JPS6146074A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6146074A
JPS6146074A JP16866184A JP16866184A JPS6146074A JP S6146074 A JPS6146074 A JP S6146074A JP 16866184 A JP16866184 A JP 16866184A JP 16866184 A JP16866184 A JP 16866184A JP S6146074 A JPS6146074 A JP S6146074A
Authority
JP
Japan
Prior art keywords
gate electrode
resist film
electrode
film
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16866184A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nobuhara
裕之 延原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16866184A priority Critical patent/JPS6146074A/en
Publication of JPS6146074A publication Critical patent/JPS6146074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Drying Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To manufacture a FET easily with high accuracy by a method wherein the whole surface is coated with a metal for a gate electrode, the metal for the gate electrode is coated with an organic resist film, the surface is flattened, a section up to the height of an insulating film is dry-etched and the gate electrode is formed. CONSTITUTION:An N type GaAs semiconductor layer 12 and an silicon nitride film 13 are shaped onto a semi-insulating substrate 11, and coated with a resist film 14. The resist film 14 is patterned and source electrode, drain electrode and gate electrode regions are etched simultaneously to the silicon nitride film 13 to shape openings, the resist film 14 is applied and Au/AuGe 15 is formed onto the whole surface, and a resist film 16 is applied. Aluminum 20 as a gate electrode is evaporated onto the surface and a thick resist film 21 is applied, the resist film 21 is etched by ion beams, and the resist film 21 and aluminum 20 are removed and a source electrode 17, a drain electrode 18 and a gate electrode 22 for a FET are formed at precise positions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特に電界効果トランジスタCFE
T)の電極形成の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device, particularly a field effect transistor CFE.
The present invention relates to a manufacturing method for forming an electrode in T).

最近ガリウム砒素(GaAs) F E T及びその集
積回路の特性として、高速、高利得が要求されており、
これらの特性を実現するためには、FETの素子の微細
化が必要とされる。
Recently, high speed and high gain are required as characteristics of gallium arsenide (GaAs) FETs and their integrated circuits.
In order to realize these characteristics, miniaturization of FET elements is required.

通常電極配置はソース電極とゲート電極間の電気抵抗を
小にして周波数特性や利得を上げるとともに、又ドレイ
ン電極とゲート電極間は印加される電圧に対し耐圧を有
する間隔が必要である。
Normal electrode arrangement requires that the electrical resistance between the source electrode and the gate electrode be reduced to increase frequency characteristics and gain, and that there be a gap between the drain electrode and the gate electrode that can withstand the applied voltage.

このような構造を有する電極の形成については、例えば
高解像度のりソグラフィである電子ビーム露光法の利用
や、セルフアライメント法による電極形成法が行われて
いるが、一般に電極形成は、ソース電極とドレイン電極
を形成した後に、再度他のマスクを用いて、先に形成さ
れた両電極の間にゲート電極を形成するために、その結
果、ソース電極とゲート電極及びゲート電極とドレイン
電極の間隔を基板面内で或いは基板毎に正確に制御する
ことは困難であった。
To form electrodes with such a structure, for example, the electron beam exposure method, which is high-resolution lithography, and the self-alignment method are used. After forming the electrode, use another mask again to form the gate electrode between the two previously formed electrodes, thereby adjusting the distance between the source electrode and the gate electrode and between the gate electrode and the drain electrode on the substrate. It has been difficult to accurately control within the plane or for each substrate.

一方セルファライメント法による電極形成法では、微少
なソース電極とゲート電極及びゲート電極とドレイン電
極の間隔を比較的高精度に形成することが可能であるが
、ソース電極とゲート電極間隔を小にして、ゲート電極
とドレイン電極の間隔を耐圧を考慮した適当な間隔で形
成する、所謂非対称の電極の形成は困難であり、これら
の適切な電極の相互間隔を有する電極形成法が望まれて
いる。
On the other hand, in the electrode formation method using the self-alignment method, it is possible to form minute intervals between the source electrode and the gate electrode, and between the gate electrode and the drain electrode with relatively high precision. However, it is difficult to form so-called asymmetric electrodes in which the gate electrode and the drain electrode are formed at an appropriate interval in consideration of withstand voltage, and a method of forming electrodes having an appropriate mutual interval between these electrodes is desired.

