JPS6146537B2 - - Google Patents

Info

Publication number
JPS6146537B2
JPS6146537B2 JP58132175A JP13217583A JPS6146537B2 JP S6146537 B2 JPS6146537 B2 JP S6146537B2 JP 58132175 A JP58132175 A JP 58132175A JP 13217583 A JP13217583 A JP 13217583A JP S6146537 B2 JPS6146537 B2 JP S6146537B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydride
composition
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58132175A
Other languages
Japanese (ja)
Other versions
JPS6024336A (en
Inventor
Akira Suzuki
Nobuyuki Nishinomya
Shuichiro Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58132175A priority Critical patent/JPS6024336A/en
Publication of JPS6024336A publication Critical patent/JPS6024336A/en
Publication of JPS6146537B2 publication Critical patent/JPS6146537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素貯蔵用合金に関し、より詳細には
比較的低温で水素の吸蔵と放出を繰り返し行うこ
とができる水素貯蔵用合金に関する。 本発明者等は先にジルコニウム、ニツケル、マ
ンガンを実質的に約1:1:1の原子比で含有す
る三元系合金ZrMnNiよりなる水素貯蔵用合金を
提案した(特開昭56―93846号)。 この合金は、水素を可逆的に吸蔵、放出するこ
とができ、結晶構造が立方晶でMgCu2型のラー
バス相である。 その後、本発明者等は引続きジルコニウム、ニ
ツケル、マンガン系の種々の三元合金について水
素化挙動を検討していたところ、一般式Zr
(NixMn1-x2で表される組成を有し、式中xが0
<x<0.8の範囲の数である合金が、比較的低温
で可逆的に水素を吸蔵、放出することができるこ
とを見出し、本発明を完成した。 一般式Zr(NixMn1-x2で表される組成を有
し、式中xが0<x<0.8の範囲の数である本発
明の水素貯蔵用合金は、その結晶構造が六方晶で
MgZn2型のラーバス相である。 x<0.8では、この合金は単一相で異相が存在
せず、水素を可逆的に良く吸蔵、放出する。 即ち、吸蔵した水素を放出した後は、元の六方
晶の単一相合金に戻り、水素吸蔵前と、放出後の
合金の構造変化は認められない。 ただしx=0.5の組成のときの水素化物の構造
は立方晶であり、水素吸蔵により合金の結晶構造
が転移している。 しかし、この立方晶は水素放出により、再び元
の六方晶に戻つている。 本発明の合金では、xが増加するにつれて合金
の格子が下記第1表に示す如く小さくなる。 即ち第1表は本発明の合金の格子定数を示し、
a0およびc0はそれぞれ結晶の単位格子のa軸およ
びc軸の長さ〔Å〕であり、Cは軸比でC=c0
a0であり、Vは単位格子の体積〔Å〕である。 x≧0.8ではX線回折によれば六方晶の合金相
のほかに、帰属不明の合金相の存在を示す回折線
が認められ、合金は単一相ではなく2相以上の混
合相である。 又、x≧0.8の合金でも水素吸蔵は示すが、水
素吸蔵した合金は六方晶の合金の他に帰属不明の
水素化物相を含み、しかもこの帰属不明の水素化
物は通常の温度での加熱では分解しない。 即ちx≧0.8の合金は一部不可逆的に水素の吸
蔵、放出を示す。 従つて水素貯蔵用合金に適した本発明の合金の
xの範囲は0<x<0.8である。 なお、x=0でも可逆的な水素吸蔵、放出がみ
られるが、この場合はZrMn系二成分系合金とな
り、本発明の合金の組成範囲外である。
The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy that can repeatedly absorb and release hydrogen at relatively low temperatures. The present inventors previously proposed a hydrogen storage alloy made of a ternary alloy ZrMnNi containing zirconium, nickel, and manganese in an atomic ratio of approximately 1:1:1 (Japanese Patent Application Laid-Open No. 56-93846). ). This alloy can reversibly absorb and release hydrogen, and its crystal structure is cubic and MgCu 2 type larvous phase. After that, the present inventors continued to study the hydrogenation behavior of various ternary alloys of zirconium, nickel, and manganese, and discovered that the general formula Zr
(Ni x Mn 1-x ) 2 , where x is 0
The present invention was completed based on the discovery that an alloy having a number in the range of <x<0.8 can reversibly absorb and release hydrogen at relatively low temperatures. The hydrogen storage alloy of the present invention has a composition represented by the general formula Zr(Ni x Mn 1-x ) 2 , where x is a number in the range of 0<x<0.8, and its crystal structure is hexagonal. With crystal
This is the larvous phase of MgZn type 2 . When x<0.8, this alloy has a single phase with no foreign phases, and reversibly absorbs and releases hydrogen well. That is, after the absorbed hydrogen is released, the alloy returns to the original hexagonal single-phase alloy, and no structural change is observed between the alloy before and after hydrogen storage. However, when the composition is x=0.5, the structure of the hydride is cubic, and the crystal structure of the alloy is transformed due to hydrogen absorption. However, this cubic crystal returns to its original hexagonal crystal due to hydrogen release. In the alloy of the present invention, as x increases, the lattice of the alloy becomes smaller as shown in Table 1 below. That is, Table 1 shows the lattice constants of the alloys of the present invention,
a 0 and c 0 are the lengths of the a-axis and c-axis of the unit cell of the crystal [Å], respectively, and C is the axial ratio, C=c 0 /
a 0 and V is the volume of the unit cell [Å 3 ]. When x≧0.8, in addition to a hexagonal alloy phase, diffraction lines indicating the presence of an alloy phase of unknown origin are observed by X-ray diffraction, and the alloy is not a single phase but a mixed phase of two or more phases. In addition, alloys with x≧0.8 also exhibit hydrogen storage, but the hydrogen-absorbing alloy contains a hydride phase of unknown origin in addition to the hexagonal alloy, and furthermore, this unidentified hydride does not absorb when heated at normal temperatures. Do not disassemble. That is, alloys with x≧0.8 partially absorb and release hydrogen irreversibly. Therefore, the range of x in the alloy of the present invention suitable as a hydrogen storage alloy is 0<x<0.8. Note that even when x=0, reversible hydrogen absorption and desorption is observed, but in this case, a ZrMn-based binary alloy is formed, which is outside the composition range of the alloy of the present invention.

