JPS6143412A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6143412A
JPS6143412A JP16482284A JP16482284A JPS6143412A JP S6143412 A JPS6143412 A JP S6143412A JP 16482284 A JP16482284 A JP 16482284A JP 16482284 A JP16482284 A JP 16482284A JP S6143412 A JPS6143412 A JP S6143412A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor device
manufacturing
gaas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16482284A
Other languages
Japanese (ja)
Other versions
JP2577544B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Soubee Suzuki
鈴木 壮兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP59164822A priority Critical patent/JP2577544B2/en
Publication of JPS6143412A publication Critical patent/JPS6143412A/en
Application granted granted Critical
Publication of JP2577544B2 publication Critical patent/JP2577544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To perform a thickness control with atomic unit accuracy and to facilitate the manufacture of devices of various kinds by a method wherein a notch part almost in vertical direction is formed on a part of a semiconductor surface, and the gas containing component element of a thin film is introduced into the side wall of said notched part. CONSTITUTION:A P<->GaAs layer 32 and an N<+>GaAs layer 33 are formed on an N<+>GaAs substrate 31, and a U-shaped aperture 34 is formed on a part of the surface of the semiconductor substrate. Said semiconductor substrate 27, whereon the aperture 34 is formed, is arranged on the heater 22 of the growing vessel 1 of a crystal device. An exhaust device 3 is coupled to the growing vessel 1 through the intermediary of a gate vale 2 and, at the same time, gas sources 16-21 are coupled through the intermediaries of nozzles 4-9 and valves 10- 15. Molecular gas containing the compound element of thin film sent from the sources of gas 16-18 and 19-21, is introduced from nozzles 4-6 and 7-9 alternately, a thickness control is performed in atomic unit accuracy, and ultra-high speed devices such as a vertical type HEMT, an ideal type SIT, a three-dimentional device and the like are manufactured.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は縦形外1’[ira導トランジスタ(以下、S
ITと略す)等の半導体表面の一部に切り込み部や1段
差部分を有する半導体装置の製造方法に係り、特に、切
り込み部側壁へ原子単位の昔度の薄膜を均一に形成する
方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a vertical type non-1' [ira conductive transistor (hereinafter referred to as S
The present invention relates to a method of manufacturing a semiconductor device having a notch or one-step difference in a part of the surface of a semiconductor such as a semiconductor device (abbreviated as IT), and particularly relates to a method of uniformly forming a conventional thin film in atomic units on the side wall of the notch.

[先行技術とその問題点] 従来より、気相エピタキシャル法もしくはCVD法と呼
ばれる薄膜形成方法が知られているが、これらの方法は
供給ガスの量、成長温度および成長時間等の制御により
膜厚をコントロールせざるを得す、再現性等を考えると
、原子単位の精度の薄膜を形成することが非常に困難で
ある。
[Prior art and its problems] A thin film forming method called a vapor phase epitaxial method or a CVD method is conventionally known. It is extremely difficult to form a thin film with atomic precision when considering reproducibility, etc.

一方、真空蒸着法を発展させ、超高真空中で結晶成長さ
せるMBE法は比較的厚さ制御の出来る方法であるが、
物理吸着を第一段階としているため。
On the other hand, the MBE method, which is a development of the vacuum evaporation method and involves crystal growth in an ultra-high vacuum, is a method that allows relatively good thickness control.
Because the first step is physical adsorption.

結晶の品質が化学反応を利用した気相成長法に劣る。ま
た、膜厚の均一性も悪く、蒸着中に試料を回転させる工
夫等が必要であり、膜厚の制御も基本的には蒸発量の制
御によるものであるから、長時間にわたって蒸発量を一
定に保てない等の理由から、解決すべき問題が多い。
The quality of the crystal is inferior to that of vapor phase growth, which uses chemical reactions. In addition, the uniformity of the film thickness is poor, and it is necessary to take measures such as rotating the sample during deposition, and since film thickness is basically controlled by controlling the amount of evaporation, it is necessary to keep the amount of evaporation constant over a long period of time. There are many problems that need to be resolved, such as the inability to maintain

さらに、MBE法の欠点は、超高真空中で指向性の強い
蒸着を用いているため、切り込み部側壁への薄膜形成が
出来ない点である。少し改良して斜方向から、何度か角
度を変えて蒸着を繰り返すことにより、一部側壁に薄膜
形成可能であるが、膜厚の均一性は悪く、膜厚の制御も
困難である6MBE法は同時に半導体構成元素を真空蒸
着するのであるが、これを改良したのが原子層エピタキ
シー法(以下、ALEと略す)で、T、5untola
がU、S、P、No、4058430 (1977)で
詳しく説明しているように、単元素の層を一層ずつ交互
に蒸着することにより結晶成長するものであり、CdT
eおよびZnTe等のIf−VI族化合物半導体の薄膜
に成功している。しかしながら、ALE法も真空蒸着と
いう物理吸着を第一段階としているため、M[3E法と
同様に、切り込み部側壁への薄膜形成は困難である。
Furthermore, a drawback of the MBE method is that it is impossible to form a thin film on the side wall of the notch because highly directional vapor deposition is used in an ultra-high vacuum. The 6MBE method can be slightly modified to form a thin film on some side walls by repeating the deposition from an oblique direction and at different angles, but the uniformity of the film thickness is poor and it is difficult to control the film thickness. At the same time, semiconductor constituent elements are vacuum-deposited, but an improved version of this is atomic layer epitaxy (hereinafter abbreviated as ALE).
As explained in detail in U, S, P, No. 4058430 (1977), crystal growth is achieved by alternately depositing layers of a single element, and CdT
We have succeeded in forming thin films of If-VI group compound semiconductors such as e and ZnTe. However, since the ALE method also uses physical adsorption called vacuum evaporation as the first step, it is difficult to form a thin film on the side wall of the incision, similar to the M[3E method.

