2. Conversion of toluene and yield of benzene, xylene and by-products are given in mole %. The operating conditions for the test are as follows. Charge: 99.85% by weight containing 0.16 ppm by weight of sulfur
of toluene Pressure: 7 atm LHSV: 1.5 volumes of toluene per hour per 1 volume of catalyst H 2 O/toluene: 6 mol/mol Initial activity was determined after 10 hours of operation. According to the table, the following can be seen. That is, at least one group B metal (Cu, Ag, Au) is replaced with a group B noble metal (Ru, Rh, Pd, Os, Ir,
Pt) and at least one group A metal (Li,
If it is added to a set of metals consisting of at least one of Na, K, Rb, and Cs, a catalyst with at least the same level of activity can be obtained.
It is possible to obtain catalysts that are more specific, in other words give higher benzene yields for a given conversion reaction (comparison of catalysts A and B, catalysts E and F). According to the table, the catalyst in the present invention (for example, catalyst B) is different from the catalyst for comparison (for example, catalyst A).
This shows that while it is more specific, it is also economically more stable. Example 1 (comparative example) Consists of an extruded product with a diameter of 1.2 mm and a length of 5 to 7 mm, which was placed in a thermostat at 80°C (water vapor pressure = saturation pressure) and moistened in advance, and has a specific surface area of 260 m 2 /g. and a support of γ-cubic and γ-tetragonal alumina with a total pore volume of 58 ml/100 g. 100 g of this carrier are impregnated by immersion in 120 ml of a solution containing 0.61 g of rhodium in the form of rhodium trichloride and 4 ml of pure hydrochloric acid (d 20 ° C.=1.19). After removing the solution (no rhodium is detected even if stannous chloride is added to the solution; if rhodium is present, it should be colored a characteristic red color), the catalyst is removed and heated at 100°C for 2 hours. , then 200℃
for 2 hours, then activated in air at 400° C. for 2 hours. Furthermore, the carrier is impregnated with 1.1% potassium in the form of an aqueous solution of potassium nitrate in a volume of 55 ml, then dried at 100 DEG C. for 2 hours, then at 200 DEG C. for 1 hour and reduced under hydrogen gas at 300 DEG C. for 2 hours. Catalyst A is obtained containing 0.6% by weight of Rh and 1% by weight of K. Example 2 100 g of the carrier used in Example 1 and 0.41 g of copper in the form of cupric chloride and pure hydrochloric acid (d 20 °C = 1.19)
Contact with 120 ml of solution containing 0.5 ml. After 3 hours, the copper is completely exchanged on the support. The carrier was then removed and heated at 100°C for 1 hour.
Dry at 150°C for 2 hours and activate at 400°C for 5 hours in air. The catalyst was then combined with 0.61 g of rhodium as trichloride and potassium as nitrate.
1.1 g, citric acid monohydrate 1.5 g and pure hydrochloric acid (d 20 °C
= 1.19) Impregnate with 55 ml of a solution containing 2 ml. After calcination at 20℃ for 4 hours, the catalyst was
Drying at 120° C. for 10 hours, then activation at 400° C. for 1 hour under air and finally reduction for 2 hours at 350° C. in the presence of a mixed gas (0.8 vol. nitrogen gas, 0.2 vol. hydrogen gas). The resulting catalyst (catalyst B) contains 0.4% by weight of Cu,
Contains 0.6% Rh and 1% K by weight. Example 3 A solution is prepared in the same manner as in Example 1 by adding 0.61 g of silver nitrate to an aqueous solution of potassium nitrate. The catalyst C) obtained contains 0.6% by weight of Rh, 0.6% by weight of Ag and 1% by weight of K. Example 4 0.92 g of gold in the form of chloroauric acid in an aqueous potassium nitrate solution
is added, making the total volume of the solution still 55 ml and prepared as in Example 1. The impregnated catalyst was dried as described above and then activated at 430° C. for 2 hours under air, ending with 0.8 volumes of nitrogen gas and 0.2 volumes of hydrogen gas.
of the gas mixture for 1 hour at 500°C. The obtained catalyst (catalyst D) contained Rh0.6% by weight,
