JPS6144130A - Manufacture of intrasurface nonoriented electrical iron sheet - Google Patents

Manufacture of intrasurface nonoriented electrical iron sheet

Info

Publication number
JPS6144130A
JPS6144130A JP16541484A JP16541484A JPS6144130A JP S6144130 A JPS6144130 A JP S6144130A JP 16541484 A JP16541484 A JP 16541484A JP 16541484 A JP16541484 A JP 16541484A JP S6144130 A JPS6144130 A JP S6144130A
Authority
JP
Japan
Prior art keywords
annealing
sheet
atmosphere
intrasurface
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16541484A
Other languages
Japanese (ja)
Inventor
Toshiro Tomita
俊郎 富田
Masashi Takahashi
高橋 政司
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16541484A priority Critical patent/JPS6144130A/en
Publication of JPS6144130A publication Critical patent/JPS6144130A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture efficiently and stably an intrasurface nonoriented electrical iron sheet having superior soft-magnetic characteristics by forming a molten high-silicon iron alloy having a specified composition into a sheet by a very rapid cooling method and by subjecting the sheet to decarburization annealing at a proper temp. in an atmosphere of gaseous hydrogen or an inert gas. CONSTITUTION:The molten high-silicon iron alloy contg. 2.0-8.0wt% Si and 0.016-1.000wt% C is formed into a sheet by a very rapid cooling method, and the sheet is subjected to decarburization annealing at 600-1,300 deg.C in the atmosphere of gaseous hydrogen, the inert gas such as N2 or Ar, or a mixture thereof. The dew point of the annealing atmosphere is preferably kept at -30--70 deg.C, and the proper annealing time is about 5min-12hr. Thus, the intrasurface nonoriented electrical iron sheet having superior soft-magnetic characteristics is stably obtd. independently of the thickness and the rate of annealing.

Description

【発明の詳細な説明】 〔匹業上の利用分野〕 この発明は、優れた軟磁気特性を有する面内無方向性電
磁鉄板を、板厚の大小を問わず、能率良く、かつ安定し
て製造する方法に関するものである。
[Detailed description of the invention] [Field of application in the field of business] This invention efficiently and stably produces an in-plane non-oriented electromagnetic iron plate having excellent soft magnetic properties, regardless of the thickness of the plate. It relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

一般に、Si含有量が2〜5%前後〔以下、成分割合を
表わす%は重i%とする〕である高珪素鉄合金板は、熱
間圧延と、中間焼鈍をI#−5多数回の冷間圧延とによ
って所定成分組成の鋳片がら薄板材を得、その後厳密な
条件の磁気特性!同上焼鈍を施して製造されるのが普通
であった。従って、製品が得られるまでには多数の工程
な心安とし、製造コストの高騰を抑えることができなか
ったのである。
In general, high-silicon iron alloy plates with a Si content of around 2 to 5% (hereinafter, % representing the component ratio is % by weight) are hot rolled and intermediate annealed by I#-5 multiple times. A thin plate material with a predetermined composition is obtained by cold rolling, and then magnetic properties are obtained under strict conditions! It was usually manufactured by subjecting it to annealing. Therefore, it was not possible to reduce the number of steps required to obtain the product and to prevent the increase in manufacturing costs.

このようなことから、近年、塑性加工の困難な2〜8%
のSiを含有する高珪素鉄合金の薄板材製造に、所謂“
超急冷法”を適用し、高珪素鉄合金溶湯から圧延等の塑
性加工を施すことなく直接的に薄板材を製造しようとの
試みがなされるようになってきた。
For this reason, in recent years, 2 to 8% of plastic processing is difficult.
The so-called "
Attempts have been made to apply the "ultra-quenching method" to directly manufacture thin sheets from high-silicon iron alloy molten metal without performing any plastic working such as rolling.