【表】 本発明による合金は、例えばアルゴンのような
不活性ガスの雰囲気中で通常の合金製造法、例え
ば高周波炉を用いる方法、又はアークメルト法等
により原料金属を上記組成範囲で溶融して容易に
製造することができる。 この場合、使用する金属原料は97〜98%の工業
的品位のもので良いが、合金水素化物の有効水素
量を大きくすることを考慮すれば純度99%以上が
望ましい。 合金の製造操作によつては立方晶が出来る場合
もあるが、合金の熱処理等を行えば六方晶の単一
相を製造することができる。 得られた合金は、容易に粉砕することができ
る。 本発明の合金は最初の水素吸蔵にあたり、合金
の活性化操作、即ち高温で排気した後、室温や高
温で水素を吸蔵させる操作を繰り返す必要が殆ど
なく、合金を充填した容器内を室温で排気した
後、室温で水素を導入すれば直ちに水素の吸蔵が
行われる。 又、合金を微粉砕する必要もなく、インゴツト
のままでも水素を吸蔵するが、実用の水素化物容
器にはその容器に適した適当な大きさに粗砕して
充填する方式が用いられる。 水素を吸蔵した合金は水素化物を形成するが、
この水素化物を加熱または減圧すれば水素が放出
され、金属組織学的に再び元の合金にもどる。 即ち本発明の合金は、水素の吸蔵、放出を安定
して可逆的に行うことができる。 又、合金の水素化物の水素の解離平衡圧はxの
値を変化させることによつて変化させることがで
き、xが0に近づけば同一温度では低くなるが、
x=0の時のZrMn2のそれよりも高い。 x>0の時は、x=0の時に比較して解離平衡
圧のプラトー性が良い。 又、xが0.8に近づくと解離平衡圧は同一温度
では高くなる。従つてxを変化させることにより
実用的に必要な解離平衡圧を有する合金を設計す
ることが出来る。 以上述べたように、xが0.8>x>0の範囲に
あるZr(NixMn1-x2なる本発明の合金は特別な
活性化処理をする必要なしで水素を吸蔵し、可逆
的に水素を吸蔵、放出し、水素放出後は完全に元
の合金構造に戻る。 しかも、これら合金の水素化物の水素の解離圧
はxの値を小さくすれば低く、大きくすれば高く
なり、使用温度で望みの圧力の水素を得ることが
可能であり、目的に応じた合金の設計が可能であ
る。 実施例 1 純度99.7%のZr、99.9%のMn、99.8%のNiをZr
(Ni0.2Mn0.82なる組成になるように配合し、アー
クメルトを6回繰り返して上記組成の合金を製造
した。 この合金を大豆大に粗砕した後、耐圧容器に入
れ室温で真空回転ポンプで排気した後、室温で
0.05MPaの水素を導入したところ、直ちに水素を
吸蔵した。 即ち、この組成の合金は水素に対して活性であ
り、このような低圧の水素もよく吸蔵することが
できる。 水素を十分に吸蔵すれば合金は微粉砕され、室
温又は高温で真空排気しては水素導入を繰り返
す、所謂活性化操作を必要としない。 水素の吸蔵、放出を数回繰り返した後に測定し
たこの合金の水素化物の、373Kにおける水素の
解離圧等温線を第1図に、423Kにおけるそれを
第2図にそれぞれ曲線3で示す。 又、比較のために同一温度におけるZrMn2(曲
線4)、Zr(Ni0.5Mn0.52(曲線2、実施例2)お
よびZr(Ni0.8Mn0.22(曲線1、実施例3)の組
成の水素化物の同一温度における水素の解離圧等
温線を合せ示した。 これら第1図および第2図から明らかなよう
に、実施例1の組成の合金の水素化物の解離圧等
温線のプラトー性はZrMn2の水素化物のそれに比
較して極めて良く、この合金を水素貯蔵用合金と
して使用する場合に利用できる有効水素量の含有
率が高い。解離圧は373Kで約0.03MPa、423Kで
0.15MPaである。 X線回折によれば、この合金の水素化物は水素
放出後に完全に元の合金構造に戻つており、合金
の組成変化やZrH2などの生成は認められない。
即ち合金は可逆的に水素を吸蔵、放出することが
で、かつ繰り返し使用することができる。 実施例 2 実施例1と同純度の金属を用い、同様な製造方
法、またはアルゴン雰囲気での高周波炉によりZr
(Ni0.5Mn0.52なる組成の合金を製造した。 合金の熱処理はアルゴン雰囲気で約1200℃で約
3時間行つた。 この組成の合金を大豆大に粗砕したものも良く
水素を吸蔵した。前記第1図及び第2図に、この
合金の水素化物の水素の解離圧等温線を示す(曲
線2)。即ち、解離圧は373Kおよび423Kでそれ
ぞれ約0.4MPaおよび約1.5MPaであつた。これら
の値は、本発明者等が先に提案したジルコニウ
ム、ニツケル、マンガンを実質的に約1:1:1
の原子比で含有する三元系合金ZrMnNiによりな
る水素貯蔵用合金の水素化物の水素の解離圧とほ
とんど同じである。このZrMnNi合金の結晶構造
が立方晶で、その水素化物の結晶構造も立方晶で
ある。しかし、前記のように本発明の合金の結晶
構造は六方晶であり、ただx=0.5のときのみ水
素化物は立方晶である。同一構造と組成の水素化
物の水素解離圧が等しいことはうなづける。 この実施例2の合金Zr(Ni0.5Mn0.52は水素吸
蔵後に脱水素すれば、また元の六方晶に戻り、合
金は分相せずに繰り返し使用に耐えることが認め
られた。 又、この組成の合金の水素化物の水素の解離圧
は実施例1の合金Zr(Ni0.2Mn0.82の水素化物の
水素の解離圧よりも高い。 実施例 3 実施例1と同純度の金属を用い、同様な製造方
法でZr(Ni0.8Mn0.82なる組成の合金を製造し
た。 この合金はX線回折によれば、格子がかなり収
縮した六方晶のMgZn2型の結晶が大部分ではある
が、この他に同定不能の別の構造の相を含んでい
た。 この組成の合金を大豆大に粗砕したものも水素
吸蔵性を示した。 前記第1図および第2図にこの合金の水素化物
の水素の解離圧等温線を示す(曲線1)。 これらの図から明らかなように、この合金の水
素解離圧は373Kおよび423Kにおいて、Zr
(Ni0.2Mn0.82、Zr(Ni0.5Mn0.52のそれより極め
て高く、プラトー域を有しておらず、水素吸蔵量
も極めて少ない。 勿論、373Kより温度を下げれば水素吸蔵量が
大となり、水素の解離圧も低くなることが予想さ
れるが、水素吸蔵した合金を脱水素した合金のX
線解折によれば六方晶のMgZn2型の合金相の他に
同定不能の相が含まれており、しかもこの相は水
素吸蔵前の合金に含まれていた同定不能の相と異
なる相である。 従つてZr(Ni0.8Mn0.22の組織の合金ではxが
0.8>x>0.5の範囲の六方晶の金属間化合物相
と、同定下能の他の合金相を含んでいることが判
る。 そして可逆的に水素を吸蔵、放出できるのはx
が0.8>x>0.5の範囲の六方晶の金属間化合物で
ある。 しかも、この金属間化合物の水素化物の水素の
解離圧はx=0.5のZr(Ni0.5Mn0.52の水素化物の
それより高いことが予想される。