Contains 0.9% by weight of Au and 1% by weight of K. Example 5 A spherical shape with a diameter between 0.8 and 1.5 mm, with a specific surface area of 240 m 2 /g and a total pore volume, pre-humidified in a thermostat at 60°C (water vapor pressure = saturation pressure).
A commercially available support of 55 ml/100 g of γ-cubic alumina is used. 100g of this carrier was mixed with rhodium as trichloride.
It is impregnated by immersing it in 100 ml of a solution containing 0.32 g of palladium, 0.42 g of palladium as chloride, and 4 ml of pure hydrochloric acid (d 20 °C=1.19). After removing the solution, it is observed that Pd and Rh are evenly distributed within the spherical carrier. After dehydration, the impregnated support was dried for 4 hours at 150°C and then dried in the presence of hydrogen.
Direct reduction at 300℃. The reduced catalyst was then treated with 0.61 g of copper as chloride and 1 g of citric acid monohydrate.
g and a solution containing 1.6 g of potassium as nitrate 50
Impregnate with ml. Aged for 3 hours, 150
After drying for 2 hours at 400°C, the catalyst is activated for 2 hours. Rh0.3% by weight, Pd0.4% by weight, Cu0.6% by weight,
Catalyst E containing 1.55% by weight of K is obtained. Example 6 (Comparative) Preparation is carried out exactly as in Example 5, except for the copper. A catalyst F containing 0.3% by weight of Rh, 0.4% by weight of Pd, and 1.55% by weight of K is obtained. Example 7 The carrier described in Example 5 is used. 100g of carrier previously placed in a thermostat at 60°C was mixed with 0.42g of rhodium as trichloride and platinum as chloroplatinic acid.
It is impregnated by immersing it in 120 ml of a solution containing 0.42 g and 5 ml of pure hydrochloric acid (d 20 °C = 1.19). After removal of the solution, it is observed that Pd and Pt are uniformly distributed in the spherical carrier. After dehydration, it is dried at 100°C for 1 hour, then at 200°C for 2 hours, and then baked at 400°C for 2 hours. The catalyst is then impregnated with 50 ml of a solution containing 0.53 g copper, 0.11 g silver and 1.6 g potassium nitrate. Aged in air for 3 hours, 150
After drying for 2 hours at 0.degree. C., the catalyst is activated for 2 hours at 400.degree. C. and then reduced under hydrogen for 2 hours at 350.degree. Rh0.4% by weight, Pt0.4% by weight, Cu0.5% by weight,
Catalyst G containing 0.1% by weight of Ag and 1.55% by weight of K is obtained. Example 8 Still using the support described in Example 5. Dry impregnate 100 g of carrier previously placed in a 70°C thermostat with 54.5 ml of a solution containing the following. Rh (RhCl 3 ) 0.31 g Ru (RuCl 4 ) 0.41 g Cu (CuCl 2 ) 0.52 g K (KNO 3 ) 1.60 g HCl (d=1.19) 4 ml Citric acid monohydrate 5 g Aged for 4 hours, heated to 200 g under air flow If dried at air velocity at ℃ (volume rate: 2000 volumes of air per hour of catalyst volume (TPN)), calcined at 370℃ for 2 hours, and reduced at 400℃ for 1 hour (H 2 sec.), Rh0 A catalyst H is obtained which contains .3% by weight, 0.4% by weight of Ru, 0.5% by weight of Cu and 1.55% by weight of K. Example 9 0.8 which was placed in a thermostat at 70°C and moistened in advance
Consisting of spheres with diameters between 1.5 mm and 1.5 mm, specific surface area 260 m 2 /g and total pore volume 80 ml / 100
A commercially available support of γ-cubic alumina having a γ-cubic alumina is impregnated as follows. 100 g of carrier, 0.83 g of ruthenium, 0.26 g of rhodium as trichloride, pure hydrochloric acid (d 20 ℃ = 1.19) 4
ml, 30 ml of ethanol and 160 ml of a solution containing 5 g of citric acid monohydrate. After removing the solution, Ru
It is observed that and Rh are uniformly distributed in the spherical carrier. 1 at 100℃ after dehydration
Dry for 3 hours at 200℃, then 380℃