な書6、”治ロ、令、去゛′には、列えば第2図及び第
ζ暑、り模式ニーAで示さl’Lるよ5な単ロール去や
双ロール法・つほかにも、冷却用n体を使用する方法等
う・’to・されているが、要すSに連続的:こ移動更
新する・冷却内表面:こ金属溶湯を・噴射し、直後的:
こi+!l ’r片:!、′区」没は1.認(′Fして
°゛超急冷去°°と呼ばれている。第2図及び第3図:
Cおいて、符号1で示されさもζつ:i、8湯容器、符
号2で示されるものはρル)r【出ノズル、符号3で示
さ1するちのは冷却ロール、符号41で示されるものは
帯状薄板製品である。
Book 6, ``Jiro, Rei, ``,'' includes the single roll method, double roll method, etc. as shown in Figure 2 and ζ heat, and the schematic knee A as shown in 5. There is also a method using a cooling body, etc., but it is necessary to continuously move and update the cooling inner surface, inject the molten metal immediately after:
Koi+! l'r piece:! , 'ku' died on 1. (This is called ultra-rapid cooling. Figures 2 and 3:
At C, there are also ζ: i, 8 hot water containers, 8 hot water containers, ρ (r), denoted by 3, and cooling rolls, denoted by 41. The product is a strip-shaped thin plate product.

そして、超、角冷法により製作した高珪素鉄合金、1ノ
:’iFは、将来の低鉄屓;磁用鉄板としてその生呉を
担51料であるとまで注目される)こ至っている。
In addition, high-silicon iron alloy manufactured using the ultra-horn cooling method, iF, is attracting attention as a future low-iron alloy; .

ところで、従来、前記超急冷法を使用した高珪1;八電
山鉄板製造手段のうち、実用上何望視されているものの
代表列として次の方法をあげることができる。
By the way, among the conventional means for producing Takagi 1 and Hachidenzan iron plates using the above-mentioned ultra-quenching method, the following methods can be mentioned as representative methods that are considered to be of practical use.

′■ 特開昭56−87627号として従業された方法
: 2〜8%の8+を含み、残部が実質的にF″Cから成7
)溶湯+’、< 4 、@、 f’ニア 7Bで薄:i
7 j’c f−タ後、l X l 0−2−5 X 
l 0−7Torrの真空中でj2 、i、、 してj
1001ff内無方回集合11 Q ’t 4’)る方
法である。
'■ Method used as JP-A No. 56-87627: Contains 2 to 8% 8+, and the remainder consists essentially of F''C.
) Molten metal +', < 4, @, f' near 7B and thin: i
7 j'c f-after l X l 0-2-5 X
l In a vacuum of 0-7 Torr, j2, i,, and j
1001ff undirected set 11 Q 't 4').

(扱 !+4 :、il昭57−32327号として提
1対さ1λた方法 2−8 % )s l t 含f1j 6 トド4> 
1C1S 、 Sc、 ’r[:。
(Handling !+4: method 2-8% with 1 pair and 1λ as il Sho 57-32327)
1C1S, Sc, 'r[:.

I〜s、 Sl)、 Bi、 B或いはSol、Aiの
1種以上を拮晶粒成長抑利元素として含み、残部が実質
的にFcかも成る溶湯を超急冷法で薄帯化し、涜いてこ
れを焼鈍することによって1000面内無方向集合組織
を得る方法であり、保磁カニ009〜020C程度の電
磁鉄板が得られる。
A molten metal containing at least one of Bi, B, Sol, and Ai as an antagonistic grain growth suppressing element, and the remainder substantially consisting of Fc, is formed into a thin ribbon by an ultra-quenching method, and is then sacrificed. This is a method of obtaining a 1000 in-plane non-directional texture by annealing, and an electromagnetic iron plate with a coercivity crab of about 009 to 020C can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このような超急冷法を適用する手段によると、
上述のように保磁力が009〜0.20cと言う低い値
を示す高Si含有甑薄xi鉄敬の製J4が可能ではあっ
たが、−五、このようなTFJ、磁鉄代の製造方法には
次に示すような問題点が存在していたのである。
However, according to the means of applying such an ultra-quenching method,
As mentioned above, it was possible to manufacture J4 made of high Si-containing hot-skin xi-tekkei with a low coercive force of 0.09 to 0.20c, but -5. had the following problems.

即ち、超急冷法によってit)もれる薄帯板は、い−j
”+1も結晶粒が臣めて細かくなっており、従って、鬼
、ワが150μmを越えるよ5なものになると焼鈍を施
しても結晶粒の成長が十分に行われず、所望とする良好
な磁気特性の仮付が得られない。このため、堺鈍時に十
分な粒成長をさせるには、薄帯板の虫厚If 150μ
m以下に抑えなげればならな℃・。
That is, the thin strip plate that leaks due to the ultra-quenching method is
The crystal grains of +1 are also finer and finer, so if the diameter exceeds 150 μm, the crystal grains will not grow sufficiently even after annealing, and the desired good magnetic properties will not be achieved. Therefore, in order to achieve sufficient grain growth during Sakai dulling, the thickness of the thin strip plate If 150μ
We have to keep it below m℃.

