JPS6144941B2 - - Google Patents

Info

Publication number
JPS6144941B2
JPS6144941B2 JP55023905A JP2390580A JPS6144941B2 JP S6144941 B2 JPS6144941 B2 JP S6144941B2 JP 55023905 A JP55023905 A JP 55023905A JP 2390580 A JP2390580 A JP 2390580A JP S6144941 B2 JPS6144941 B2 JP S6144941B2
Authority
JP
Japan
Prior art keywords
processing
strain
logarithmic strain
compression
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023905A
Other languages
Japanese (ja)
Other versions
JPS56119762A (en
Inventor
Yoichi Sakamoto
Akihiko Ibata
Shigeru Kojima
Tsuneo Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2390580A priority Critical patent/JPS56119762A/en
Priority to US06/231,625 priority patent/US4404046A/en
Priority to DE8181300510T priority patent/DE3168411D1/en
Priority to EP81300510A priority patent/EP0034058B1/en
Publication of JPS56119762A publication Critical patent/JPS56119762A/en
Publication of JPS6144941B2 publication Critical patent/JPS6144941B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、永久磁石の製造法に関するものであ
る。さらに詳細には、多結晶マンガン―アルミニ
ウム―炭素系(Mu―Al―C系)合金磁石の製造
法に関し、特に、高性能な外周着磁用Mn―Al―
C系合金磁石の製造法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a permanent magnet. More specifically, it relates to a method for manufacturing polycrystalline manganese-aluminum-carbon (Mu-Al-C) alloy magnets, particularly a high-performance Mn-Al-C alloy magnet for outer periphery magnetization.
The present invention provides a method for manufacturing a C-based alloy magnet.

Mu―Al―C系合金磁石は、主として強磁性相
である面心正方晶(τ相,Llo型規則格子)の組
織に構成され、Cを必須構成元素として含むもの
であり、不純物以外に添加元素を含まない3元系
及び少量の添加元素を含む4元系以上の多元系合
金磁石が知られており、これらを総称するもので
ある。また、このMu―Al―C系合金磁石の製造
法としては、鋳造・熱処理によるもの以外に、温
間押出加工等の温間塑性加工工程を含むものが知
られている。特に後者は、高い磁気特性,機械的
強度,耐候性,機械加工性等の優れた性質を有す
る異方性磁石の製造法として知られている。
Mu-Al-C alloy magnets are mainly composed of a face-centered tetragonal (τ phase, Llo type regular lattice) structure, which is a ferromagnetic phase, and contain C as an essential constituent element, with no additives other than impurities. Multi-component alloy magnets are known, including ternary alloy magnets containing no elements and quaternary or higher alloy magnets containing a small amount of additional elements. Further, as a method for manufacturing this Mu--Al--C alloy magnet, in addition to the method of casting and heat treatment, methods including a warm plastic working process such as warm extrusion are known. In particular, the latter method is known as a method for producing anisotropic magnets having excellent properties such as high magnetic properties, mechanical strength, weather resistance, and machinability.

外周着磁用Mn―Al―C系合金磁石の製造法と
しては、等方性磁石の他に、圧縮加工によるもの
が知られており、径方向に高い磁気特性が得られ
ている。一方、比較的大きい加工率が必要である
こと、不均一変形が起こる場合があること、不変
形帯の存在が避けられないことなどの問題点があ
つた。
In addition to isotropic magnets, compression processing is known as a method for manufacturing Mn--Al--C alloy magnets for outer periphery magnetization, and high magnetic properties are obtained in the radial direction. On the other hand, there are problems such as a relatively large processing rate is required, non-uniform deformation may occur, and the presence of undeformed zones is unavoidable.