The mixture is calcined for 2 hours at 400° C. and reduced for 5 hours at 400° C. in the presence of a mixed gas of 0.8 volumes of nitrogen gas and 0.2 volumes of hydrogen gas. The catalyst was then impregnated with 0.93 g of silver and 1.60 g of potassium as nitrate (75 ml solution volume), aged in air for 1 hour, dried under dry air at 200°C and activated for 2 hours under nitrogen at 430°C. do. A catalyst J containing 0.8% by weight of Ru, 0.25% by weight of Rh, 0.9% by weight of Ag and 1.55% by weight of K is obtained. Example 10 0.93 g of silver and 1.60 g of potassium as nitrate,
Prepared as in Example 9 (Catalyst J), substituting 0.62 g of copper and 1.60 g of potassium as chloride. The rest of the preparation method, drying and thermal activation conditions are the same. Ru0.8% by weight, Rh0.25% by weight,
A catalyst K is obtained containing 0.6% by weight of Cu and 1.55% by weight of K.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アルミナ担体を包有し、かつ触媒に対して重
量にして、ルテニウム、ロジウム、パラジウム、
オスミウム、イリジウム及び白金のうちより選ば
れた少なくとも1種の第族の貴金属0.1乃至2
%と、銅、銀及び金のうちより選ばれた少なくと
も1種の第B族の金属0.05乃至2%と、リチウ
ム、ナトリウム、カリウム、ルビジウム及びセシ
ウムのうちより選ばれた少なくとも1種のアルカ
リ金属0.01乃至5%とを含有する触媒の存在下に
おける、少なくとも1種のアルキル芳香族炭化水
素を含む仕込物の水蒸気による脱アルキル化法。 2 第族の金属がロジウムであり、かつその含
量が触媒に対して重量にして0.1乃至1%であ
る、特許請求の範囲第1項記載の方法。 3 触媒が、ロジウムの他に、触媒に対して重量
にして0.2乃至1.5%のルテニウムを含んでいる、
特許請求の範囲第2項記載の方法。 4 触媒が、ロジウムの他に、触媒に対して重量
にして0.2乃至1.5%のパラジウムを含んでいる、
特許請求の範囲第2項記載の方法。 5 触媒が、ロジウムの他に、触媒に対して重量
にして0.2乃至1.5%の白金を含んでいる、特許請
求の範囲第2項記載の方法。 6 触媒に含まれる第B族の金属が銅あるいは
銀であり、触媒に含まれるアルカリ金属がカリウ
ムである、特許請求の範囲第1項記載の方法。 7 触媒が、重量にして、0.25乃至0.65%のロジ
ウムと、0.1乃至0.9%の銅と、0.5乃至3%のカリ
ウムとを含み、比表面積80m2/g以上のアルミナ
担体を包有する、特許請求の範囲第1項記載の方
法。 8 触媒が、重量にして、ロジウム0.20乃至0.65
%と、ルテニウム、パラジウム及び白金より成る
群から選ばれる少なくとも1種の貴金属0.10及至
0.90%と、銅0.1乃至1.9%と、カリウム0.5乃至3
%とを含み、比表面積80m2/g以上のアルミナ担
体を包有する、特許請求の範囲第1項記載の方
法。 9 トルエンのベンゼンへの水の存在下における
脱アルキル化反応のための、特許請求の範囲第1
項記載の方法。 10 接触リフオーミング流出液あるいは芳香族
炭化水素生成の流出液のアルキル芳香族炭化水素
の水の存在下における脱アルキル化反応のため
の、特許請求の範囲第1項記載の方法。
[Claims] 1 Contains an alumina carrier and contains ruthenium, rhodium, palladium,
At least one group noble metal selected from osmium, iridium, and platinum 0.1 to 2
%, 0.05 to 2% of at least one Group B metal selected from copper, silver and gold, and at least one alkali metal selected from lithium, sodium, potassium, rubidium and cesium. A process for the steam dealkylation of a feed comprising at least one alkyl aromatic hydrocarbon in the presence of a catalyst containing from 0.01 to 5%. 2. The process according to claim 1, wherein the Group 2 metal is rhodium and its content is from 0.1 to 1% by weight relative to the catalyst. 3. The catalyst contains, in addition to rhodium, ruthenium in an amount of 0.2 to 1.5% by weight based on the catalyst.
The method according to claim 2. 4. The catalyst contains, in addition to rhodium, palladium in an amount of 0.2 to 1.5% by weight based on the catalyst.
The method according to claim 2. 5. The method according to claim 2, wherein the catalyst contains, in addition to rhodium, 0.2 to 1.5% by weight of platinum based on the catalyst. 6. The method according to claim 1, wherein the Group B metal contained in the catalyst is copper or silver, and the alkali metal contained in the catalyst is potassium. 7. A patent claim in which the catalyst contains, by weight, 0.25 to 0.65% rhodium, 0.1 to 0.9% copper, and 0.5 to 3% potassium, and includes an alumina support with a specific surface area of 80 m 2 /g or more. The method described in item 1. 8 The catalyst contains 0.20 to 0.65 rhodium by weight.
% and at least one precious metal selected from the group consisting of ruthenium, palladium and platinum.
0.90%, copper 0.1-1.9%, potassium 0.5-3
% and a specific surface area of 80 m 2 /g or more. 9 Claim 1 for the dealkylation reaction of toluene to benzene in the presence of water
The method described in section. 10. A process according to claim 1 for the dealkylation reaction of an alkyl aromatic hydrocarbon of a catalytic reforming effluent or an effluent of aromatic hydrocarbon production in the presence of water.
JP1180979A 1978-02-03 1979-02-02 Dealkylation of aromatic hydrocarbon with steam Granted JPS54115325A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7803307A FR2416210A1 (en) 1978-02-03 1978-02-03 WATER VAPOR DESALKYLATION PROCESS OF ALKYLAROMATIC HYDROCARBONS

