JPS6143429B2 - - Google Patents

Info

Publication number
JPS6143429B2
JPS6143429B2 JP23383284A JP23383284A JPS6143429B2 JP S6143429 B2 JPS6143429 B2 JP S6143429B2 JP 23383284 A JP23383284 A JP 23383284A JP 23383284 A JP23383284 A JP 23383284A JP S6143429 B2 JPS6143429 B2 JP S6143429B2
Authority
JP
Japan
Prior art keywords
temperature
carburizing
paste
cemented carbide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23383284A
Other languages
Japanese (ja)
Other versions
JPS61110758A (en
Inventor
Tetsuo Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIRAITO KOGYO KK
Original Assignee
HAIRAITO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIRAITO KOGYO KK filed Critical HAIRAITO KOGYO KK
Priority to JP23383284A priority Critical patent/JPS61110758A/en
Publication of JPS61110758A publication Critical patent/JPS61110758A/en
Publication of JPS6143429B2 publication Critical patent/JPS6143429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はWC−Co系超硬合金の低温浸炭方法に
関する。 (従来の技術) 被熱処理材を適当な媒質中で500〜600℃の温度
範囲に加熱して、その表面層に窒素を浸透させる
低温窒化は公知の熱処理法であるが、低温浸炭に
ついて報告した文献は今までほとんど見当たらな
い(普通鋼の浸炭では910〜1050℃の温度を採用
する)。 (発明が解決しようとする問題点) 鉄鋼材料の低温窒化では下記のごとき利点があ
ることが既知であるから、もし超硬合金の低温浸
炭が可能となればやはり下記のごとき類似の利点
が期待され、工業的に非常に魅力的である。 従来の鉄鋼材料の浸炭温度より約400℃低温
で、即ち500〜600℃での加熱下で表面硬度は一
定の高い値になる。 引かき抵抗は減少し、摩耗抵抗は増加する。 疲れ限度と耐キヤビテーシヨン性は増加す
る。 処理製品の熱変形や熱応力は小さい。 浸透層は切削、研摩などの仕上加工ができ
る。 本発明は、処理製品の熱変形や熱応力が最小と
なり、木材切削用精密工具等の熱処理に応用する
のに適するWC−Co系超硬合金の低温浸炭方法を
提供することを目的としている。 (問題点を解決するための手段、作用) 本発明の要旨は、WC−Co系超硬合金を適当な
洗浄剤で脱脂処理し、活性炭を含む浸炭ペースト
を塗布し、500〜600℃で加熱処理することよりな
るWC−Co系超硬合金の低温浸炭方法である。 本発明によれば、低温浸炭処理を行なうWC−
Co系超硬合金の表面をまず例えばエチルアルコ
ールで脱脂処理する。 次に、脱脂処理されたWC−Co系超硬合金の表
面に活性炭を含む浸炭ペースト、例えば60%活性
炭+20%黄血塩〔K4Fe(CN)6〕+20%炭酸バリ
ウム〔BaCO3〕の組成の浸炭ペーストを塗布し、
乾燥させる。 そして、例えば高周波加熱により500〜600℃に
加熱処理し、浸炭させるのである。 本発明方法においては、洗浄剤例えばエチルア
ルコールによる洗浄効果とペースト中に配合した
活性炭の浸炭性を大きく評価すべきであると考え
られる。 (実施例) 木材切削工具用超合金ハイアロイG1(WC−
5%Co)、G2(WC−7%Co)およびG3
(WC−9%Co)規格の3種の試験片を用い、本
発明方法により低温浸炭を行なつた。 まず、これら試験片をエチルアルコールで脱脂
処理し、その後重量を直示天秤で秤量した。この
秤量操作から後は試験片はすべてピンセツトで取
り扱つた。 試験片上に60%活性炭+20%黄血塩〔K4Fe
(CN)6〕+20%炭酸バリウム〔BaCO3〕の組成の浸
炭ペーストを塗布し、100℃の温度で1時間、電
気乾燥器内で乾燥させた。なお、浸炭ペーストの
結合剤には片栗粉を使用した。 乾燥後、試験片を大気中で高周波加熱により加
熱処理した。 条件は、処理温度500,550および600℃、処理
時間2,5および10分、ペースト厚さ1および2
mmである。 以上のようにして浸炭処理を施した試験片と比
較対照するために、同様な条件で熱履歴を与えた
試験片(以下無処理という)を作製した。無処理
の試験片には、脱脂処理後の酸化防止のため人造
氷晶石(Na3AIF6)を片栗粉で粘結して塗布し、
100℃の温度で30分間乾燥させた。さらに、剥離
防止のため酸化鉄(Fe2O3)を水ガラスで粘結し
て塗布し、同温度で1時間電気乾燥させた。 浸炭処理および無処理の試験片について、処理
前後の重量変化の測定、微小硬度試験(試験荷重
1Kg)、抗折力試験(同一処理条件の試料4個を
作製してそれらの平均値を算出)、X線回折およ
び金属顕微鏡と走査型電顕による組織観察などを
行なつた。 第1表に超硬合金の表面硬度の増加率を示す
が、約6〜16%増加させることができた。第2表
から、硬度の上昇率はG1合金が最大で、G2と
G3合金はほぼ同率であり、これはCo含有量の
少ない合金ほど硬度が大きくなることが既知であ
るので当然の結果と考えられる。
(Industrial Application Field) The present invention relates to a low-temperature carburizing method for WC-Co cemented carbide. (Prior art) Low-temperature nitriding is a well-known heat treatment method in which the material to be heat-treated is heated to a temperature range of 500 to 600°C in an appropriate medium and nitrogen penetrates into the surface layer, but low-temperature carburization has been reported. Until now, almost no literature has been found (temperatures of 910 to 1050°C are used for carburizing ordinary steel). (Problem to be solved by the invention) It is known that low-temperature nitriding of steel materials has the following advantages, so if low-temperature carburizing of cemented carbide becomes possible, similar advantages as below can be expected. and is very attractive industrially. The surface hardness reaches a certain high value under heating at about 400°C lower than the carburizing temperature of conventional steel materials, that is, 500-600°C. Scratch resistance decreases and abrasion resistance increases. Fatigue