[Table] The alloy according to the present invention is produced by melting the raw material metal in the above composition range by a normal alloy manufacturing method, for example, a method using a high frequency furnace, or an arc melt method, in an atmosphere of an inert gas such as argon. Can be easily manufactured. In this case, the metal raw material used may be of industrial grade of 97 to 98%, but in consideration of increasing the effective hydrogen amount of the alloy hydride, a purity of 99% or more is desirable. Depending on the alloy manufacturing process, a cubic crystal may be formed, but if the alloy is heat-treated, a hexagonal single phase can be produced. The resulting alloy can be easily ground. The alloy of the present invention is used for the first hydrogen storage, and there is almost no need to repeat the activation operation of the alloy, that is, the operation of evacuating at high temperature, and then the operation of occluding hydrogen at room temperature or high temperature, and the inside of the container filled with the alloy is evacuated at room temperature. After that, if hydrogen is introduced at room temperature, hydrogen storage will occur immediately. Further, there is no need to finely crush the alloy, and hydrogen can be stored in the ingot form, but in practical hydride containers, a method is used in which the alloy is crushed to an appropriate size suitable for the container and then filled. Alloys that absorb hydrogen form hydrides, but
When this hydride is heated or depressurized, hydrogen is released and the metallographic structure returns to the original alloy. That is, the alloy of the present invention can stably and reversibly absorb and release hydrogen. Also, the dissociation equilibrium pressure of hydrogen in the alloy hydride can be changed by changing the value of x, and as x approaches 0, it becomes lower at the same temperature, but
higher than that of ZrMn 2 when x=0. When x>0, the plateau property of the dissociation equilibrium pressure is better than when x=0. Moreover, as x approaches 0.8, the dissociation equilibrium pressure becomes higher at the same temperature. Therefore, by changing x, it is possible to design an alloy having a practically required dissociation equilibrium pressure. As mentioned above, the Zr(Ni x Mn 1-x ) 2 alloy of the present invention, where x is in the range of 0.8>x>0, can absorb hydrogen without the need for special activation treatment and can be reversibly absorbs and releases hydrogen, and after releasing the hydrogen, it completely returns to its original alloy structure. Furthermore, the dissociation pressure of hydrogen in the hydrides of these alloys is lowered by decreasing the value of x, and higher by increasing it, making it possible to obtain hydrogen at the desired pressure at the operating temperature, and making it possible to create alloys that suit the purpose. Design is possible. Example 1 Zr with 99.7% purity, 99.9% Mn, and 99.8% Ni
(Ni 0.2 Mn 0.8 ) 2 and arc melting was repeated six times to produce an alloy with the above composition. After crushing this alloy into soybean-sized pieces, we put it in a pressure-resistant container and evacuated it with a vacuum rotary pump at room temperature.