〔問題点を解決するための手段〕[Means for solving problems]

そこで5本発明者等は、上述のような観点から、十分に
満足できろ結晶組織を有し、優れた軟i気持斗を示す面
内無方向性高珪素鉄薄板材の、板厚の大小罠左右されな
〜・(厚さ8150μmを越えるものであっても)、高
能率、かつ安定した製造方法を見出すへ(研究を行った
ところ、以下(al〜tc)に示される如ぎ知見を得る
罠至ったのである。
Therefore, from the above-mentioned viewpoint, the present inventors investigated the thickness of an in-plane non-oriented high-silicon iron thin plate material that has a sufficiently satisfactory crystal structure and exhibits excellent soft ionic resistance. To find a highly efficient and stable manufacturing method without being influenced by the trap (even for products exceeding 8150 μm thick) The trap was reached.

即ち、 (at  軟磁気特性ンこ悪影響を及ばすとされ、不可
避不純物として抑えられていたC元素の特定量をSi含
有1よが2〜8%の高珪素鉄合金に添jルすると、に+
′J品拉f戊長のためのhl鈍の際、6’l記C元=(
ζが″す゛ε鈍処理開始時の低温度域での粒成長り抑:
)、すすることとなって、ff1lえ・10〜100 
’C/ hr程度の易温辻度の遅い炉昇温を適用したと
しても、最終結晶it度(十分に大きいことが必要)に
、′悪影響を及ぼす焼鈍初期の結晶粒粗大化が生じない
など、結晶粒度への昇温速度や桐料板厚の影″冴が殆ん
どなくなること。
That is, when a specific amount of the element C, which was suppressed as an unavoidable impurity because it was believed to have an adverse effect on soft magnetic properties, is added to a high-silicon iron alloy containing 1 to 2 to 8% Si, +
'J 品拉f HL for blunt, 6'lki C original = (
Suppression of grain growth in low temperature range at the start of blunting treatment:
), sipping, ff1l 10-100
Even if a slow furnace temperature rise with an easy-to-reach temperature of about 'C/hr is applied, coarsening of crystal grains in the initial stage of annealing will not occur, which will have a negative effect on the final crystallization degree (needs to be sufficiently large). , the influence of the temperature increase rate on grain size and the thickness of the paulownia plate is almost eliminated.

tb+  一方、高珪素鉄合金に上記の如くCを倉口さ
せると、その融点が降下する上、MiAO粘!’i ’
y低くなり、薄帯製造時におけろ耐火物の出湯を4仔減
したり、或いは溶湯噴出用ノズルの詰まりf!:防止し
たりする対策が容易となること。
tb+ On the other hand, when C is added to a high-silicon iron alloy as described above, its melting point decreases and the MiAO viscosity decreases! 'i'
y becomes low, reducing the amount of refractory material dispensed by 4 during ribbon production, or clogging the molten metal spouting nozzle f! : Easier to take preventive measures.

(cl  まだ、1′!il記焼鈍に際してその雰囲気
を脱炭雰囲気に調整しておくと、該焼鈍(脱炭焼鈍)の
進行につれて結晶粒粗大化抑ル1jの役目を終ったC元
素が容易に除去され(C元素が磁気特性に悪影響を及ぼ
すことはIXi+述した通9である)、最終的には十分
大きな結晶粒度が達成されることとなって優れた磁気特
性の面内無方向性電磁沃仮が得られろこと。
(cl) If the atmosphere is adjusted to a decarburizing atmosphere during the annealing described in 1'!il, as the annealing (decarburizing annealing) progresses, the C element, which has completed its role of suppressing crystal grain coarsening 1j, will be easily removed. (It is IXi+ mentioned above that the C element has a negative effect on magnetic properties), and finally a sufficiently large crystal grain size is achieved, resulting in excellent in-plane non-direction of magnetic properties. I wish I could get electromagnetic power.

この発明は、上記知見KJ4づいてなされたものであり
、 S+:2.0〜80係。
This invention was made based on the above knowledge KJ4, and S+: 2.0 to 80.