limits and cavitation resistance are increased. Thermal deformation and thermal stress of treated products are small. The permeable layer can be finished by cutting, polishing, etc. An object of the present invention is to provide a low-temperature carburizing method for WC-Co cemented carbide, which minimizes thermal deformation and thermal stress of the treated product and is suitable for application to heat treatment of precision tools for wood cutting. (Means and effects for solving the problems) The gist of the present invention is to degrease WC-Co cemented carbide with a suitable cleaning agent, apply carburizing paste containing activated carbon, and heat it at 500 to 600°C. This is a low-temperature carburizing method for WC-Co cemented carbide. According to the present invention, WC-
First, the surface of the Co-based cemented carbide is degreased using, for example, ethyl alcohol. Next, a carburizing paste containing activated carbon, such as 60% activated carbon + 20% yellow blood salt [K 4 Fe (CN) 6 ] + 20% barium carbonate [BaCO 3 ], is applied to the surface of the degreased WC-Co cemented carbide. Apply carburizing paste of the composition,
dry. Then, it is heat-treated to 500 to 600°C using high-frequency heating, for example, to carburize it. In the method of the present invention, it is considered that the cleaning effect of a cleaning agent such as ethyl alcohol and the carburizing property of activated carbon blended into the paste should be greatly evaluated. (Example) Superalloy High Alloy G1 (WC-
5%Co), G2 (WC-7%Co) and G3
Low-temperature carburization was performed using the method of the present invention using three types of test specimens of (WC-9%Co) standard. First, these test pieces were degreased with ethyl alcohol, and then weighed using a direct scale. After this weighing operation, all test pieces were handled with tweezers. 60% activated carbon + 20% yellow blood salt [K 4 Fe
(CN) 6 ] + 20% barium carbonate [BaCO 3 ] was applied and dried in an electric dryer at a temperature of 100° C. for 1 hour. Note that potato starch was used as a binder for the carburizing paste. After drying, the test piece was heat-treated by high-frequency heating in the atmosphere. The conditions were: treatment temperature 500, 550 and 600℃, treatment time 2, 5 and 10 minutes, paste thickness 1 and 2.
mm. In order to compare and contrast with the test piece that was carburized as described above, a test piece that was given a thermal history under similar conditions (hereinafter referred to as untreated) was prepared. Artificial cryolite (Na 3 AIF 6 ) was caked with potato starch and applied to the untreated specimen to prevent oxidation after degreasing.
Dry for 30 minutes at a temperature of 100°C. Furthermore, to prevent peeling, iron oxide (Fe 2 O 3 ) was applied by caking it with water glass, and it was electrically dried at the same temperature for 1 hour. Measurement of weight change before and after treatment, microhardness test (test load 1Kg), transverse rupture strength test (prepared 4 samples under the same treatment conditions and calculated their average value) for carburized and untreated test pieces. , X-ray diffraction, and structural observation using a metallurgical microscope and a scanning electron microscope. Table 1 shows the rate of increase in surface hardness of cemented carbide, and it was possible to increase the surface hardness by about 6 to 16%. From Table 2, the rate of increase in hardness is the highest for the G1 alloy, and almost the same rate for the G2 and G3 alloys.This is considered a natural result since it is known that the harder the alloy has a lower Co content, the higher the hardness. It will be done.