When 0.05 MPa of hydrogen was introduced, hydrogen was immediately absorbed. That is, the alloy with this composition is active toward hydrogen and can absorb hydrogen well even at such low pressure. If sufficient hydrogen is absorbed, the alloy is finely pulverized, and there is no need for a so-called activation operation in which the alloy is evacuated at room temperature or high temperature and then repeatedly introduced with hydrogen. The hydrogen dissociation pressure isotherm at 373 K of the hydride of this alloy measured after repeated hydrogen absorption and desorption several times is shown in Fig. 1, and that at 423 K is shown as curve 3 in Fig. 2, respectively. For comparison, ZrMn 2 (Curve 4), Zr(Ni 0.5 Mn 0.5 ) 2 (Curve 2, Example 2) and Zr(Ni 0.8 Mn 0.2 ) 2 (Curve 2 ) at the same temperature were also used for comparison. The dissociation pressure isotherm of hydrogen at the same temperature for the hydride having the composition of Curve 1 and Example 3) is also shown. As is clear from these FIGS. 1 and 2, the plateau characteristic of the dissociation pressure isotherm of the hydride of the alloy having the composition of Example 1 is extremely good compared to that of the ZrMn 2 hydride. It has a high effective hydrogen content when used as a storage alloy. Dissociation pressure is approximately 0.03MPa at 373K, and approximately 0.03MPa at 423K.
It is 0.15MPa. According to X-ray diffraction, the hydride of this alloy completely returned to its original alloy structure after hydrogen release, and no change in alloy composition or generation of ZrH 2 was observed.
That is, the alloy can reversibly absorb and release hydrogen, and can be used repeatedly. Example 2 Using a metal of the same purity as in Example 1, Zr was produced using the same manufacturing method or a high frequency furnace in an argon atmosphere.
(Ni 0.5 Mn 0.5 ) An alloy with a composition of 2 was manufactured. The alloy was heat treated at about 1200° C. for about 3 hours in an argon atmosphere. An alloy with this composition crushed into soybean-sized pieces also absorbed hydrogen well. 1 and 2 show the hydrogen dissociation pressure isotherm of the hydride of this alloy (curve 2). That is, the dissociation pressures were about 0.4 MPa and about 1.5 MPa at 373K and 423K, respectively. These values are approximately 1:1:1 for zirconium, nickel, and manganese as previously proposed by the present inventors.
This is almost the same as the dissociation pressure of hydrogen in the hydride of a hydrogen storage alloy made of the ternary alloy ZrMnNi containing an atomic ratio of . The crystal structure of this ZrMnNi alloy is cubic, and the crystal structure of its hydride is also cubic. However, as mentioned above, the crystal structure of the alloy of the present invention is hexagonal, and only when x=0.5 the hydride is cubic. It is reasonable that hydrides with the same structure and composition have the same hydrogen dissociation