本発明者らは、あらかじめ温間押出加工等公知
の方法で得た一軸異方性の多結晶Mn―Al―C系
合金磁石に異方性方向への温間自由圧縮加工を施
すことによつて、上記の問題点を解決し得ること
を見出した。すなわち、公知のMn―Al―C系磁
石用合金、例えば68〜73重量%(以下単に%で表
す)のMnと(1/10Mn―6.6)〜(1/3Mn―22.2)
%の Cと残部のAlからなる合金を530℃〜830℃の温
度域での温間押出加工等公知の方法によつて一軸
性の均質微細な〔001〕繊維組織とした後、軸方
向への温間圧縮加工を施す。換言すれば、巨視的
な正の塑性歪を特定の一方向に与えた後、同一方
向に負の塑性歪を与えるのである。
The present inventors have developed a method by subjecting a uniaxially anisotropic polycrystalline Mn-Al-C alloy magnet obtained in advance by a known method such as warm extrusion to warm free compression in the anisotropic direction. We have found that the above problems can be solved. That is, a known Mn-Al-C alloy for magnets, for example, 68 to 73% by weight (hereinafter simply expressed as %) of Mn and (1/10Mn-6.6) to (1/3Mn-22.2)
After forming an alloy consisting of % C and the balance Al into a uniaxial, homogeneous, fine [001] fiber structure by a known method such as warm extrusion processing in a temperature range of 530°C to 830°C, it is axially processed. Apply warm compression processing. In other words, after applying macroscopic positive plastic strain in one specific direction, negative plastic strain is applied in the same direction.

この温間自由圧縮加工では、対数歪の絶対値
(以下単に対数歪と呼ぶ)で少なくとも0.1の加工
率が必要であるが、これは公知のMn―Al―C系
合金磁石の製造法において必要とされる自由圧縮
加工歪に比して著しく低いものである。また、所
要加工荷重は公知の製造法に比して同一条件で約
2割〜4割も低下する。更に、極めて高速の加工
が可能となり、高い生産性が得られることも効果
の一つである。また、本発明による永久磁石には
不変形帯に起因する粗大結晶域などが存在せず、
機械的強度や機械加工性などが均質で高い。
This warm free compression processing requires a processing rate of at least 0.1 in terms of the absolute value of logarithmic strain (hereinafter simply referred to as logarithmic strain), which is necessary in the known manufacturing method of Mn-Al-C alloy magnets. This is significantly lower than the free compression strain. Further, the required processing load is reduced by about 20% to 40% under the same conditions compared to known manufacturing methods. Another advantage is that extremely high-speed processing becomes possible and high productivity can be obtained. In addition, the permanent magnet according to the present invention does not have coarse crystal regions caused by indeformation zones,
Uniform and high mechanical strength and machinability.

本発明では、負の塑性歪を与える際、少なくと
も対数歪で0.1までは自由圧縮であることを必須
要件とする。公知技術として、一軸異方性の角柱
状磁石の軸方向へ温間圧縮加工を施した例がある
が、その場合は一対の側面を当初より型によつて
規制しており、自由圧縮ではない。また、その目
的も一軸異方性から垂直な一軸への磁化容易方向
の転換である。前記公知技術による磁化容易方向
の一方向への転換には、約60%〜70%以上の加工
を要し、これは対数歪として約0.9〜1.2以上とい
う値である。
In the present invention, when applying negative plastic strain, it is an essential requirement that there is free compression up to at least 0.1 in logarithmic strain. As a known technique, there is an example of performing warm compression processing in the axial direction of a uniaxially anisotropic prismatic magnet, but in that case, a pair of side surfaces are restricted by a mold from the beginning, and it is not free compression. . The purpose is also to change the direction of easy magnetization from uniaxial anisotropy to perpendicular uniaxial direction. Converting the direction of easy magnetization to one direction using the known technique requires processing of about 60% to 70% or more, which is a logarithmic strain of about 0.9 to 1.2 or more.

一方、本発明では、実施例に詳述する様に、約
0.1以上の圧縮歪で圧縮方向に垂直な全ての方向
に高い磁気特性を得ることができる。ここで、全
ての方向とは単に放射状の全ての径方向と言う意
味ではなく、弦方向も含む二次元平面内の全ての
方向である。従つて、得られた磁石は一軸異方性
ではない。また、磁石内部で弦方向への磁気特性
が優れていることから、外周多極着磁に対しては
径方向異方性磁石よりも有利である。
On the other hand, in the present invention, as detailed in the examples, about
With a compressive strain of 0.1 or more, high magnetic properties can be obtained in all directions perpendicular to the compression direction. Here, all directions do not simply mean all radial directions, but all directions within a two-dimensional plane including chordal directions. Therefore, the obtained magnet is not uniaxially anisotropic. Furthermore, since magnetic properties in the string direction inside the magnet are excellent, they are more advantageous than radially anisotropic magnets for outer circumferential multipole magnetization.