C:0.016〜1. OOO−係 ?含有する高11素鉄合金溶湯を、実質的に超急冷法で
、+、7仮とした後、水素ガス又は不活性ガス、或(・
は両者の混合ガス雰囲気中にて、600〜1300’C
で脱炭焼鈍することにより、軟磁気特注の没れた面内無
方向性マ匡磁鉄板を板厚や焼鈍加熱速度等に影響される
ことなく安定して製造する点、 K特徴ケ有するものである。
C: 0.016-1. OOO-person? After the high-11 iron alloy molten metal containing molten metal is made into +,7 temporary by ultra-quenching method, it is heated with hydrogen gas or inert gas or (・
is 600 to 1300'C in a mixed gas atmosphere of both.
By decarburizing and annealing, it is possible to stably manufacture soft magnetic custom-made sunken in-plane non-oriented magnetic iron plates without being affected by plate thickness, annealing heating rate, etc. It is.

なお、前記「実質的に超急冷法で薄板とした」とは、超
急冷法のみによって高珪素鉄合金溶湯から直接所望厚の
薄板を得る場合を指すことはもちうん、高珪素鉄合金溶
湯を超急冷法にて薄板材とした後、更に1回又は中間焼
鈍(材料中のC含有量が0016〜1000%の範囲を
外れて変化することのない焼鈍)をはさんだ複数回の圧
延(熱1     間圧延及び冷間圧延を問わない)に
よって形状や表面性状等を調整するとともに所ゴ4厚の
if’7.1又とする場合をも意味するものである。
Note that the expression "substantially made into a thin plate by an ultra-quenching method" refers to the case where a thin plate of a desired thickness is obtained directly from a high-silicon iron alloy molten metal only by an ultra-quenching process. After forming a thin plate material using an ultra-quenching method, it is rolled (hot It also refers to the case where the shape, surface properties, etc. are adjusted by rolling (regardless of rolling or cold rolling), and the rolling thickness is set to 4 if'7.1.

次に、この発明の方法にお(・て、高f1素法合全中の
Si及びC含有量、並びに脱炭焼;・を温度を^;J記
の如くに数値限定した理由?:説明する。
Next, in the method of this invention, we will explain the Si and C content in the high f1 element process and the temperature for decarburization as described in J. .

A)S+含有危 Si成分は、電磁鉄扱の軟磁気特性改善に欠かせない元
素であるが、その含有量が20%未満で:ま所望の磁気
特注を確保することができず、一方、80%を越えて含
有させると鉄也の脆化が著しくなる上、飽和磁束密度も
低下することから、S1含有伝は20〜80%と定めた
A) The S+ containing hazardous Si component is an essential element for improving the soft magnetic properties of electromagnetic iron, but if its content is less than 20%, it may not be possible to secure the desired magnetic customization. If the S1 content exceeds 80%, the embrittlement of Tetsuya becomes significant and the saturation magnetic flux density also decreases, so the S1 content was set at 20 to 80%.

r3)  C含有量 C成分には、先にも述べたように、焼鈍開始時の低温域
での結晶粒成長を抑制することで、仮メ;材の厚さや昇
温速度にかかわりなく十分大ぎな結晶粒度を最終的に達
成せしめる作用のほか、浴場の融点や粘度低下させて板
材製造の作業性な向上させる作用もあるが、その含有量
が0.016%未満では前記作用に所望の効果が得られ
ず、他方、1.000%を越えてCを含有させると焼鈍
の際の脱炭に時間がかかり過ぎることから、C含有量は
0016〜1. OO0%と定めた。
r3) C content As mentioned earlier, by suppressing grain growth in the low temperature range at the start of annealing, the C content can be sufficiently large regardless of the thickness of the material or the heating rate. In addition to the effect of finally achieving a large grain size, it also has the effect of lowering the melting point and viscosity of the bath and improving the workability of sheet manufacturing, but if the content is less than 0.016%, the desired effect will not be achieved. On the other hand, if C content exceeds 1.000%, decarburization during annealing will take too much time, so the C content should be between 0.016 and 1.00%. It was set as 0%.

C)脱炭焼鈍温度 脱炭焼鈍は、水素ガス、又は不活性ガス(N。C) Decarburization annealing temperature Decarburization annealing is performed using hydrogen gas or inert gas (N).