pressure. When the alloy Zr(Ni 0.5 Mn 0.5 ) 2 of Example 2 is dehydrogenated after absorbing hydrogen, it returns to its original hexagonal crystal structure, and the alloy is recognized to withstand repeated use without phase separation . Ta. Further, the hydrogen dissociation pressure of the hydride of the alloy having this composition is higher than that of the hydride of the alloy Zr(Ni 0.2 Mn 0.8 ) 2 of Example 1. Example 3 An alloy having a composition of Zr(Ni 0.8 Mn 0.8 ) 2 was manufactured using a metal of the same purity as in Example 1 and a similar manufacturing method. According to X-ray diffraction, this alloy contained mostly hexagonal MgZn type 2 crystals with a significantly contracted lattice, but also contained other unidentifiable structural phases. An alloy with this composition crushed into soybean-sized pieces also showed hydrogen storage properties. The hydrogen dissociation pressure isotherm of the hydride of this alloy is shown in FIGS. 1 and 2 (curve 1). As is clear from these figures, the hydrogen dissociation pressure of this alloy is higher than that of Zr at 373K and 423K.
It is extremely higher than that of (Ni 0.2 Mn 0.8 ) 2 and Zr( Ni 0.5 Mn 0.5 ) 2 , does not have a plateau region, and has an extremely small amount of hydrogen storage. Of course, if the temperature is lowered below 373K, the hydrogen storage capacity will increase and the hydrogen dissociation pressure will also be expected to decrease, but the
Linear analysis reveals that an unidentifiable phase is included in addition to the hexagonal MgZn 2- type alloy phase, and this phase is different from the unidentifiable phase contained in the alloy before hydrogen absorption. be. Therefore, in an alloy with the structure Zr(Ni 0.8 Mn 0.2 ) 2 , x is
It can be seen that it contains a hexagonal intermetallic compound phase in the range of 0.8>x>0.5 and other alloy phases of a certain degree. And the one that can reversibly absorb and release hydrogen is x
is a hexagonal intermetallic compound in the range of 0.8>x>0.5. Moreover, the dissociation pressure of hydrogen in the hydride of this intermetallic compound is expected to be higher than that in the hydride of Zr(Ni 0.5 Mn 0.5 ) 2 with x= 0.5 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の合金と比較のための
合金の水素化物組成と水素解離圧との関係を示す
図である。
FIGS. 1 and 2 are diagrams showing the relationship between the hydride composition and hydrogen dissociation pressure of the alloy of the present invention and a comparative alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 一般式Zr(NixMn1-x2で表される組成を有
し、式中xが0<x<0.8の範囲の数であること
を特徴とする水素貯蔵用合金。
1. A hydrogen storage alloy having a composition represented by the general formula Zr(Ni x Mn 1-x ) 2 , where x is a number in the range of 0<x<0.8.
JP58132175A 1983-07-20 1983-07-20 Alloy for storing hydrogen Granted JPS6024336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132175A JPS6024336A (en) 1983-07-20 1983-07-20 Alloy for storing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132175A JPS6024336A (en) 1983-07-20 1983-07-20 Alloy for storing hydrogen

