JPS6147603A - Manufacture of oxide permanent magnet - Google Patents

Manufacture of oxide permanent magnet

Info

Publication number
JPS6147603A
JPS6147603A JP59169813A JP16981384A JPS6147603A JP S6147603 A JPS6147603 A JP S6147603A JP 59169813 A JP59169813 A JP 59169813A JP 16981384 A JP16981384 A JP 16981384A JP S6147603 A JPS6147603 A JP S6147603A
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
oxide
silicon oxide
addition
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59169813A
Other languages
Japanese (ja)
Other versions
JPH0414484B2 (en
Inventor
Yuji Kaneko
裕治 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59169813A priority Critical patent/JPS6147603A/en
Publication of JPS6147603A publication Critical patent/JPS6147603A/en
Publication of JPH0414484B2 publication Critical patent/JPH0414484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To further refine and homogenize crystal particles and improve residual magnetic flux density and coersive force by individual addition or composite addition with silicon oxide of the aluminum hydroxide when the raw material powders are mixed. CONSTITUTION:When the raw material powders for permanent magnet mainly composed of iron oxide and strontium oxide are mixed, aluminum hydroxide of 0.15-6wt% or aluminum hydroxide of 0.15-6wt% and silicon oxide of 0.1- 0.6wt% are added. For example, after the addition, materials are temporarily baked at 1,200-1,350 deg.C and the pulverized to about 0.7-1mum in diameter. The powder is molded under the field of 8-10kOe and then sintered at 1,200- 1,250 deg.C. Thereby both residual magnetic flux density and coersive force of a parmanent magnet can be improved. Aluminum hydroxide is usually called gibbsite and is expressed by Al(OH)3 or Al2O3.3H2O. Moreover, the silicon oxide increases the supression effect for ferrite reaction with addition together with aluminum hydroxide.

Description

【発明の詳細な説明】 産業分野 この発明は、酸化物永久磁石、特に、 Sr0 ・ 6Fe203なる基本式で表される永久磁
石の製造方法の改良に係り、該永久磁石の残留磁束密度
(Br )と保磁力(1)−1c )を共に向上させる
ことかできる製造方法に関する。
Detailed Description of the Invention: Industrial Field The present invention relates to an improvement in a method for manufacturing an oxide permanent magnet, particularly a permanent magnet represented by the basic formula Sr0.6Fe203, and the residual magnetic flux density (Br) of the permanent magnet is improved. It relates to a manufacturing method that can improve both the magnetic field and the coercive force (1)-1c).

背景技術 酸化物永久磁石は、磁気特性が高い長所の他、安価な原
料による経済性の利点もあるため、電子機器等に広範囲
に用いられているが、特に回転機器用セグメントとして
使用する場合、電機子の回転に伴なう反磁界の影響を受
【づて磁力低下を招きやすい問題があり、残留磁束密度
(Sr )と保磁力(iHc )が共に高い高性能磁石
が切望されていた。
BACKGROUND TECHNOLOGY Oxide permanent magnets have the advantage of high magnetic properties as well as the economical advantage of inexpensive raw materials, so they are widely used in electronic equipment, etc. Especially when used as segments for rotating equipment, There is a problem that magnetic force tends to decrease due to the influence of demagnetizing field accompanying the rotation of the armature, and a high-performance magnet with both high residual magnetic flux density (Sr) and coercive force (iHc) has been desired.

そこで、酸化物永久磁石のなかでも高性能であるストロ
ンチウムフェライト磁石において、さらに高性能化を計
るため、主成分の酸化鉄と酸化ストロンチウムを所定割
合で配合し混合したのら、仮焼し、さらにこれを粉砕す
る際に、Cab。
Therefore, in order to further improve the performance of strontium ferrite magnets, which have high performance among oxide permanent magnets, the main components, iron oxide and strontium oxide, are mixed in a predetermined ratio, then calcined, and then When crushing this, Cab.

8203等の焼結促進剤やSj 02 、 M 203
等の結晶成長抑制剤を所要量添加したのち、磁界中成型
し、焼結する方法が取られていた。
Sintering accelerator such as 8203, Sj 02, M 203
The method used was to add a required amount of a crystal growth inhibitor such as, then mold in a magnetic field and sinter.

しかし、上記の結晶成長抑制剤は、保磁力(iHC)の
向上には有効である反面、焼結体の密度低下の要因とな
り、残留磁束密度(Br )を低下させることになり、
添加量を要求される性能に応じて選定していた。
However, while the above-mentioned crystal growth inhibitor is effective in improving the coercive force (iHC), it becomes a factor in reducing the density of the sintered body and reduces the residual magnetic flux density (Br).
The amount added was selected depending on the required performance.