Ar 、 1−1e 、 Ne等)、或(・はこれらの
2種以上から成る混合ガス雰囲気中に加熱・保持するこ
とで実施されるが、その温度が600℃未満では脱炭や
結晶位成長に所望の効果が得られず、他方1300”C
な越える湿度で焼鈍することは、実作業上多くの技術的
問題を抱えるようになるので、@記焼鈍湿度は600〜
1300’Cと定めた。なお、焼鈍時間は5分〜12時
間程度とするのが好ましい。
(Ar, 1-1e, Ne, etc.) or (・) is carried out by heating and holding in a mixed gas atmosphere consisting of two or more of these, but if the temperature is less than 600°C, decarburization and crystal orientation growth may occur. On the other hand, the desired effect was not obtained at 1300"C.
Annealing at humidity exceeding 600 will cause many technical problems in actual work, so
The temperature was set at 1300'C. Note that the annealing time is preferably about 5 minutes to 12 hours.

ま1こ、焼鈍の際、雰囲気の露点を−30〜−70℃に
;til+御することが、010C以下と言う低い保磁
力を安定して実現する上で好ましい。なぜなら、前記露
点が−30”Cを越えると低保磁力の付与が不安定とな
りがちであり、一方、露点が−70”Cを下回ると脱炭
に比較的多くの時間な必妥としがちだからである。
Also, during annealing, it is preferable to control the dew point of the atmosphere to -30 to -70°C in order to stably achieve a low coercive force of 010C or less. This is because if the dew point exceeds -30"C, the application of low coercive force tends to become unstable, while if the dew point falls below -70"C, it tends to take a relatively long time for decarburization. It is.

上述のように、この発明は、1高珪素鉄合金中)C所定
量のCを積堅的に添加した合金溶湯から協、セ冷法にて
薄帯を得、これ?不活性ガスや水素ガス中で脱炭しなが
ら拉成長させることにより、+j’7?!?厚や昇温速
度の影響による磁気特性の劣化を抑えつつ虚れた特性の
面内無方向性7u磁鉄也を得る技術に関するものである
が、幻下、実施例によりこの発明化更に具体的に説明す
る。
As described above, the present invention involves obtaining a thin ribbon from a molten alloy to which a predetermined amount of C has been added in a high-silicon iron alloy by a cooling process. +j'7? ! ? This invention relates to a technique for obtaining an in-plane non-directional 7u magnetic iron with flattened characteristics while suppressing the deterioration of magnetic properties due to the effects of thickness and heating rate. explain.

〔実施例〕〔Example〕

夫抛例1 まず、第1表に示されるような成分組成の6C時を2種
鎮用意し、第3図に示した90き双ロールを去(ロール
径:200a+i、回転a: l 000 rpm。
Example 1 First, two types of 6C cylinders with the composition shown in Table 1 were prepared, and the 90mm twin rolls shown in Fig. 3 were removed (roll diameter: 200a + i, rotation a: l 000 rpm). .

溶湯噴出ノズル孔=]5韮φの丸孔)によって。Molten metal spouting nozzle hole =] 5 mm φ round hole).

直接、厚さ:50−300μnq+幅:1−の+i’7
 ”’2とした。なお、150μm厚以上の薄帯につ℃
・ては、表面が若干酸化していたのでエフ−1ノーペー
パー研磨により酸化層を除去した。
Direct, thickness: 50-300μnq+width: 1-+i'7
”'2.In addition, for ribbons with a thickness of 150 μm or more, the
- Since the surface was slightly oxidized, the oxidized layer was removed by polishing with F-1 no paper.

第1表 (注)弓フ印は、本発明の範囲から外れていることを示
す。
Table 1 (Note) A mark with a bow indicates that it is out of the scope of the present invention.

次いで、これらK、 雰囲気ガス ・・・H2: 50容量係、Ar:50容
量%の混合ガス、 露   点  ・・・  −20℃。
Next, these K, atmospheric gas: mixed gas of H2: 50% by volume, Ar: 50% by volume, dew point: -20°C.

昇温速度  = 100℃/ ml n +均熱温度 
・・・・・・ 1100℃。
Heating rate = 100℃/ml n + soaking temperature
・・・・・・ 1100℃.

均熱保持時間 ・・2時間 の脱炭焼鈍を施した。Soaking time: 2 hours Decarburization annealing was performed.

第1図は、このよ5Kt、て得られた薄帯板の板厚と保
磁力との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the thickness and coercive force of the thin ribbon plate obtained by applying 5Kt.