対数歪で0.1以上の自由圧縮加工を経た後は、
目的に応じては側面を規制した圧縮加工を施すこ
とができる。例えば、外周形状を成型することを
目的とした型据込加工、また、成型までに至らず
とも、外周研削しろを減ずるための部分的規制等
である。
After undergoing free compression processing with logarithmic strain of 0.1 or more,
Depending on the purpose, compression processing can be performed with restricted sides. For example, this includes mold upsetting for the purpose of molding the outer circumferential shape, and partial regulation to reduce the margin for grinding the outer circumference even before molding.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 配合組成で70%のMn,29.5%のAl,及び0.5%
のCを溶解鋳造し、直径40mmφ、長さ30mmの円柱
状ビレツトを作製した。このビレツトを1100℃で
2時間保持した後、500℃まで風冷し600℃で20分
間保持する熱処理を行つた。次に、潤滑剤を介し
て720℃の温度で直径15mmφまでの温間押出加工
を行つた。押出比は7.1、対数歪で2.0である。押
出棒を長さ20mmに切断し、両端に潤滑剤を介し
て、680℃で圧縮率を変えて温間自由圧縮加工を
施した。加工速度は平均歪速度で0.6〔sec-1〕と
した。ここで平均歪速度とは、圧縮加工によつて
付与された圧縮軸方向の対数歪の絶対値をその加
工に実質的に要した時間で除したものである。例
えば、17%の圧縮加工は対数歪で表すと0.18であ
るが、この場合は7.3mm・sec-1の速度で加工し
た。
Example 1 Blend composition: 70% Mn, 29.5% Al, and 0.5%
C was melted and cast to produce a cylindrical billet with a diameter of 40 mm and a length of 30 mm. This billet was held at 1100°C for 2 hours, then air cooled to 500°C and heat treated at 600°C for 20 minutes. Next, warm extrusion processing was performed at a temperature of 720° C. to a diameter of up to 15 mmφ using a lubricant. The extrusion ratio is 7.1 and the logarithmic strain is 2.0. The extruded rod was cut to a length of 20 mm, and with lubricant applied to both ends, warm free compression was performed at 680°C with varying compression ratios. The processing speed was an average strain rate of 0.6 [sec -1 ]. Here, the average strain rate is the absolute value of the logarithmic strain in the compression axial direction imparted by compression processing divided by the time substantially required for the processing. For example, compression processing of 17% has a logarithmic strain of 0.18, but in this case processing was performed at a speed of 7.3 mm·sec -1 .

加工後の試料の外周に近に部分から、一片が約
6mmの立方体を各稜が圧縮軸方向、径方向および
弦方向に平行になるよう切り出し、磁気測定を行
つた。圧縮率に対する残留磁束密度(Br)の変
化を図に示す。横軸は対数歪で表した。実線は
径,弦方向,点線は軸方向の値を示す。圧縮加工
前の径,弦方向へのBrは2.6kGという低い値であ
つたが、自由圧縮加工により大幅に向上し、例え
ば対数歪で0.18というわずかな加工で4.2〜4.3kG
の高い磁気特性を得た。更に、弦方向のみなら
ず、径,弦方向を含む平面内の全ての方向に同等
の磁気特性が得られることが、詳細な実験の結果
判明した。これは外周多極着磁には極めて有利な
特徴と言える。
A cube of approximately 6 mm in length was cut out from a portion close to the outer periphery of the processed sample so that each edge was parallel to the compression axis direction, radial direction, and chord direction, and magnetic measurements were performed. The figure shows the change in residual magnetic flux density (Br) with respect to compressibility. The horizontal axis represents logarithmic strain. Solid lines indicate values in the radial and chordal directions, and dotted lines indicate values in the axial direction. Before compression processing, the Br in the radial and chordal directions was a low value of 2.6kG, but it was significantly improved by free compression processing, for example, with a logarithmic strain of 0.18, it was 4.2 to 4.3kG.
High magnetic properties were obtained. Further, as a result of detailed experiments, it has been found that equivalent magnetic properties can be obtained not only in the chordal direction but also in all directions within the plane including the radial and chordal directions. This can be said to be an extremely advantageous feature for outer periphery multi-pole magnetization.

図から分かるように、軸方向から径,弦方向を
含む面内への磁化容易方向の転換は、対数歪でほ
ぼ0.1までの範囲で著しく進行し、対数歪で0.1の
加工で上述の面内の全ての方向に約4kGの高いBr
が得られた。
As can be seen from the figure, the change in the direction of easy magnetization from the axial direction to the in-plane direction including the radial and chordal directions progresses significantly in the range of logarithmic strain of approximately 0.1, and processing with a logarithmic strain of 0.1 results in the change in the in-plane direction including the radial and chordal directions. High Br of about 4kG in all directions of
was gotten.

