JPH0414484B2 - - Google Patents

Info

Publication number
JPH0414484B2
JPH0414484B2 JP59169813A JP16981384A JPH0414484B2 JP H0414484 B2 JPH0414484 B2 JP H0414484B2 JP 59169813 A JP59169813 A JP 59169813A JP 16981384 A JP16981384 A JP 16981384A JP H0414484 B2 JPH0414484 B2 JP H0414484B2
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
oxide
strontium
coercive force
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59169813A
Other languages
Japanese (ja)
Other versions
JPS6147603A (en
Inventor
Juji Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59169813A priority Critical patent/JPS6147603A/en
Publication of JPS6147603A publication Critical patent/JPS6147603A/en
Publication of JPH0414484B2 publication Critical patent/JPH0414484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業分野 この発明は、酸化物永久磁石、特に、SrO・
6Fe2O3なる基本式で表される永久磁石の製造方
法の改良に係り、該永久磁石の残留磁束密度Br
と保磁力iHcを共に向上させることができる製造
方法に関する。 背景技術 酸化物永久磁石は、磁気特性が高い長所の他、
安価な原料による経済性の利点もあるため、電子
機器等に広範囲に用いられているが、特に回転機
器用セグメントとして使用する場合、電機子の回
転に伴なう反磁界の影響を受けて磁力低下を招き
やすい問題があり、残留磁束密度Brと保磁力iHc
が共に高い高性能磁石が切望されていた。 そこで、酸化物永久磁石のなかでも高性能であ
るストロンチウムフエライト磁石において、さら
に高性能化を計るため、主成分の酸化鉄と酸化ス
トロンチウムを所定割合で配合し混合したのち、
仮焼し、さらにこれを粉砕する際に、GaO,
B2O3等の焼結促進剤やSiO2,Al2O3等の結晶成
長抑制剤を所要量添加したのち、磁界中成型し、
焼結する方法が取られていた。 しかし、上記の結晶成長抑制剤は、保磁力iHc
の向上には有効である反面、焼結体の密度低下の
要因となり、残留磁束密度Brを低下させること
になり、添加量を要求される性能に応じて選定し
ていた。 すなわち、結晶の成長を抑制することと密度を
高めることは相反する現象であり、従来方法では
残留磁束密度Brと保磁力iHcを共に向上させるこ
とが困難であつた。 発明の目的 この発明は、結晶の成長を抑制して微細化を計
り、また、密度を高めて、保磁力iHcと残留磁束
密度Brを共に向上させることができるストロン
チウムフエライト磁石の製造方法を目的としてい
る。 発明の構成と効果 本発明者は、結晶の微細化及び高密度化を計
り、保磁力iHcと残留磁束密度Brを共に向上させ
るため、ストロンチウムフエライト磁石の製造方
法の各工程を詳細に検討した結果、仮焼後の結晶
粒子が微細かつ均質であれば、その後の工程で、
粉砕、磁界中成型、焼結を施し永久磁石に作製し
ても、上記結晶粒子の特徴を保持して、磁気特性
の向上に有効であることを知見し、さらに、仮焼
後の結晶粒子を微細で均質化するのに、永久磁石
原料粉末の混合時に、水酸化アルミニウム、また
は、水酸化アルミニウムと酸化珪素を添加するこ
とが有効であることを知見した。 すなわち、この発明は、ストロンチウムフエラ
イト磁石の製造方法において、酸化鉄と酸化スト
ロンチウムを主成分とする永久磁石原料粉末の混
合時に、水酸化アルミニウム0.15wt%〜6wt%、
あるいは水酸化アルミニウム0.15wt%〜6wt%と
酸化珪素0.1wt%〜0.6wt%を添加し、その後仮焼
することを特徴とする酸化物永久磁石の製造方法
であり、工業的な量産に際しては上記の添加後
に、通常1200℃〜1350℃で仮焼するとともに、さ
らに、0.7μm〜1μm程度に粉砕し、8kOe〜
10kOeの磁界中成型し、1200℃〜1250℃で焼結し
て得た永久磁石の残留磁束密度Brと保磁力iHcを
共に向上させることができる。 この発明における水酸化アルミニウムは、通
常、キブサイトと称され、 Al(OH)3またはAl2O3・3H2Oで表されるもの
を使用するものである。 この水酸化アルミニウムは、加熱とともに結晶
水を放出したのち、結晶変態を起して最終的に、
900℃〜1000℃でα−アルミナになるが、本発明
の製造方法において、原料粉末の混合時に添加
し、酸化鉄と酸化ストロンチウムとのフエライト
化反応を開始する900℃付近の原料粉末に、活性
なα−アルミナを存在させるため、アルミナの反
応抑制効果とアルミナのストロンチウムフエライ
ト結晶格子中の酸化鉄との置換反応等の効果によ
り、本来、SrO・6Fe2O3なる基本式で示される
該磁石の仮焼後の原料を、SrO・6{(Fe2O31-X
(Al2O3X}の形とし、当該仮焼後の結晶粒子の
微細化かつ均質化を達成できると考えられる。 また、酸化珪素は、水酸化アルミニウムと共に
添加することにより、フエライト化反応の抑制効
果を増大させ、しかも抑制効果を広範囲の温度域
で維持させる効果を有する。 限定理由 水酸化アルミニウムの単独添加及び複合添加の
場合、0.15wt%未満の添加では、仮焼後の結晶粒
子が微細かつ均質化する効果が十分でなく、ま
た、6wt%を越えると、σs(粉末の飽和磁化)が
著しく低下するため、配向性等に支障を来たし、
しいては残留磁束密度の低下を招くので好ましく
なく、0.15wt%から6wt%の範囲が適正であり、
好ましくは0.5wt%〜4wt%である。 水酸化アルミニウムと複合添加する酸化珪素
は、0.1wt%未満では、結晶成長抑制効果が期待
できず、また、0.6wt%を越えると、異常結晶粒
成長を誘起し、保磁力を低下させるため、0.1wt
%〜0.6wt%が好ましく、さらに好ましくは0.2wt
%〜0.4wt%である。 なお、水酸化アルミニウムの単独または酸化珪
素との複合添加により、仮焼後の原料粉末には、
アルミナが0.1wt%〜4wt%、酸化珪素が0.1wt%
〜0.6wt%含有される。 この発明において、酸化ストロンチウムは、炭
酸ストロンチウム、硫酸ストロンチウムを加熱す
ることにより、酸化ストロンチウムを形成するス
トロンチウム化合物を用いることが望ましく、ま
た、酸化鉄との配合モル比は、 Fe2O3/SrO(モル比)が5.5未満では保磁力が
十分でなく、また、6.2を越えると余剰のα−
Fe2O3が増加し、粒子の配向性あるいは焼結性に
問題を生じるため、5.5〜6.2が望ましい。 また、この発明による製造方法において、従来
の焼結促進剤や結晶成長抑制剤を併用することも
できる。 さらに仮焼温度については、前述のFe2O3
Al2O3との置換反応を達成するためには900℃以
上が望ましいが、工業量産規模での生産性を考慮
すると、通常1200℃〜1350で実施することが好ま
しい。 実施例 Fe2O3/SrO(モル比)が6.0であるストロンチ
ウムフエライト磁石用原料粉末に、第1表に示す
添加量で、水酸化アルミニウムの単独添加、また
は酸化珪素との複合添加し、その後、1300℃×1
時間の仮焼を施し、さらにボールミルで平均粒度
0.8μmまで粉砕し、粉砕粉にCaOを添加し、この
粉砕粉を8kOeの磁界中で成型し、得られた成形
体を1250℃×1時間の焼結を施して、この発明方
法によるストロンチウムフエライト磁石を得た。 また、水酸化アルミニウムまたは酸化珪素の添
加を行なわず、仮焼後の粉砕粉にAl2O3とCaOを
添加する以外は、上記と同条件の従来製造法によ
るストロンチウムフエライト磁石を製造した。 得られた永久磁石の磁気特性を測定し、第1表
に示す。なお、仮焼後の粉末の保磁力も測定し、
第1表に合せて示す。 第1表の結果から明らかなように、原料粉末の
混合時に、水酸化アルミニウムの単独添加、また
は酸化珪素との複合添加を行なう本発明製造法に
よるストロンチウム永久磁石は、従来製造法によ
る永久磁石と比較して、結晶粒子の微細化と均質
化が計られ、残留磁束密度と保磁力が共に向上し
ていることが分る。 【表】
[Detailed description of the invention] Industrial field This invention relates to oxide permanent magnets, particularly SrO.
Regarding the improvement of the manufacturing method of permanent magnets expressed by the basic formula 6Fe 2 O 3 , the residual magnetic flux density Br of the permanent magnets