Publications (2)

Publication Number Publication Date
JPS54115325A JPS54115325A (en) 1979-09-07
JPS6147811B2 true JPS6147811B2 (en) 1986-10-21

Family

ID=9204266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180979A Granted JPS54115325A (en) 1978-02-03 1979-02-02 Dealkylation of aromatic hydrocarbon with steam

Country Status (8)

Country Link
JP (1) JPS54115325A (en)
BE (1) BE873818A (en)
DE (1) DE2903420A1 (en)
FR (1) FR2416210A1 (en)
GB (1) GB2016510B (en)
IT (1) IT1109900B (en)
NL (1) NL7900829A (en)
SU (1) SU950426A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2469204A1 (en) * 1979-11-12 1981-05-22 Inst Francais Du Petrole NEW WATER VAPOR DEALKYLATION CATALYSTS OF AROMATIC HYDROCARBONS
IT1254909B (en) * 1992-04-23 1995-10-11 PROCEDURE FOR THE PREPARATION OF A METAL CATALYST SUPPORTED FOR THE SELECTIVE HYDROGENATION OF HYDROCARBONS, CATALYST OBTAINED THROUGH THIS PROCEDURE AND PROCEDURE OF THE SELECTIVE HYDROGENATION OF HYDROCARBONS THAT USES SUCH CATALYST.
US5475173A (en) * 1994-07-19 1995-12-12 Phillips Petroleum Company Hydrogenation process and catalyst therefor
GB2408956A (en) * 2003-12-11 2005-06-15 Johnson Matthey Plc Reforming catalyst
DE102005053232A1 (en) * 2005-11-06 2007-05-10 Basf Ag Process for dealkylation of alkyl-substituted aromatic hydrocarbons with water vapor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1355344A (en) * 1970-08-06 1974-06-05 Ici Ltd Dealkylation of aromatic hydrocarbons
US3812196A (en) * 1970-11-30 1974-05-21 Mitsubishi Petrochemical Co Catalytic steam dealkylation
FR2254542B1 (en) * 1973-12-13 1976-05-14 Inst Francais Du Petrole
US3992468A (en) * 1974-03-01 1976-11-16 Institut Francais Du Petrole, Des Carburants Et Lubrifiants Et Entreprise De Recherches Et D'activities Petrolieres Elf Process for the catalytic hydrodealkylation of alkylaromatic hydrocarbons

Also Published As

Publication number Publication date
IT1109900B (en) 1985-12-23
GB2016510A (en) 1979-09-26
NL7900829A (en) 1979-08-07
FR2416210B1 (en) 1981-01-09
SU950426A1 (en) 1982-08-15
GB2016510B (en) 1982-06-09
IT7919840A0 (en) 1979-02-02
DE2903420A1 (en) 1979-08-09
FR2416210A1 (en) 1979-08-31
JPS54115325A (en) 1979-09-07
BE873818A (en) 1979-07-31

Similar Documents

Publication Publication Date Title
US6280608B1 (en) Layered catalyst composition and processes for preparing and using the composition
US4431750A (en) Platinum group metal catalyst on the surface of a support and a process for preparing same
KR100418161B1 (en) Supported Palladium Catalysts for Selective Contact Hydrogenation of Acetylene in Hydrocarbon Streams
US3692701A (en) Group viii metals on tin-containing supports dehydrogenation catalysts
AU2001217555B2 (en) Layered catalyst composition and processes for preparing and using the composition
US6858769B2 (en) Lithium aluminate layered catalyst and a selective oxidation process using the catalyst
AU2001217555A1 (en) Layered catalyst composition and processes for preparing and using the composition
US4199436A (en) Process for steam-dealkylating alkylaromatic hydrocarbons
JPS61141931A (en) Catalyst and selective hydrogenation method of acetylene
US3480531A (en) Hydrogenation of hydrocarbons with mixed tin and nickel catalyst
JPS6147811B2 (en)
CA1083122A (en) Process for applying a catalytically active coating on catalyst supports
US4199437A (en) Process for steam dealkylation of aromatic hydrocarbons
JP2563304B2 (en) Multi-stage zone naphtha reforming method
US4520223A (en) Dehydrogenation process
US3883419A (en) Process for preparing platinum-tin reforming catalysts and use thereof
CA1065270A (en) Shaped catalysts for naphtha reforming
US2498709A (en) Aromatization catalysts and the preparation thereof
US4049578A (en) Hydrocarbon conversion catalyst
US4138443A (en) Hydrodealkylation of alkylaromatic hydrocarbons
US4075255A (en) Steam dealkylation with hydrogen treated catalyst of groups I, VI B, VIII
US4407736A (en) Catalyst and process of preparing
EP0183861A1 (en) Indium-Containing Dehydrogenation Catalyst
US5954948A (en) Hydrocarbon conversion process using a sulfur tolerant catalyst
US4215018A (en) Steam dealkylation catalyst and a method for its activation