実施例 2 配合組成で69.5%のMn,29.3%のAl,0.5%の
C、0.7%のNiを溶解鋳造し、直径35mmφ,長さ
30mmのビレツトを作製した。このビレツトを1100
℃で2時間保持した後、常温まで放冷した。次
に、潤滑剤を介して720℃の温度で直径20mmφま
での温間押出加工を行つた。押出比は3.1、対数
歪で1.1である。押出棒を長さ22.5mmに切断し、
30mmφの内径を持つ金型を用いて型据込加工を行
つた。加工温度は680℃で、加工速度は平均歪速
度で0.08〔sec-1〕とし、両端面と側面を潤滑し
た。最終的には直径30mmφ、長さ10mmの円盤状の
磁石成形体を得、対数歪で0.81の圧縮加工であつ
た。
Example 2 Melt and cast a mixture of 69.5% Mn, 29.3% Al, 0.5% C, and 0.7% Ni, with a diameter of 35 mmφ and length.
A 30mm billet was made. This billet is 1100
After being kept at ℃ for 2 hours, it was allowed to cool to room temperature. Next, warm extrusion processing to a diameter of 20 mmφ was performed at a temperature of 720° C. using a lubricant. The extrusion ratio is 3.1 and the logarithmic strain is 1.1. Cut the extruded rod to a length of 22.5 mm,
Mold upsetting was performed using a mold with an inner diameter of 30 mmφ. The processing temperature was 680°C, the processing speed was an average strain rate of 0.08 [sec -1 ], and both end faces and side surfaces were lubricated. In the end, a disk-shaped magnet molded body with a diameter of 30 mmφ and a length of 10 mm was obtained, which was compressed to a logarithmic strain of 0.81.

この直径30mmφの磁石の外周に近い部分から一
片が約6mmの立方体を各稜が圧縮軸方向,径方向
及び弦方向に平行になるように切り出し、磁気測
定を行つた。磁気特性は径方向及び弦方向にほぼ
等しく、Br≒4.3kG,Hc≒2.2kOe,(BH)nax
3.2MG・Oeであり、外周着磁用に適した永久磁
石であつた。
A cube of approximately 6 mm in length was cut out from a portion near the outer periphery of this magnet with a diameter of 30 mmφ so that each edge was parallel to the compression axis direction, the radial direction, and the chord direction, and magnetic measurements were performed. The magnetic properties are almost equal in the radial and chordal directions, Br≒4.3kG, Hc≒2.2kOe, (BH) nax
3.2MG・Oe, it was a permanent magnet suitable for outer circumference magnetization.

本実施例の加工は、最終段階において側面を金
型で規制する型据込加工であるが、工程前半は自
由圧縮であり、対数歪で0.7までは側面による規
制が無かつた。従つて、実施例1で示した本発明
で必要とされる自由圧縮加工率(対数歪で0.1以
上)を満たしており、前述の様に優れた磁気特性
を得たものである。また、自由圧縮後の側面規制
は、必ずしも上述の様な軸対称である事を要しな
い。
The processing in this example is a die upsetting process in which the side surfaces are regulated by a mold in the final stage, but the first half of the process is free compression, and there is no restriction by the lateral surfaces until the logarithmic strain reaches 0.7. Therefore, it satisfies the free compression processing rate (logarithmic strain of 0.1 or more) required by the present invention as shown in Example 1, and as described above, excellent magnetic properties were obtained. Further, the side surface regulation after free compression does not necessarily need to be axially symmetrical as described above.