41図からも、C含有量がo、oo5%と不可避不純物
程度の溶湯Bから得られた薄帯板は、板厚が150μm
?:越えると保磁力が急増するの:ニス1して、012
%のCな積極添加した溶湯Aから得られた薄帯板は板厚
にそれほど影響されることなく低保磁力を維持している
ことが明らかである。
From Figure 41, the thin strip plate obtained from molten metal B with a C content of o and oo 5%, which is about the same as unavoidable impurities, has a plate thickness of 150 μm.
? : When exceeded, the coercive force increases rapidly: Varnish 1, 012
It is clear that the thin strip plate obtained from the molten metal A to which % of C was actively added maintains a low coercive force without being significantly affected by the plate thickness.

このように、Cを適1含有した高珪素鉄薄帯を水素−不
活性ガス中に於いて脱炭しながら結晶粒成長させると、
最終的な結晶粒の粗大化が十分に促進され、少なくとも
300μm厚までの磁気特性の優れた面内無方向性高珪
素鉄薄帯を得ることができ、現在市販されている珪素鋼
板は薄いもので300μm程度であり、超急冷法による
ものでも200〜300μmのものが望まれている二と
からして、本発明のメリットは非常に大きいことがわか
る。
In this way, when a high-silicon iron ribbon containing an appropriate amount of C is decarburized and grain-grown in a hydrogen-inert gas,
The coarsening of the final crystal grains is sufficiently promoted, and it is possible to obtain an in-plane non-oriented high silicon iron ribbon with excellent magnetic properties up to a thickness of at least 300 μm, and currently commercially available silicon steel sheets are thin. The thickness is about 300 .mu.m, and 200 to 300 .mu.m is desired even if the ultra-quenching method is used. Therefore, it can be seen that the merits of the present invention are very large.

実施例2 第2表に示されるような成分組成の溶湯を用意し、双ロ
ール法(ロール径:200m1+、回転数:1000 
rpm、溶湯噴出ノズル孔=151翼φの丸孔)によっ
て、直接、厚さ=120μm1幅=8Uの薄帯とした。
Example 2 A molten metal having the composition shown in Table 2 was prepared and subjected to a twin roll method (roll diameter: 200 m1+, number of revolutions: 1000
rpm, molten metal spouting nozzle hole = round hole with blade diameter of 151) to directly form a thin ribbon with thickness = 120 μm and width = 8U.

第2表 (江)・k印は、本発明の範囲から外れていることを示
す。
The mark k in Table 2 indicates that it is out of the scope of the present invention.

次に、得られた薄帯を第3表に示される各種条件で焼鈍
し、その保磁力を(り定した。
Next, the obtained ribbon was annealed under various conditions shown in Table 3, and its coercive force was determined.

得られた結果を第3表に併せて示した。The obtained results are also shown in Table 3.

第3表に示されろ結果からも、本発明の方法によれば、
焼鈍時の昇温速度にかかわりな(低い保磁力の面内無力
1目性ta鉄板が得られるのに対して、C元素を積極的
に添加しない溶湯な使用した比較例では、露点コントロ
ールした水素−不活性ガス中で焼鈍すれば保磁力の低下
がみられはするが、昇温速度の影響を強く受け、例えば
40℃/ h rと言う遅い焼鈍速度では保磁カニ0・
150e  と磁気特性が劣化していることがわかる。
From the results shown in Table 3, according to the method of the present invention,
Regardless of the heating rate during annealing, a ta iron plate with a low coercive force and in-plane powerlessness can be obtained, whereas in a comparative example using a molten metal without actively adding C elements, hydrogen with a controlled dew point was used. - If annealing is performed in an inert gas, a decrease in coercive force can be seen, but it is strongly affected by the temperature increase rate.
150e, indicating that the magnetic properties have deteriorated.