すなわち、結晶の成長を抑制することと密度を高めるこ
とは相反する現象であり、従来方法では残留磁束密度(
Br )と保磁力(iHC)を共に向上させることが困
難であった。
In other words, suppressing crystal growth and increasing crystal density are contradictory phenomena, and in conventional methods, the residual magnetic flux density (
It was difficult to improve both Br) and coercive force (iHC).

発明の目的 この発明は、結晶の成長を抑制して微細化を計り、また
、密度を高めて、保磁力(iHc >と残留磁束密度(
Br )を共に向上させることができるストロンチウム
フェライト磁石の製造方法を目的としている。
Purpose of the Invention This invention suppresses the growth of crystals to achieve finer grain size, increases density, and improves coercive force (iHc > and residual magnetic flux density (
The object of the present invention is to provide a method for manufacturing a strontium ferrite magnet that can improve both Br ).

発明の構成と効果 本発明者は、結晶の微細化及び高密度を計り、保磁力(
iHc )と残留磁束密度(Br )を共に向上させる
ため、ストロンチウムフェライト磁石の製造方法の各工
程を詳細に検討した結果、仮焼後の結晶粒子が微細かつ
均質であれば、その後の工程で、粉砕、磁界中成型、焼
結を施し永久磁石に作製しても、上記結晶粒子の特徴を
保持して、磁気特性の向上に有効であることを知見し、
さらに、仮焼後の結晶粒子を微細で均質化するのに、永
久磁石原料粉末の混合時に、水酸化アルミニウム、また
は、水酸化アルミニウムと酸化珪素を添加することが有
効であることを知見した。
Structure and Effects of the Invention The present inventor has made the crystal finer and denser, and has improved the coercive force (
In order to improve both iHc) and residual magnetic flux density (Br), we carefully examined each step in the manufacturing method of strontium ferrite magnets and found that if the crystal grains after calcination are fine and homogeneous, then in the subsequent steps, It was discovered that even when a permanent magnet is made by pulverization, molding in a magnetic field, and sintering, the characteristics of the crystal grains described above are retained and it is effective in improving magnetic properties.
Furthermore, it has been found that it is effective to add aluminum hydroxide or aluminum hydroxide and silicon oxide when mixing the permanent magnet raw material powder to make the crystal grains fine and homogeneous after calcination.

すなわち、この発明は、ストロンチウムフェライト磁石
の製造方法において、酸化鉄と酸化ストロンチウムを主
成分とする永久磁石用原料粉末の混合時に、水酸化アル
ミニウム0.15 wt%〜6wt%、あるいは水酸化
アルミニウム0.15 wt%〜6wt%と酸化珪素0
.1wt%〜o、ewt%を添加することを特徴とする
酸化物永久磁石の製造方法であり、上記の添加後に、1
200℃〜1350℃で仮焼し、0.7ρ〜1p程度に
粉砕し、8 koe〜10 koθの磁界中成型し、1
200℃〜1250°Cで焼結して得た永久磁石の残留
磁束密度(Br )と保磁力(iHc>を共に向上させ
ることができる。
That is, the present invention provides a method for producing a strontium ferrite magnet, in which 0.15 wt% to 6 wt% of aluminum hydroxide, or 0.15 wt% to 6 wt% of aluminum hydroxide, or 0.15 wt% to 6 wt% of aluminum hydroxide, .15 wt% to 6 wt% and 0 silicon oxide
.. A method for producing an oxide permanent magnet characterized by adding 1 wt% to o, ewt%, and after the above addition, 1
Calcined at 200°C to 1350°C, crushed to about 0.7ρ to 1p, molded in a magnetic field of 8 koe to 10 koθ, 1
It is possible to improve both the residual magnetic flux density (Br) and the coercive force (iHc>) of a permanent magnet obtained by sintering at 200°C to 1250°C.

この発明における水酸化アルミニウムは、通常、キブサ
イトと称され、 #(OH)3またはAl2O3・ 3H20で表される
ものを使用するものである。
The aluminum hydroxide used in this invention is usually called kibsite and is represented by #(OH)3 or Al2O3.3H20.

この水酸化アルミニウムは、加熱とともに結晶水を放出
したのち、結晶変態を起して最終的に、900’C〜1
000℃でα−アルミナになるが、本発明の製造方法に
おいて、原料粉末の混合時に添加し、酸化鉄と酸化スト
ロンチウムとのフェライト化反応を開始する900℃付
近の原料粉末に、活性なα−アルミナを存在させるため
、アルミナの反応抑制効果とアルミナのストロンチウム
フェライト結晶格子中の酸化鉄との置換反応等の効果に
より、仮焼後の結晶粒子の微細かつ均質化を達成できる
と考えられる。
This aluminum hydroxide releases crystal water as it is heated, undergoes crystal transformation, and finally reaches a temperature of 90'C to 1
However, in the manufacturing method of the present invention, active α-alumina is added to the raw material powder at around 900°C, which is added when mixing the raw material powder and starts the ferrite reaction between iron oxide and strontium oxide. Due to the presence of alumina, it is thought that finer and more homogeneous crystal grains can be achieved after calcination due to the reaction suppression effect of alumina and the substitution reaction of alumina with iron oxide in the strontium ferrite crystal lattice.