〔従来の技術〕[Conventional technology]

第2図(a)〜第2図(C)はFETの従来の製造工程
の概要を説明する断面図であるが、第2図(a)でGa
Asの半絶縁性基板1があり、その表面にN型のGaA
s層2を厚さが0.4μm程度形成し、その上に窒化シ
リコンB’A3を厚みが0.3μm程度を形成して、更
にその上にレジスト膜4を被着して、ソース、ドレイン
の各電極領域をパターニングする。
FIGS. 2(a) to 2(C) are cross-sectional views explaining the outline of the conventional manufacturing process of FET.
There is a semi-insulating substrate 1 made of As, and N-type GaA on its surface.
An s layer 2 is formed with a thickness of about 0.4 μm, and silicon nitride B'A3 is formed on it with a thickness of about 0.3 μm, and a resist film 4 is further deposited on it to form the source and drain. pattern each electrode region.

第2図(blは、窒化シリコン膜3を工・ノチングした
後に、金ゲルマウム(AuGe)200人と金3000
人とでなるAuGe/ Au膜5を蒸着により被膜した
ものであって、この金ゲルマウム、金(^uGe/Au
)によりドレイン電極6とソース電極7が形成される。
Figure 2 (bl) shows that after the silicon nitride film 3 was etched and notched, 200 gold germium (AuGe) and 3000 gold
The AuGe/Au film 5 made of humans is coated by vapor deposition, and this gold-germaum, gold (^uGe/Au
), a drain electrode 6 and a source electrode 7 are formed.

第2mtc+はレジスト膜4とその上に被着したAuG
e/^U膜5をアセトン液中で超音波により剥離した後
に、ゲート電極を形成するために、レジスト膜8を被着
してゲート電極を形成する位置のレジスト膜にパターニ
ング、エツチングによりゲート電極部が開口され、この
開口部にアルミニューム(AI)  9を蒸着してゲー
ト電極を形成したものであるが、このパターニングの際
のゲート位置の位置決めは、顕微鏡を使用して目視で行
われ、アライナ−により基板上で位置ぎめが行われる。
The second mtc+ is the resist film 4 and the AuG deposited on it.
After peeling off the e/^U film 5 using ultrasonic waves in an acetone solution, a resist film 8 is applied to form the gate electrode by patterning and etching the resist film at the position where the gate electrode is to be formed. A gate electrode is formed by vapor depositing aluminum (AI) 9 into this opening, and the positioning of the gate during patterning is done visually using a microscope. Positioning is performed on the substrate by an aligner.