ALE法を改良して、化学反応を利用した薄膜形成も試
みられてはいるが、 ZnSのようなII −VI族化
合物半導体の多結晶、もしくはTa、 O,のような化
合物のアモルファスであり、半導体の単結晶を成長させ
ることには成功していない。
Attempts have been made to improve the ALE method and form thin films using chemical reactions; No one has succeeded in growing single crystals of semiconductors.

このように従来技術の気相エピタキシャル法、CVD法
、MBEおよびALE法では切り込み部側壁への単原子
の精度で薄膜を形成することは困難であった。
As described above, it is difficult to form a thin film on the side wall of the cut portion with monoatomic precision using the conventional vapor phase epitaxial method, CVD method, MBE, and ALE method.

[発明の目的コ 本発明は上記従来技術の欠点を除き、超高速で動作する
縦型MIS−5ITや、超高集積度の三次元デバイス等
、切り込み部もしくは段差部を有する半導体装置、もし
くは集積回路の、切り込み部もしくは段差部の側壁へ、
原子単位の精度で膜厚制御が可能な半導体装置の製造方
法を提供することを目的とする。
[Objective of the Invention] The present invention eliminates the drawbacks of the above-mentioned prior art, and provides a semiconductor device having a notch or a step, such as a vertical MIS-5IT that operates at ultra-high speed, or a three-dimensional device with ultra-high integration, or an integrated semiconductor device. To the side wall of the notch or step of the circuit,
An object of the present invention is to provide a method for manufacturing a semiconductor device that allows film thickness control with atomic precision.

[発明の概要] 本発明は本願発明者等が先に開発した新規な分子層エピ
タキーシャル法(以下、肚E法と略す)を用いて、具体
的に切り込み部側壁への薄膜形成の条件を見い出し、従
来では不可能であった性能を有する半導体装置の製造を
も可能にしたものである。
[Summary of the Invention] The present invention utilizes a novel molecular layer epitaxial method (hereinafter abbreviated as the "E" method) previously developed by the inventors of the present invention, and specifically describes the conditions for forming a thin film on the side wall of the incision. This discovery made it possible to manufacture semiconductor devices with performance that was previously impossible.

[発明の実施例] 以下1本発明の詳細な説明する6 第1図は本発明に適用される結晶成長装置の構成図を示
したものであるが、この装置自体はALE法を実現する
ものとして本願発明者等が先に提案したものと同じであ
るが、その使用条件が異なる。
[Embodiments of the Invention] The present invention will be described in detail below.6 Figure 1 shows a configuration diagram of a crystal growth apparatus applied to the present invention, and this apparatus itself realizes the ALE method. This is the same as the one previously proposed by the inventors of this application, but the usage conditions are different.

図において、1は成長槽で、材質はステンレス等の金属
、2はゲートバルブ、3は成長槽1を超高真空に排気す
るための排気装置、4はGaC1,またはTMG(トリ
メチルガリウム)等のGaを含むガスを導入するノズル
、5はAs11.を導入するノズル、6はTMA(トリ
メチルアルミニウム)等のAlを含むガスを導入するノ
ズル、7はドーパントガスとしてDMZn (ジメチル
亜鉛)を含むガスを導入するノズル。
In the figure, 1 is a growth tank made of metal such as stainless steel, 2 is a gate valve, 3 is an exhaust device for evacuating the growth tank 1 to an ultra-high vacuum, and 4 is a material such as GaCl or TMG (trimethyl gallium). Nozzle 5 for introducing gas containing Ga is As11. 6 is a nozzle for introducing a gas containing Al such as TMA (trimethylaluminum), and 7 is a nozzle for introducing a gas containing DMZn (dimethylzinc) as a dopant gas.

同じく8はDMSe (ジメチルセレン)を導入するノ
ズル、9は5iH4(シラン)を導入するノズル、 1
0,11゜12.13,14,15は前記ノズルを開閉
するバルブでガス源16(GaC1,等)、17(八s
Hi )、1B(TMA)、 19(DMZ)。
Similarly, 8 is a nozzle for introducing DMSe (dimethylselenium), 9 is a nozzle for introducing 5iH4 (silane), 1
0,11゜12.13, 14, 15 are valves that open and close the nozzles, and gas sources 16 (GaCl, etc.), 17 (8s
Hi), 1B (TMA), 19 (DMZ).