The present invention relates to a manufacturing method that can improve both coercive force iHc and coercive force iHc. Background Art Oxide permanent magnets have the advantage of high magnetic properties as well as
Because it has the advantage of being economical due to its cheap raw materials, it is widely used in electronic devices, etc. However, when used as segments for rotating equipment, the magnetic force is affected by the demagnetizing field that accompanies the rotation of the armature. There is a problem that tends to cause a decrease in the residual magnetic flux density Br and coercive force iHc.
There was a strong need for a high-performance magnet with both high Therefore, in order to further improve the performance of strontium ferrite magnets, which have high performance among oxide permanent magnets, the main components, iron oxide and strontium oxide, were mixed in a predetermined ratio.
When calcining and pulverizing this, GaO,
After adding the required amount of sintering accelerators such as B 2 O 3 and crystal growth inhibitors such as SiO 2 and Al 2 O 3 , it is molded in a magnetic field.
A method of sintering was used. However, the above crystal growth inhibitors have a coercive force iHc
Although it is effective in improving the sintered body, it causes a decrease in the density of the sintered body and reduces the residual magnetic flux density Br, so the amount of addition has been selected depending on the required performance. That is, suppressing the growth of crystals and increasing the density are contradictory phenomena, and it has been difficult to increase both the residual magnetic flux density Br and the coercive force iHc using conventional methods. Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing a strontium ferrite magnet that can suppress crystal growth to achieve finer grain size, increase density, and improve both coercive force iHc and residual magnetic flux density Br. There is. Structure and Effects of the Invention The present inventor has conducted a detailed study on each step of a method for manufacturing a strontium ferrite magnet in order to improve both coercive force iHc and residual magnetic flux density Br by making crystals finer and denser. , if the crystal grains after calcination are fine and homogeneous, in the subsequent process,
It was discovered that even when a permanent magnet is made by crushing, molding in a magnetic field, and sintering, the characteristics of the crystal grains described above are retained and are effective in improving magnetic properties. It has been found that it is effective to add aluminum hydroxide or aluminum hydroxide and silicon oxide when mixing permanent magnet raw material powder to make it fine and homogeneous. That is, in the method of manufacturing a strontium ferrite magnet, the present invention includes 0.15 wt% to 6 wt% of aluminum hydroxide,
Alternatively, it is a method for producing oxide permanent magnets characterized by adding 0.15wt% to 6wt% of aluminum hydroxide and 0.1wt% to 0.6wt% of silicon oxide, and then calcining. After the addition of
It is possible to improve both the residual magnetic flux density Br and the coercive force iHc of a permanent magnet obtained by molding in a magnetic field of 10 kOe and sintering at 1200°C to 1250°C. The aluminum hydroxide used in this invention is usually called kibsite and is represented by Al(OH) 3 or Al 2 O 3 .3H 2 O. This aluminum hydroxide releases crystal water as it is heated, undergoes crystal transformation, and finally,
α-Alumina becomes α-alumina at 900°C to 1000°C, but in the production method of the present invention, it is added to the raw material powder at around 900°C when the ferrite reaction between iron oxide and strontium oxide is started by adding it when mixing the raw material powder. Due to the reaction suppression effect of alumina and the substitution reaction of alumina with iron oxide in the strontium ferrite crystal lattice, the magnet originally has the basic formula SrO 6Fe 2 O 3 . The raw material after calcination is SrO.6 {(Fe 2 O 3 ) 1-X