【表】【table】

【表】 第1図によれば、試験片の重量増加も約0.8〜
4.5%に達し、G1,G2およびG3の各合金の
重量増加率は処理温度、処理時間およびペースト
厚さの関数となつていることがわかる。第1図の
上欄に列記した数字は処理温度、処理時間、ペー
スト厚さの処理条件を示すが、ここで、同図のa
は試験片の重量増加に及ぼす処理温度の影響、b
はペースト厚さの影響、cは処理時間の影響を見
るためにこの3要因についてそれぞれ大きさの順
に配列し、さらにその要因と組み合わせた他の2
要因の組み合わせの積を、試料に投入されるエネ
ルギーと考えてそれらの値の小さいものから大き
いものへと配列したものである。これらの図から
試験片の重量増加は明らかに投入エネルギーの関
数であり、破線に示すごとき指数関数曲線を描く
ことが認められる。 本処理後の試験片をX線回折した結果を第2図
に示す。この図によれば、試験片表面における生
成化合物はCo2Cであり、Co2Cなる化合物のピー
クは発見されなかつた。従つて、この形成が本法
による超硬合金の硬化や重量変化の主因であると
考えられる。 次に、本処理後の試験片の硬度と処理時間との
関数を第3図に示す。この図によれば、処理時間
が長時間であるほど硬度が増加するのが一般であ
るが、これはペースト厚さにも関係があるので上
記の例外現象を生ずる場合も多い。例えば、ペー
ストを1mm厚さに塗布した試験片を浸炭する場
合、処理時間を5分から10分に増加するとかえつ
て硬度が減少することもある。この原因は焼結材
料の硬度測定時の問題点(多孔性による)のみで
はなく、ペースト塗布量の多少にも帰せられるべ
きである。即ち、ペーストの塗布量が少ないため
炭素の供給が最後まで行なわれず、一旦拡散浸透
した炭素でも温度が浸炭温度に保持されている
と、活性を失なわず、低炭素濃度の方へ拡散して
いく、いわゆる脱炭現象が生ずるためであろうと
考えられる。そのため、ペースト厚さに応じて適
当な処理時間を選定しなければならない。 さらに、浸炭処理試験片の抗折力と処理時間と
の関係を調べた結果を第3図に破線で示す。これ
によれば、処理時間が長いほど、炭素の拡散層の
深さが次第に深くなるため、硬度と逆の傾向、即
ち処理時間が長くなると抗折力値が低下する現象
を生じたものと考えられる。 最後に、浸炭処理と無処理の抗折力用試験片に
ついて走査型電顕で破面を観察した写真を第4図
に示す。これによれば、処理材(G2、ペースト
厚さ1mm、550℃、5分の処理条件時に得られた
浸炭層の深さは、硬度の測定結果および組織の観
察結果より約20μmであることが判明)と無処理
材の表面状況の差異が明瞭に確認され、本方法の
有効性が実証された。 (発明の効果) 本発明方法によりWC−Co系超硬合金に浸炭ペ
ーストを用いて500〜600℃の低温で浸炭させるこ
とができ、被処理合金の表面にはCo2Cなる組成
の炭化物層を形成することができる。 この低温浸炭方法はあらゆる熱処理技術中で最
低温度の熱処理法であり、処理製品の熱変形や熱
応力は最小となり、精密工具等に適用するのに最
適である。 最後に、本方法の超硬工具への適用について簡
単に述べる。従来周知の高温浸炭法では、銅ろう
で超硬チツプをのう付け後、工具全体をペースト
被覆して浸炭すれば、銅ろうが溶融するのでこの
作業は実行不能である。しかし、本方法のごとき
低温浸炭法により(超硬チツプの部分には浸炭用
ペースト、基板部分には前記の無処理時に使用し
たペーストを酸化防止のために塗布する)このよ
うな加工を実行することが可能となつたことは、
従来の超硬工具よりも高硬度、長寿命および対摩
耗性が約3倍に向上した工具が製造可能となる点
で特筆すべきである。
[Table] According to Figure 1, the weight increase of the test piece is approximately 0.8 ~
It can be seen that the weight increase rate of each alloy G1, G2 and G3 is a function of processing temperature, processing time and paste thickness. The numbers listed in the upper column of Fig. 1 indicate the processing conditions such as processing temperature, processing time, and paste thickness.
is the effect of treatment temperature on the weight increase of the specimen, b
In order to see the effect of paste thickness and c to see the effect of processing time, these three factors are arranged in order of magnitude, and then the other two factors combined with that factor are
The product of the combination of factors is considered to be the energy input to the sample, and the values are arranged from smallest to largest. From these figures, it can be seen that the weight increase of the test piece is clearly a function of the input energy, and an exponential function curve as shown by the broken line is observed. FIG. 2 shows the results of X-ray diffraction of the test piece after this treatment. According to this figure, the compound produced on the surface of the test piece was Co 2 C, and no peak of the compound Co 2 C was found. Therefore, this formation is considered to be the main cause of hardening and weight change of cemented carbide by this method. Next, FIG. 3 shows the function of the hardness of the test piece after this treatment and the treatment time. According to this figure, the longer the processing time, the more the hardness generally increases, but since this is also related to the paste thickness, the above-mentioned exceptional phenomenon often occurs. For example, when carburizing a test piece coated with paste to a thickness of 1 mm, increasing the treatment time from 5 minutes to 10 minutes may actually reduce the hardness. The cause of this should be attributed not only to the problem in measuring the hardness of the sintered material (due to porosity) but also to the amount of paste applied. In other words, because the amount of paste applied is small, carbon is not supplied to the end, and even if carbon has