又、最近開発されたセルフアライメント法の一例として
、最初に^lの電極を基板上に形成しておき、これに酸
化シリコン膜を形成して、ゲート電極の両端部の所定の
長さに酸化シリコンの長さを残しておいて、残りの酸化
シエリコンはドライエツチングによって除去した後に、
全表面にAuGe/^U膜を被着し、その後酸化シリコ
ンの上のAuGe/Au1lを除去することにより、自
動的に酸化シリコンの長さに相当するゲート電極とソー
ス電極及びドレイン電極との間隔が決定される方法であ
るが、いずれも製造工程の複雑性と電極の位置決めの精
度について問題がある。
In addition, as an example of a recently developed self-alignment method, an electrode is first formed on a substrate, a silicon oxide film is formed on this, and a silicon oxide film is oxidized to a predetermined length on both ends of the gate electrode. After leaving a length of silicon and removing the remaining silicon oxide by dry etching,
By depositing an AuGe/^U film on the entire surface and then removing the AuGe/Au film on the silicon oxide, the distance between the gate electrode and the source and drain electrodes is automatically adjusted to the length of the silicon oxide. However, both methods have problems with the complexity of the manufacturing process and the accuracy of electrode positioning.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の製造方法ではソース電極とドレイン電極を形
成した後に、再度別のマスクを用いてゲート電極を形成
するために、ソース電極とゲート電極及びゲート電極と
ドレイン電極の間隔を再現性が良く正確に制御すること
は困難であるし、又セルフアライメント法による電極形
成法は、ソース電極とゲート電極間隔を小にして、ゲー
ト電極とドレイン電極の間隔が適当に大きな間隔で形成
して非対称に形成することが困難であるという問題点が
ある。
In the conventional manufacturing method described above, after forming the source electrode and drain electrode, a separate mask is used to form the gate electrode again. In addition, the electrode formation method using the self-alignment method reduces the gap between the source electrode and the gate electrode, and forms the gap between the gate electrode and the drain electrode with a suitably large gap to form them asymmetrically. The problem is that it is difficult to do so.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記間B点を解消したFETの電極形成方法を
提供するもので、その手段は、半導体基板のチャンネル
層上に絶縁膜を形成して、該絶縁膜上でソース電極、ド
レイン電極、及びゲート電極を形成する位置に、同一マ
スクで同時にパターニングして開口した後、該ゲート電
極の位置を有機レジスト膜で被覆して該ソース電極と該
ドレイン電極用金属を被着し、次に全面に有機レジスト
膜を塗布して表面を平坦化して、上記絶縁膜の高さ迄ド
ライエツチングを行ない、次に該ゲート電極領域のレジ
スト膜を除去して、全面に、ゲート電極用金属を被着し
た後にその表面に有機レジスト膜で被覆して、その表面
を平坦化した後、上記絶縁膜の高さ迄ドライエツチング
を行ってゲート電極を形成することを特徴とする半導体
装置の製造方法によって達成できる。
The present invention provides a method for forming electrodes of an FET that eliminates the above-mentioned point B. The method includes forming an insulating film on a channel layer of a semiconductor substrate, forming a source electrode, a drain electrode, and a drain electrode on the insulating film. After patterning and opening at the same time using the same mask at the positions where the gate electrode and the gate electrode are to be formed, the gate electrode position is covered with an organic resist film, the source electrode and the drain electrode metal are deposited, and then the entire surface is patterned. An organic resist film is applied to the surface to planarize the surface, dry etching is performed to the height of the insulating film, and then the resist film in the gate electrode area is removed and gate electrode metal is deposited on the entire surface. This is achieved by a method for manufacturing a semiconductor device, which comprises: coating the surface with an organic resist film, flattening the surface, and then performing dry etching to the height of the insulating film to form a gate electrode. can.

〔作用〕[Effect]

本発明は同一マスクを使用してFETのソース電極、ド
レイン電極、ゲート電極の位置を同時にパターニングす
ること、及び段差をレジストで平坦化してイオンビーム
エツチング電極金属を加工することを利用して、ソース
電極とゲート電極の間隔が小さく、ゲート電極にドレイ
ン電極の間隔を耐圧を考慮した適当な間隔で形成する、
所謂非対称形FETを高精度微細寸法で再現性良く製造
できるように考慮がなされている。
The present invention uses the same mask to pattern the positions of the source electrode, drain electrode, and gate electrode of the FET at the same time, and processes the electrode metal by ion beam etching by flattening the steps with a resist. The distance between the electrode and the gate electrode is small, and the distance between the gate electrode and the drain electrode is formed at an appropriate distance considering the withstand voltage.
Consideration has been given to manufacturing so-called asymmetric FETs with high precision and fine dimensions with good reproducibility.

〔実施例〕〔Example〕

第1図(a)〜第1図(8)は、本発明の詳細な説明す
る断面図であるが、第1図(a)は、半絶縁性基板11
の上にN型のGaAs半導体層12があり、その上に窒
化シリコン膜13を0.3μm程度の厚みに形成して、
更にその上にレジス)lI*14で被覆したものである
FIG. 1(a) to FIG. 1(8) are cross-sectional views explaining the present invention in detail, and FIG. 1(a) shows the semi-insulating substrate 11.
There is an N-type GaAs semiconductor layer 12 on top, and a silicon nitride film 13 is formed to a thickness of about 0.3 μm on top of the N-type GaAs semiconductor layer 12.
Furthermore, it was coated with resist) lI*14.