実施例 3 配合組成で69.4%のMn,29.3%のAl,0.5%の
C,0.7%のNi及び0.1%のTiを溶解鋳造し、直径
40mmφ、長さ40mmのビレツトを作製した。このビ
レツトを1100℃で2時間保持した後、500℃まで
風冷した。次に、潤滑剤を介して700℃の温度で
15mmφまでの温間押出加工を行つた。押出比は
7.1,対数歪で2.0である。押出棒を長さ25mmに切
断し、両端に潤滑剤を介して、660℃で高さ15mm
まで温間自由圧縮加工を施した。対数歪で0.5で
ある。。加工速度は平均歪速度で約0.3〔sec-1〕と
した。加工後の磁石の外周に近い部分から、一片
が約6mmの立方体を各稜が圧縮軸方向、径方向及
び弦方向に平行になるように切り出し、磁気測定
を行つた。磁気特性は径方向及び弦方向にほぼ等
しく、Br≒4.4kG,Hc≒2.6kOe,(BH)max≒
3.7MG・Oeであつた。
Example 3 A mixture of 69.4% Mn, 29.3% Al, 0.5% C, 0.7% Ni and 0.1% Ti was melted and cast, and the diameter
A billet with a diameter of 40 mm and a length of 40 mm was prepared. This billet was held at 1100°C for 2 hours and then air-cooled to 500°C. Then at a temperature of 700℃ through lubricant
Warm extrusion processing was performed up to 15mmφ. The extrusion ratio is
7.1, logarithmic distortion is 2.0. Cut the extruded rod to a length of 25 mm, apply lubricant to both ends, and heat it to a height of 15 mm at 660℃.
It was subjected to warm free compression processing. The logarithmic distortion is 0.5. . The processing speed was set at an average strain rate of approximately 0.3 [sec -1 ]. A cube of approximately 6 mm in length was cut out from a portion near the outer periphery of the processed magnet so that each edge was parallel to the compression axis direction, radial direction, and chord direction, and magnetic measurements were performed. The magnetic properties are almost equal in the radial and chordal directions, Br≒4.4kG, Hc≒2.6kOe, (BH)max≒
It was 3.7MG・Oe.

実施例 4 実施例1と同一の試料・同一の方法により対数
歪で1.2までの温間自由圧縮加工を加工温度660
℃、平均歪速度0.8〔sec-1〕で行つた。同様に磁
気特性を測定したところ、径、弦方向でBr≒
4.7kG,Hc≒2.8kOe,(BH)max≒4.2MG・Oe
の優れた特性であつた。この磁石に更に650℃で
5分間の熱処理を施し、同様に磁気測定を行つた
ところ、Br≒4.7kG,Hc≒3.0kOe,(BH)nax
4.4MG・Oeであつた。
Example 4 The same sample and the same method as Example 1 were used to perform warm free compression processing with a logarithmic strain of up to 1.2 at a processing temperature of 660.
The test was carried out at an average strain rate of 0.8 [sec -1 ]. When we measured the magnetic properties in the same way, we found that Br≒ in the radial and chordal directions.
4.7kG, Hc≒2.8kOe, (BH)max≒4.2MG・Oe
This was an excellent characteristic. When this magnet was further heat-treated at 650℃ for 5 minutes and magnetic measurements were performed in the same manner, Br≒4.7kG, Hc≒3.0kOe, (BH) nax
It was 4.4MG・Oe.

本発明は、実施例によつて述べた様に、あらか
じめ温間押出加工等の公知の方法によつて作製さ
れた、特定の一方向に磁化容易方向を有する多結
晶マンガン―アルミニウム―炭素系合金磁石に、
前記特定方向への温間自由圧縮加工を少なくとも
対数歪で0.1以上施すことを特徴とする。また、
この自由圧縮加工の可能な温度範囲については、
550℃〜830℃の温度領域において加工が行えた
が、780℃を超える温度では磁気特性がかなり低
下した。より望ましい温度範囲としては、600℃
〜750℃であつた。更に、本発明の製造法は低速
から高速まで幅広い加工速度範囲にわたつて適用
されるが、特に平均歪速度で0.2〔sec-1〕以上の
高速度域でより高い磁気特性が得られ、特に低加
工率の場合に有益である。
As described in the examples, the present invention provides a polycrystalline manganese-aluminum-carbon alloy having an easy magnetization direction in one specific direction, which is produced in advance by a known method such as warm extrusion. to the magnet,
It is characterized in that the warm free compression process in the specific direction is performed with a logarithmic strain of at least 0.1 or more. Also,
Regarding the possible temperature range of this free compression process,
Processing was possible in the temperature range of 550°C to 830°C, but the magnetic properties significantly deteriorated at temperatures above 780°C. A more desirable temperature range is 600℃
It was ~750℃. Furthermore, although the manufacturing method of the present invention can be applied over a wide processing speed range from low to high speeds, higher magnetic properties can be obtained especially at high speeds with an average strain rate of 0.2 [sec -1 ] or higher. Beneficial for low processing rates.