また、酸化珪素は、水酸化アルミニウムと共に添加する
ことにより、フェライト化反応の抑制効果を増大させ、
しかも抑制効果を広範囲の温度域で維持させる効果を有
する゛。
In addition, by adding silicon oxide together with aluminum hydroxide, the effect of suppressing the ferritization reaction is increased,
Moreover, it has the effect of maintaining the suppressing effect over a wide temperature range.

限定理由 水酸化アルミニウムの単独添加及び複合添加の場合、0
.15 wt%未渦の添加では、仮焼後の結晶粒子がr
amかつ均質化する効果が十分でなく、また、6wt%
を越えると、σS(粉末の飽和磁化)が著しく低下する
ため、配向性等に支障を来たし、しいては残留磁束密度
の低下を招くので好ましくなく、0.15 wt%から
6wt%の範囲が適正であり、好ましくは0.5wt%
〜4wt%である。
Reason for limitation In case of single addition or combined addition of aluminum hydroxide, 0
.. When adding 15 wt% without vortex, the crystal grains after calcination were r
am and the homogenizing effect is not sufficient, and 6 wt%
If it exceeds 0.15 wt% to 6 wt%, it is not preferable because the σS (saturation magnetization of the powder) decreases significantly, which causes problems with the orientation, etc., and also causes a decrease in the residual magnetic flux density. Appropriate, preferably 0.5wt%
~4wt%.

水酸化アルミニウムと複合添加する酸化珪素は、0.1
wt%未満では、結晶成長抑制効果が期待できず、また
、0,6wt%を越えると、以上結晶粒成長を誘起し、
保磁力を低下させるため、0.1wt%〜0.6wt%
が好ましく、さらに好ましくは0.2wt%〜0.4w
t%である。
Silicon oxide added in combination with aluminum hydroxide is 0.1
If it is less than 0.6 wt%, no effect of suppressing crystal growth can be expected, and if it exceeds 0.6 wt%, more crystal grain growth will be induced.
0.1wt% to 0.6wt% to reduce coercive force
is preferable, more preferably 0.2wt% to 0.4w
t%.

なお、水酸化アルミニウムの単独または酸化珪素との複
合添加により、仮焼後の原料粉末には、アルミナが0.
1wt%〜4wt%、酸化珪素が0.1wt%〜0,6
wt%含有される。
Note that by adding aluminum hydroxide alone or in combination with silicon oxide, the raw material powder after calcination contains 0.0% alumina.
1 wt% to 4 wt%, silicon oxide 0.1 wt% to 0.6
Contains wt%.

この発明において、酸化ストロンチウムは、炭酸ストロ
ンチウム、硫酸ストロンチウムを加熱することにより、
酸化ストロンチウムを形成するストロンチウム化合物を
用いることが望ましく、また、酸化鉄との配合モル比は
、 FIl1203 /SrO(モル比)が5.5未満では
保磁力が十分でなく、また、6.2を越えると余剰のα
−N203が増加し、粒子の配向性あるいは焼結性に問
題を生じるため、5.5〜6.2が望ましい。
In this invention, strontium oxide is produced by heating strontium carbonate and strontium sulfate.
It is desirable to use a strontium compound that forms strontium oxide, and if the molar ratio of FIl1203/SrO (molar ratio) is less than 5.5, the coercive force will not be sufficient, and if the molar ratio is less than 6.2, If exceeded, the surplus α
-N203 increases, causing problems with particle orientation or sinterability, so 5.5 to 6.2 is desirable.

また、この発明による製造方法において、従来の焼結促
進剤や結晶成長抑制剤を併用することもできる。
Further, in the manufacturing method according to the present invention, conventional sintering accelerators and crystal growth inhibitors can also be used in combination.

実施例 Fe2O3/SrO(モル比)が6.0であるストロン
チウムノボ−ライト磁石用原料粉末に、第1表に示す添
加量で、水酸化アルミニウムの単独添加、または酸化珪
素との複合添加し、その後、1300℃×1時間の仮焼
を施し、さらにボールミルで平均粒度0.8虜まで粉砕
し、粉砕粉にCaOを添加いこの粉砕粉を8 kOeの
磁界中で成型し、得られた成形体を1250℃×1時間
の焼結を施して、この発明方法によるストロンチウムフ
ェライト磁石を得た。
Example: Aluminum hydroxide was added alone or in combination with silicon oxide in the amounts shown in Table 1 to a raw material powder for strontium novolite magnets having a molar ratio of Fe2O3/SrO of 6.0. Thereafter, it was calcined at 1300°C for 1 hour, and further ground in a ball mill to an average particle size of 0.8 kOe. CaO was added to the ground powder, and the ground powder was molded in a magnetic field of 8 kOe. The body was sintered at 1250° C. for 1 hour to obtain a strontium ferrite magnet according to the method of the present invention.