第1図(′b)は、レジスト膜14をパターニングによ
り、窒化シリコン膜13にソース電極、ドレイン電極、
ゲート電極領域を同時にエツチングして開口した後に、
ゲート電極位置にレジスト膜14を被覆して、表面全体
に蒸着法によって、Au/AuGe 15を0.3μm
程度の厚みに形成し、次に全面に5μm程度のかなり厚
いレジスト膜16を被覆するが、この厚いレジスト膜1
60目的は窒化シリコン膜13や、レジスト膜14によ
る凹凸を平坦化し、イオンエツチングをした際に全面が
平均してエツチングがなされるように考慮されたもので
ある。
FIG. 1('b) shows that by patterning the resist film 14, the silicon nitride film 13 has a source electrode, a drain electrode,
After simultaneously etching and opening the gate electrode area,
A resist film 14 is coated on the gate electrode position, and Au/AuGe 15 is deposited to a thickness of 0.3 μm over the entire surface by vapor deposition.
Then, the entire surface is covered with a fairly thick resist film 16 of about 5 μm, but this thick resist film 1
The purpose of 60 is to flatten the unevenness caused by the silicon nitride film 13 and the resist film 14 so that when ion etching is performed, the entire surface is etched evenly.

第1図(C1は、レジスト膜16とAu/AuGe 1
5とレジストBfA14を順次表面から矢印のように、
窒化シリコン膜が露出する迄イオンエツチングした後、
残ったレジスト膜14を剥離した状態を示したものであ
り、この工程では、Au/AuGeの合金化、ソース電
極とドレイン電極間の電流測定、及びゲート電極開口部
のGaAs層の浅い化学エツチングも行われる。
FIG. 1 (C1 is the resist film 16 and Au/AuGe 1
5 and resist BfA14 sequentially from the surface as shown by the arrow.
After ion etching until the silicon nitride film is exposed,
This figure shows the state in which the remaining resist film 14 has been peeled off, and in this process, alloying of Au/AuGe, current measurement between the source and drain electrodes, and shallow chemical etching of the GaAs layer at the gate electrode opening are also performed. It will be done.

第1図(dlは、表面にゲート電極となるアルミニュー
ム20を蒸着して、その上に表面が平坦になる程度にか
なり厚いレジスト膜21を3μm程度に被着したもので
ある。
In FIG. 1 (dl), aluminum 20, which will become a gate electrode, is vapor-deposited on the surface, and a fairly thick resist film 21 of about 3 μm is deposited thereon to make the surface flat.