( Al 2 O 3 ) Furthermore, when silicon oxide is added together with aluminum hydroxide, it has the effect of increasing the suppressing effect on the ferrite reaction and maintaining the suppressing effect over a wide temperature range. Reason for limitation: When adding aluminum hydroxide alone or in combination, adding less than 0.15wt% will not have a sufficient effect of making the crystal grains fine and homogeneous after calcination, and if it exceeds 6wt%, σs ( The saturation magnetization of the powder decreases significantly, causing problems with orientation, etc.
This is not preferable because it causes a decrease in residual magnetic flux density, and a range of 0.15wt% to 6wt% is appropriate.
Preferably it is 0.5wt% to 4wt%. If silicon oxide is added in combination with aluminum hydroxide, less than 0.1wt%, no crystal growth suppressing effect can be expected, and if it exceeds 0.6wt%, it will induce abnormal grain growth and reduce coercive force. 0.1wt
%~0.6wt% is preferable, more preferably 0.2wt
%~0.4wt%. In addition, by adding aluminum hydroxide alone or in combination with silicon oxide, the raw material powder after calcination has the following properties:
Alumina 0.1wt%~4wt%, silicon oxide 0.1wt%
Contains ~0.6wt%. In this invention, the strontium oxide is preferably a strontium compound that forms strontium oxide by heating strontium carbonate or strontium sulfate, and the molar ratio with iron oxide is Fe 2 O 3 /SrO ( If the molar ratio) is less than 5.5, the coercive force will not be sufficient, and if it exceeds 6.2, there will be excess α-
A value of 5.5 to 6.2 is desirable because Fe 2 O 3 increases, causing problems with particle orientation or sinterability. Further, in the manufacturing method according to the present invention, conventional sintering accelerators and crystal growth inhibitors can also be used in combination. Furthermore, regarding the calcination temperature, the above-mentioned Fe 2 O 3 and
In order to achieve the substitution reaction with Al 2 O 3 , the temperature is preferably 900°C or higher, but in consideration of productivity on an industrial mass production scale, it is usually preferred to carry out the reaction at a temperature of 1200°C to 1350°C. Example Aluminum hydroxide was added alone or in combination with silicon oxide in the amounts shown in Table 1 to raw material powder for strontium ferrite magnets with a Fe 2 O 3 /SrO (molar ratio) of 6.0, and then , 1300℃×1
Calcinate for several hours and then use a ball mill to obtain an average grain size.
The powder was ground to 0.8 μm, CaO was added to the powder, the powder was molded in a magnetic field of 8 kOe, and the resulting molded body was sintered at 1250°C for 1 hour to produce strontium ferrite by the method of this invention. I got a magnet. In addition, a strontium ferrite magnet was manufactured by a conventional manufacturing method under the same conditions as above, except that aluminum hydroxide or silicon oxide was not added, and Al 2 O 3 and CaO were added to the pulverized powder after calcining. The magnetic properties of the obtained permanent magnet were measured and are shown in Table 1. In addition, the coercive force of the powder after calcination was also measured,
It is also shown in Table 1. As is clear from the results in Table 1, the strontium permanent magnet produced by the production method of the present invention, in which aluminum hydroxide is added alone or in combination with silicon oxide when mixing raw material powder, is different from the permanent magnet produced by the conventional production method. In comparison, it can be seen that the crystal grains have been made finer and more homogeneous, and both the residual magnetic flux density and coercive force have improved. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄と酸化ストロンチウムを主成分とする
永久磁石用原料粉末の混合時に、水酸化アルミニ
ウム0.15wt%〜6wt%、あるいは水酸化アルミニ
ウム0.15wt%〜6wt%と酸化珪素0.1wt%〜0.6wt
%を添加し、その後仮焼することを特徴とする酸
化物永久磁石の製造方法。
1 When mixing raw material powder for permanent magnets containing iron oxide and strontium oxide as main components, 0.15wt% to 6wt% of aluminum hydroxide, or 0.15wt% to 6wt% of aluminum hydroxide and 0.1wt% to 0.6wt of silicon oxide.
% and then calcining.
JP59169813A 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet Granted JPS6147603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59169813A JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59169813A JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Publications (2)