Publications (2)

Publication Number Publication Date
JPS6024336A JPS6024336A (en) 1985-02-07
JPS6146537B2 true JPS6146537B2 (en) 1986-10-15

Family

ID=15075126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132175A Granted JPS6024336A (en) 1983-07-20 1983-07-20 Alloy for storing hydrogen

Country Status (1)

Country Link
JP (1) JPS6024336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038338A (en) 2019-09-27 2021-04-07 가부시키가이샤 다이후쿠 Positional relationship detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241652A (en) * 1984-05-16 1985-11-30 Matsushita Electric Ind Co Ltd Electrochemical electrode employing metal hydride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210038338A (en) 2019-09-27 2021-04-07 가부시키가이샤 다이후쿠 Positional relationship detection system

Also Published As

Publication number Publication date
JPS6024336A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
WO1999024355A1 (en) Hydrogen storage composition
Drašner et al. On the structural and hydrogen desorption properties of the Zr (Cr1− xNix) 2 alloys
US4359396A (en) Hydride of beryllium-based intermetallic compound
US20050112018A1 (en) Ca-Mg-Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
Drasner et al. On the structural and hydrogen desorption properties of the Zr (Cr1− xCux) 2 alloys
US4358432A (en) Material for hydrogen absorption and desorption
JPS6146537B2 (en)
JPS626739B2 (en)
EP1511099A1 (en) Ca, Mg and Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
US4421718A (en) Alloy for occlusion of hydrogen
Shen et al. AB2-type rare earth-based compounds with C-15 structure: Looking for reversible hydrogen storage materials
US4249940A (en) Mischmetal-nickel-iron hydrogen storage compound
JPS5848481B2 (en) Hydrogen storage materials
JPS5839218B2 (en) Rare earth metal quaternary hydrogen storage alloy
US4406874A (en) ZrMn2 -Type alloy partially substituted with cerium/praseodymium/neodymium and characterized by AB2 stoichiometry
Senoh et al. Appearance of a novel pressure plateau in RNi5-H (R= rare earth) systems
JPH0471985B2 (en)
JPS61250136A (en) Titanium-type hydrogen occluding alloy
JPS5841334B2 (en) Quaternary hydrogen storage alloy
JPH0242893B2 (en)
JPH0570693B2 (en)
JPS6141975B2 (en)
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS5822534B2 (en) Metal materials for hydrogen storage
JPH0338327B2 (en)