また、水酸化アルミニウムまたは酸化珪素の添加を行な
わず、仮焼後の粉砕粉に#203とCaOを添加する以
外は、上記と同条件の従来製造法によるストロンチウム
フェライト磁石を製造した。
In addition, a strontium ferrite magnet was manufactured by the conventional manufacturing method under the same conditions as above, except that no aluminum hydroxide or silicon oxide was added, and #203 and CaO were added to the pulverized powder after calcining.

得られた永久磁石の磁気特性を測定し、第1表に示す。The magnetic properties of the obtained permanent magnet were measured and are shown in Table 1.

なお、仮焼後の粉末の保磁力も測定し、第1表に合せて
示す。
The coercive force of the powder after calcination was also measured and shown in Table 1.

第1表の結果から明らかなように、原料粉末の混合時に
、水酸化アルミニウムの単独添加、または酸化珪素との
複合添加を行なう本発明製造法によるストロンチウム永
久磁石は、従来製造法による永久磁石と比較して、結晶
粒子の微細化と均質化が計られ、残留磁束密度と保磁力
が共に向上していることが分る。
As is clear from the results in Table 1, the strontium permanent magnet produced by the production method of the present invention, in which aluminum hydroxide is added alone or in combination with silicon oxide when mixing raw material powder, is different from the permanent magnet produced by the conventional production method. In comparison, it can be seen that the crystal grains have been made finer and more homogeneous, and both the residual magnetic flux density and coercive force have improved.

以下余白Margin below

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄と酸化ストロンチウムを主成分とする永久磁
石用原料粉末の混合時に、水酸化アルミニウム0.15
wt%〜6wt%、あるいは水酸化アルミニウム0.1
5wt%〜6wt%と酸化珪素0.1wt%〜0.6w
t%を添加することを特徴とする酸化物永久磁石の製造
方法。
1 When mixing raw material powder for permanent magnets containing iron oxide and strontium oxide as main components, 0.15% of aluminum hydroxide
wt% to 6wt%, or aluminum hydroxide 0.1
5wt%~6wt% and silicon oxide 0.1wt%~0.6w
A method for producing an oxide permanent magnet, characterized by adding t%.
JP59169813A 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet Granted JPS6147603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169813A JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169813A JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Publications (2)

Publication Number Publication Date
JPS6147603A true JPS6147603A (en) 1986-03-08
JPH0414484B2 JPH0414484B2 (en) 1992-03-13

Family

ID=15893372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169813A Granted JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS6147603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877504A (en) * 1981-11-02 1983-05-10 Kawasaki Steel Corp Production of metallic magnetic powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877504A (en) * 1981-11-02 1983-05-10 Kawasaki Steel Corp Production of metallic magnetic powder

Also Published As

Publication number Publication date
JPH0414484B2 (en) 1992-03-13

Similar Documents

Publication Publication Date Title
Ataie et al. Magnetic properties of hydrothermally synthesized strontium hexaferrite as a function of synthesis conditions
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JPS6147603A (en) Manufacture of oxide permanent magnet
JPS6131067B2 (en)
JPH05182820A (en) Manufacture of anisotropic ferrite magnet
JPH01112705A (en) Manufacture of oxide permanent magnet
CN112321292A (en) Method for manufacturing sintered ferrite pre-sintering material
JP2908631B2 (en) Manufacturing method of ferrite magnet
TWI766827B (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
JP2001085210A (en) Ferrite sintered magnet
JPH11307331A (en) Ferrite magnet
KR100538874B1 (en) High performance ferrite sintered magnet and producing method of the same
CN116120049B (en) Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application
Yamamoto et al. Effect of CaO and SiO/sub 2/additives on magnetic properties of SrZn/sub 2/-W type hexagonal ferrite
KR100521305B1 (en) Magnetoplumbite type ferrite particle, anisotropic sintered magnet, and producing method of the same
KR102610891B1 (en) Method for preparing ferrite sintered magnet
JPH0542128B2 (en)
JP3257536B2 (en) Composite ferrite magnet material
JPH0661029A (en) Manufacture of oxide permanent magnet
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JP2006001752A (en) Method for production of ferrite magnetic material
JPH01112706A (en) Manufacture of oxide permanent magnet
CN115849894A (en) High-magnetic-property permanent magnetic ferrite material and preparation method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term