本発明で得られた永久磁石は、平面状に等しく
優れた磁気特性を有し、外周着磁用、特に外周多
極着磁用磁石として有用であり、モータ、ジエネ
レータ,メータ類など多方面への応用が可能であ
る。
The permanent magnet obtained by the present invention has equally excellent magnetic properties in planar form, and is useful as a magnet for outer periphery magnetization, especially for outer periphery multipolar magnetization, and is used in many fields such as motors, generators, and meters. can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例1での対数歪で表した圧縮率に対
する残留束密度の変化を示したものである。
The drawing shows the change in residual flux density with respect to the compressibility expressed by logarithmic strain in Example 1.

Claims (1)

【特許請求の範囲】 1 特定の一方向に磁化容易方向を有する多結晶
マンガン―アルミニウム―炭素系合金磁石に、
550〜780℃の温度において前記特定方向への圧縮
加工を対数歪の絶対値で0.1以上施す工程を有
し、かつこの工程は少なくとも対数歪の絶対値で
0.1までの圧縮が自由圧縮であることを特徴とす
るマンガン―アルミニウム―炭素系合金磁石の製
造法。 2 前記圧縮加工を施す工程が、少なくとも対数
歪の絶対値で0.1までの自由圧縮加工を施す工程
と、次に側面を規制して圧縮加工を施す工程とか
らなる特許請求の範囲第1項記載のマンガン―ア
ルミニウム―炭素系合金磁石の製造法。
[Claims] 1. A polycrystalline manganese-aluminum-carbon alloy magnet having an easy magnetization direction in one specific direction,
The process includes a step of applying compression processing in the specific direction at a temperature of 550 to 780°C with an absolute value of logarithmic strain of 0.1 or more, and this step is performed with an absolute value of at least logarithmic strain of
A method for manufacturing a manganese-aluminum-carbon alloy magnet characterized by free compression up to 0.1. 2. The step of applying compression processing comprises a step of applying free compression processing to at least 0.1 in the absolute value of logarithmic strain, and then a step of applying compression processing while regulating the side surface. A method for manufacturing manganese-aluminum-carbon alloy magnets.
JP2390580A 1980-02-07 1980-02-27 Manufacture of manganese-aluminum-carbon alloy magnet Granted JPS56119762A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2390580A JPS56119762A (en) 1980-02-27 1980-02-27 Manufacture of manganese-aluminum-carbon alloy magnet
US06/231,625 US4404046A (en) 1980-02-07 1981-02-05 Method of making permanent magnet of Mn-Al-C alloy
DE8181300510T DE3168411D1 (en) 1980-02-07 1981-02-06 Method of making permanent magnet of mn-al-c alloy
EP81300510A EP0034058B1 (en) 1980-02-07 1981-02-06 Method of making permanent magnet of mn-al-c alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2390580A JPS56119762A (en) 1980-02-27 1980-02-27 Manufacture of manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS56119762A JPS56119762A (en) 1981-09-19
JPS6144941B2 true JPS6144941B2 (en) 1986-10-06

Family

ID=12123475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2390580A Granted JPS56119762A (en) 1980-02-07 1980-02-27 Manufacture of manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS56119762A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206105A (en) * 1982-05-26 1983-12-01 Matsushita Electric Ind Co Ltd Manufacture of manganese-aluminum-carbon alloy magnet
US6282980B1 (en) * 1999-09-23 2001-09-04 Ventra Group Inc. Self-adjusting parking brake actuator

Also Published As

Publication number Publication date
JPS56119762A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
US4579607A (en) Permanent Mn-Al-C alloy magnets and method for making same
JP2017157738A (en) MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET
JPS6144941B2 (en)
JPH1070023A (en) Permanent magnet and manufacture thereof
JPS6144942B2 (en)
US4404046A (en) Method of making permanent magnet of Mn-Al-C alloy
JPH0479122B2 (en)
JPH037745B2 (en)
JPH0639675B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH037747B2 (en)
JPS58182208A (en) Preparation of manganese-aluminum-carbon alloy magnet
JPH0680606B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0665743B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPH0680607B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS58192306A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061741B2 (en) Alloy magnet manufacturing method
JPH037748B2 (en)
JPS62247052A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62243752A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH0311527B2 (en)
JPS6210255A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH06102819B2 (en) Method for producing manganese-aluminum-carbon alloy magnet
JPS62247058A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPS62143405A (en) Manufacture of manganese-aluminum-carbon alloy magnet
JPH061743B2 (en) Alloy magnet manufacturing method