第1図(a)は、厚いレジスト膜を上記と同様にイオン
ビームエツチングを行ない、レジストIPJ21とアル
ミニューム20をエツチング除去したものであって、こ
れによりFETのソース電挽17、ドレイン電極18、
ゲート電極22が正確な位置に形成できる。
In FIG. 1(a), the thick resist film is subjected to ion beam etching in the same manner as described above, and the resist IPJ 21 and aluminum 20 are etched away.
Gate electrode 22 can be formed at an accurate position.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によるFETの製造方
法を採用することにより、FETが容易且つ高精度で製
造することができ効果大なるものがある。
As explained above in detail, by employing the FET manufacturing method according to the present invention, FETs can be manufactured easily and with high precision, which has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造工程を説明する断面図、第2図は
従来の製造工程を説明する断面図である。 図において、11は半絶縁性基板、12はN型のGaA
s半導体眉、13は窒化シリコン膜、14はレジスト1
1A、15はAu/AuGe % 16はレジストH臭
、17はソース電極、18はドレイン電極、19はゲー
ト電極の開口部、20はアルミニューム、21はレジス
ト膜、22はゲー)It極をそれぞれ示している。 第1図
FIG. 1 is a sectional view illustrating the manufacturing process of the present invention, and FIG. 2 is a sectional view illustrating the conventional manufacturing process. In the figure, 11 is a semi-insulating substrate, 12 is an N-type GaA
s semiconductor eyebrow, 13 is silicon nitride film, 14 is resist 1
1A, 15 are Au/AuGe %, 16 is the resist H odor, 17 is the source electrode, 18 is the drain electrode, 19 is the opening of the gate electrode, 20 is aluminum, 21 is the resist film, 22 is the gate) It electrode, respectively. It shows. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板のチャンネル層上に絶縁膜を形成して、該絶
縁膜上でソース電極、ドレイン電極、及びゲート電極を
形成する位置に、同一マスクで同時にパターニングして
開口した後、該ゲート電極の位置を有機レジスト膜で被
覆して該ソース電極と該ドレイン電極用金属を被着し、
次に全面に有機レジスト膜を塗布して表面を平坦化して
、上記絶縁膜の高さ迄ドライエッチングを行ない、次に
該ゲート電極領域のレジスト膜を除去して、全面に、ゲ
ート電極用金属を被着した後にその表面に有機レジスト
膜で被覆して、その表面を平坦化した後、上記絶縁膜の
高さ迄ドライエッチングを行ってゲート電極を形成する
ことを特徴とする半導体装置の製造方法。
An insulating film is formed on the channel layer of the semiconductor substrate, and openings are formed on the insulating film at the positions where the source electrode, drain electrode, and gate electrode are to be formed by simultaneous patterning using the same mask, and then the positions of the gate electrodes are formed. coated with an organic resist film to deposit metals for the source electrode and the drain electrode,
Next, an organic resist film is applied to the entire surface to planarize the surface, and dry etching is performed to the height of the insulating film.Then, the resist film in the gate electrode area is removed and the gate electrode metal is applied to the entire surface. After depositing the insulating film, the surface thereof is coated with an organic resist film, the surface is planarized, and then dry etching is performed to the height of the insulating film to form a gate electrode. Method.
JP16866184A 1984-08-10 1984-08-10 Manufacture of semiconductor device Pending JPS6146074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16866184A JPS6146074A (en) 1984-08-10 1984-08-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16866184A JPS6146074A (en) 1984-08-10 1984-08-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6146074A true JPS6146074A (en) 1986-03-06

Family

ID=15872155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16866184A Pending JPS6146074A (en) 1984-08-10 1984-08-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6146074A (en)

Similar Documents

Publication Publication Date Title
JPS5950567A (en) Manufacture of field effect transistor
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
US4759822A (en) Methods for producing an aperture in a surface
JPS6351550B2 (en)
JPS6146074A (en) Manufacture of semiconductor device
EP0385031B1 (en) Semiconductor device with a recessed gate, and a production method thereof
JP2518402B2 (en) Method for manufacturing semiconductor device
JPH0645364A (en) Manufacture of semiconductor device
JPH09181337A (en) Manufacture of submicron structure in semiconductor device
JPS6155969A (en) Semiconductor device and manufacture thereof
JPS6151980A (en) Manufacture of semiconductor device
JPS63273363A (en) Manufacture of semiconductor device
JP3147843B2 (en) Method for manufacturing field effect semiconductor device
JPH0684950A (en) Manufacture of field effect transistor
JPS6390171A (en) Manufacture of field effect transistor
JPS63228761A (en) Manufacture of semiconductor device
JPS62177973A (en) Manufacture of semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JPH08203926A (en) Manufacture of semiconductor device
JPS63137481A (en) Manufacture of semiconductor device
JPS60234375A (en) Manufacture of schottky gate type field effect transistor
JPH0327536A (en) Manufacture of field effect transistor
JPH01214067A (en) Gate electrode and wiring and their manufacture
JPS62299033A (en) Manufacture of semiconductor device
JPS61100977A (en) Pattern forming method