once diffused and permeated, if the temperature is maintained at the carburizing temperature, it will not lose its activity and will diffuse toward a lower carbon concentration. This is thought to be due to the so-called decarburization phenomenon occurring. Therefore, an appropriate processing time must be selected depending on the paste thickness. Furthermore, the relationship between the transverse rupture strength of the carburized test piece and the treatment time was investigated, and the results are shown in FIG. 3 by the broken line. According to this, the longer the treatment time, the deeper the carbon diffusion layer becomes, which is thought to cause the opposite trend to hardness, that is, the longer the treatment time, the lower the transverse rupture strength value. It will be done. Finally, FIG. 4 shows photographs of the fracture surfaces of the transverse rupture strength specimens, with and without carburization treatment, observed with a scanning electron microscope. According to this, the depth of the carburized layer obtained under treatment conditions of treated material (G2, paste thickness 1 mm, 550°C, 5 minutes) is approximately 20 μm based on hardness measurement results and microstructure observation results. The effectiveness of this method was demonstrated by clearly confirming the difference between the surface condition of the untreated material and the surface condition of the untreated material. (Effects of the Invention) According to the method of the present invention, a WC-Co cemented carbide can be carburized at a low temperature of 500 to 600°C using a carburizing paste, and a carbide layer with a composition of Co 2 C is formed on the surface of the alloy to be treated. can be formed. This low-temperature carburizing method is the lowest-temperature heat treatment method among all heat treatment techniques, and the thermal deformation and thermal stress of the treated product are minimized, making it ideal for application to precision tools and the like. Finally, we briefly discuss the application of this method to cemented carbide tools. In the conventionally known high-temperature carburizing method, if the entire tool is covered with a paste and then carburized after the cemented carbide chip has been applied with copper solder, this operation cannot be carried out because the copper solder will melt. However, such processing can be carried out using a low-temperature carburizing method such as the present method (carburizing paste is applied to the carbide chip part, and the paste used when no treatment is applied is applied to the substrate part to prevent oxidation). What has become possible is that
It is noteworthy that it is possible to manufacture tools with higher hardness, longer life, and about three times the wear resistance than conventional carbide tools.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料の浸炭後の重量増加を示す図であ
り、同図aは試料の重量増加に与える浸炭温度の
影響を示す図、同図bは試料の重量増加に与える
ペースト厚さの影響を示す図、同図cは試料の重
量増加に与える処理時間の影響を示す図である。
第2図は浸炭後の試料のX線回折パターンを示す
図である。第3図は各温度における浸炭後の試料
の処理時間、硬さおよび抗折力値の関係を示す図
である。第4図はSEMによる試料の組織写真で
ある。
Figure 1 shows the weight increase after carburizing the sample, Figure a shows the effect of carburizing temperature on the weight increase of the sample, and Figure b shows the effect of paste thickness on the weight increase of the sample. FIG. 2C is a diagram showing the influence of processing time on the weight increase of the sample.
FIG. 2 is a diagram showing the X-ray diffraction pattern of the sample after carburization. FIG. 3 is a diagram showing the relationship between processing time, hardness, and transverse rupture strength value of the sample after carburization at each temperature. Figure 4 is a photograph of the structure of the sample taken by SEM.