〔総括的な効果〕[Overall effect]

以上述べたように、この発明によれば、優れた軟磁気特
性を何する高珪素鉄合金から成る面内無方向性電磁鉄板
を、焼鈍の際の加熱速度や板厚等に影響されることなく
、安定して製造することができるなど、産業上有用な効
果がもたらされるのである。
As described above, according to the present invention, an in-plane non-oriented electromagnetic iron plate made of a high-silicon iron alloy that has excellent soft magnetic properties can be manufactured without being affected by the heating rate, plate thickness, etc. during annealing. This brings about industrially useful effects, such as stable production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高珪素鉄合金薄帯板の板厚と焼鈍後の保磁力
との関係を示したグラフであり、第2図は、溶湯超急冷
法の1つである単ロール法にて薄板材を製造している様
子を模式化した概略図、 第3図は、同じく双ロール法にて薄板材をM造している
様子を模式化した概略図である。 図面において、 1・・・溶湯容器、 2.溶湯噴出ノズル、  3・・
冷却ロール、  4・帯状薄板製品。
Figure 1 is a graph showing the relationship between the thickness of a high-silicon iron alloy thin strip plate and the coercive force after annealing. FIG. 3 is a schematic diagram illustrating how a thin plate material is manufactured. FIG. 3 is a schematic diagram illustrating how a thin plate material is manufactured using the twin roll method. In the drawings: 1... Molten metal container, 2. Molten metal spout nozzle, 3...
Cooling roll, 4. Strip-shaped thin plate products.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:2.0〜8.0重量%、 C:0.016〜1.000重量% を含有する高珪素鉄合金溶湯を、実質的に超急冷法で薄
板とした後、水素ガス又は不活性ガス、或いは両者の混
合ガス雰囲気中にて、600〜1300℃で脱炭焼鈍す
ることを特徴とする、面内無方向性電磁鉄板の製造方法
(1) A high-silicon iron alloy molten metal containing 2.0 to 8.0% by weight of Si and 0.016 to 1.000% by weight of C is made into a thin plate by an ultra-quenching method, and then heated with hydrogen gas. A method for manufacturing an in-plane non-oriented electromagnetic iron plate, characterized by decarburizing and annealing at 600 to 1300°C in an atmosphere of an inert gas or a mixed gas of both.
(2)脱炭焼鈍雰囲気の露点を−30〜−70℃とする
、特許請求の範囲第1項に記載の面内無方向性電磁鉄板
の製造方法。
(2) The method for manufacturing an in-plane non-oriented electromagnetic iron plate according to claim 1, wherein the decarburization annealing atmosphere has a dew point of -30 to -70°C.
JP16541484A 1984-08-07 1984-08-07 Manufacture of intrasurface nonoriented electrical iron sheet Pending JPS6144130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16541484A JPS6144130A (en) 1984-08-07 1984-08-07 Manufacture of intrasurface nonoriented electrical iron sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16541484A JPS6144130A (en) 1984-08-07 1984-08-07 Manufacture of intrasurface nonoriented electrical iron sheet

Publications (1)

Publication Number Publication Date
JPS6144130A true JPS6144130A (en) 1986-03-03

Family

ID=15811959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16541484A Pending JPS6144130A (en) 1984-08-07 1984-08-07 Manufacture of intrasurface nonoriented electrical iron sheet

Country Status (1)

Country Link
JP (1) JPS6144130A (en)

Similar Documents

Publication Publication Date Title
US3636579A (en) Process for heat-treating electromagnetic steel sheets having a high magnetic induction
JPS598049B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
EP0484904B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6144130A (en) Manufacture of intrasurface nonoriented electrical iron sheet
US3130093A (en) Production of silicon-iron sheets having cubic texture
KR940006492B1 (en) Process for producing grain-oriented electrial steel sheet having low watt loss
JPH01119622A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
JPH01119621A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic and glass film characteristic
KR100241005B1 (en) The manufacturing method of oriented electric steel sheet with only one cold rolling processed
JPH10102145A (en) Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPS5853694B2 (en) Method for manufacturing in-plane non-oriented high silicon steel ribbon with excellent magnetic properties
JPH0222421A (en) Production of unidirectional type silicon steel sheet having superlow iron loss
JPH05247623A (en) Manufacture of high silicon steel strip in continuous line
KR970007037B1 (en) Method for manufacturing oriented electrical steel sheet having excellent magnetic properties
JP3271651B2 (en) Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method
JP3526312B2 (en) Method for producing oriented silicon steel sheet with high magnetic flux density
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPS58151423A (en) Manufacture of unidirectional silicon steel plate with superior magnetic characteristic
JPS6256203B2 (en)
JPH0768581B2 (en) Method for producing grain oriented silicon steel with small amount of added boron
JPS6256204B2 (en)
JPH0465901B2 (en)
JPS635454B2 (en)