Publication Number Publication Date
JPS6147603A JPS6147603A (en) 1986-03-08
JPH0414484B2 true JPH0414484B2 (en) 1992-03-13

Family

ID=15893372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59169813A Granted JPS6147603A (en) 1984-08-13 1984-08-13 Manufacture of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS6147603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877504A (en) * 1981-11-02 1983-05-10 Kawasaki Steel Corp Production of metallic magnetic powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877504A (en) * 1981-11-02 1983-05-10 Kawasaki Steel Corp Production of metallic magnetic powder

Also Published As

Publication number Publication date
JPS6147603A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP3473606B1 (en) Ferrite sintered magnet
WO1999034376A1 (en) Ferrite magnet and process for producing the same
US11380466B2 (en) Ferrite sintered magnet
CN111362687A (en) Permanent magnetic ferrite and preparation method thereof
KR20060060709A (en) Ferrite magnetic material and ferrite sintered magnet
WO2000031756A1 (en) Ferrite magnet powder and magnet using said magnet powder, and method for preparing them
WO2001035424A1 (en) Ferrite magnet powder and magnet using the magnet powder, and method for preparing them
CN111747737A (en) Ferrite sintered magnet and rotary electric device provided with same
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JPH0414484B2 (en)
JPH01112705A (en) Manufacture of oxide permanent magnet
CN112321292A (en) Method for manufacturing sintered ferrite pre-sintering material
JPS6131067B2 (en)
KR100521305B1 (en) Magnetoplumbite type ferrite particle, anisotropic sintered magnet, and producing method of the same
KR20200090036A (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
KR102664651B1 (en) Method for preparing ferrite sintered magnet
JPH11307331A (en) Ferrite magnet
KR102610891B1 (en) Method for preparing ferrite sintered magnet
KR102406630B1 (en) Method for preparing ferrite sintered magnet and ferrite sintered magnet
JPH0542128B2 (en)
KR20170142758A (en) Ferrite magnetic material and ferrite sintered magnet
KR102588230B1 (en) Ferrite magnetic material and ferrite sintered magnet
JPH05275221A (en) Ferrite magnet and its manufacture
JP2006001752A (en) Method for production of ferrite magnetic material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term