Claims (1)

【特許請求の範囲】 1 WC−Co系超硬合金を脱脂処理し、活性炭を
含む浸炭ペーストを塗布し、500〜600℃で加熱処
理することになるWC−Co系超硬合金の低温浸炭
方法。 2 浸炭ペースト中の活性炭の含有量が10〜90%
である特許請求の範囲第1項記載の低温浸炭方
法。
[Claims] 1. A low-temperature carburizing method for WC-Co cemented carbide, which involves degreasing WC-Co cemented carbide, applying carburizing paste containing activated carbon, and heat-treating at 500 to 600°C. . 2 Activated carbon content in carburizing paste is 10-90%
A low temperature carburizing method according to claim 1.
JP23383284A 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature Granted JPS61110758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23383284A JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23383284A JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Publications (2)

Publication Number Publication Date
JPS61110758A JPS61110758A (en) 1986-05-29
JPS6143429B2 true JPS6143429B2 (en) 1986-09-27

Family

ID=16961260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23383284A Granted JPS61110758A (en) 1984-11-06 1984-11-06 Method for carburizing wc-co sintered hard alloy at low temperature

Country Status (1)

Country Link
JP (1) JPS61110758A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100341647C (en) * 2003-09-24 2007-10-10 自贡硬质合金有限责任公司 Production process of wire drawing hard alloy die with gradient varying performance
EP1712658B1 (en) 2004-02-04 2011-07-13 Honda Motor Co., Ltd. Method for surface treatment of metal material
JP4494995B2 (en) * 2004-02-04 2010-06-30 本田技研工業株式会社 Metal surface treatment method
JP4494996B2 (en) * 2004-02-09 2010-06-30 本田技研工業株式会社 Passivation membrane removal method
KR20090034390A (en) * 2006-07-24 2009-04-07 스와겔로크 컴패니 Metal article with high interstitial content
JP4858071B2 (en) * 2006-10-19 2012-01-18 トヨタ自動車株式会社 Steel surface treatment method and surface-treated steel material
DE112010005202B4 (en) * 2010-01-29 2018-05-03 National University Corporation Kumamoto University Process for treating a metal surface

Also Published As

Publication number Publication date
JPS61110758A (en) 1986-05-29

Similar Documents

Publication Publication Date Title
Takeda et al. Physical properties of iron-oxide scales on Si-containing steels at high temperature
US6037061A (en) Method of forming passive oxide film based on chromium oxide, and stainless steel
CN103305844A (en) Composite coating with high-temperature oxidation resistance and abrasion resistance on surface of titanium alloy and preparation method of composite coating
EP0863223B1 (en) Surface-hardened titanium-base material and method of surface-hardening titanium material
JPS6143429B2 (en)
US2887420A (en) Surface treatments for articles made from heat resisting alloys
AU7201487A (en) Shallow case hardening and corrosion inhibition process
KR100905271B1 (en) Method for treat of Heat resisting steel by Gas nitriding
US2875112A (en) Process for improving the physical properties of chromized articles
JPH0649924B2 (en) Method for applying a nitride layer to a member made of titanium and titanium alloy
TW460621B (en) Method for codeposition of silicon and nitrogen on stainless steel surface
SU1168626A1 (en) Composition for alumosilicating chrome=nickel steels
JPH01111858A (en) Titanium-aluminum alloy
JPH05445B2 (en)
JPS60108204A (en) Ceramic tool for high-speed cutting
SU1601195A1 (en) Composition for borating steel articles
JPH0218383B2 (en)
JPS5811778A (en) Boron-aluminum composite coating method
JPH02190403A (en) Production of cutting tool made of surface-coated tungsten carbide-based sintered hard alloy
JPS58126971A (en) Iron-nickel composite covering method
SU1468965A1 (en) Method of thermomechanical treatment of steel articles
DE2110339A1 (en) Alloy and articles made from it
SU1164313A1 (en) Composition for borating steel articles
JPS60190556A (en) Surface treatment of molybdenum-base alloy member
JPS59232267A (en) Surface treatment of iron and steel material