20(DMSe等)、21(Si11.等)との間に設
けられる。22は基板加熱用のヒーターで1石英ガラス
に封入したW(タングステン)線であり、配線は図示省
略しである。23は測温用の熱電対である@24は基板
照射用の光源で、水銀ランプ、エキシマレーザ、アルゴ
ンイオンレーザ等が使用できる。25は光照射用の窓、
26は成長槽内の圧力を測定するための圧力計、27は
GaAs基板である。
20 (DMSe etc.) and 21 (Si11. etc.). Reference numeral 22 denotes a heater for heating the substrate, which is a W (tungsten) wire sealed in quartz glass, and the wiring is not shown. 23 is a thermocouple for temperature measurement.@24 is a light source for irradiating the substrate, and a mercury lamp, excimer laser, argon ion laser, etc. can be used. 25 is a window for light irradiation;
26 is a pressure gauge for measuring the pressure inside the growth tank, and 27 is a GaAs substrate.

この構成で、GaAsの成長は、先ず、ゲートバルブ2
を開けて超高真空排気装置3により成長槽1内を10′
″’ 〜10−@Pa5cal (以下、Paと略す)
程度に排気する1次に、 GaAs基板27を所定温度
にヒーター22により加熱した後に、TMGを成長槽1
内の圧力が所定となる範囲で所定時間バルブ8を開けて
導入する0次に、そのTMGを成長槽1内より排気後。
In this configuration, the growth of GaAs begins on the gate valve 2.
Open the tank and vacuum the inside of the growth tank 1 by 10' using the ultra-high vacuum exhaust device 3.
″' ~10-@Pa5cal (hereinafter abbreviated as Pa)
After heating the GaAs substrate 27 to a predetermined temperature with the heater 22, the TMG is placed in the growth tank 1.
The TMG is introduced by opening the valve 8 for a predetermined time within a range where the internal pressure is within a predetermined range.Then, the TMG is evacuated from the growth tank 1.

As1la13を成長槽1内の圧力が所定圧力となる範
囲で所定時間バルブ5を開けて導入する。これにより1
分子層が成長できる。
As1la13 is introduced by opening the valve 5 for a predetermined time within a range where the pressure inside the growth tank 1 reaches a predetermined pressure. This results in 1
Molecular layers can grow.

一方、Gap −XAlXA31− yPyの成長の場
合はGaAs成長と同じように■族のGaとA1を含む
ガスと導入した後に、■族のAsとPを含むガスを導入
することによって1分子層が成長できる。
On the other hand, in the case of growing Gap-XAlXA31-yPy, as in the case of GaAs growth, a gas containing Ga and A1 from the group II is introduced, and then a gas containing As and P from the group II is introduced to form a single molecular layer. You can grow.

また、不純物の添加は、p型ではGaと同時に■族を含
むガス、n型ではAsと同時に、■族を含むガスを導入
することによってそれぞれp、 n型の不純物添加を行
がうことができる。
In addition, impurities can be added to p-type and n-type impurities by introducing a gas containing group II at the same time as Ga for p-type, and a gas containing group II at the same time as As for n-type. can.

ここで、基板の加熱は、ヒーター22による加熱を説明
したが、赤外線ランプ加熱源とし、これを成長槽1の外
に設けるようにしてもよい、更に。
Here, the heating of the substrate is explained as heating by the heater 22, but it is also possible to use an infrared lamp heat source and provide this outside the growth tank 1.

基板の加熱と同時に、Hgランプ24による光を成長層
に照射するようにしてもよい、そうした場合には、成長
温度を低下できるので、不純物のオートドーピング乃至
は相互拡散を制御することができるようになる。
The growth layer may be irradiated with light from the Hg lamp 24 at the same time as heating the substrate. In such a case, the growth temperature can be lowered, so that autodoping or interdiffusion of impurities can be controlled. become.

このように、m−v族ないしはその混晶成分元素を含む
ガスを交互に導入し、化学反応によって結晶成長を進行
させることにより、化学量論的組成を完全なものとする
結晶成長層を1分子層毎に成長させることができ、従来
方法では得られないような高品質の半導体装置が製造で
きるようになる。
In this way, a crystal growth layer with a perfect stoichiometric composition is formed by alternately introducing gases containing m-v group elements or their mixed crystal constituent elements and promoting crystal growth through chemical reactions. It is possible to grow each molecular layer, making it possible to manufacture high-quality semiconductor devices that cannot be obtained using conventional methods.

第2図は上述第1図の装置を用いて製造する本発明の一
実施例に係るυ溝絶縁ゲート型GaAs−5ITの製造
過程を示したもので、 GaAsの表面のように良好な
絶縁膜が得られない化合物半導体においては。
FIG. 2 shows the manufacturing process of a υ groove insulated gate type GaAs-5IT according to an embodiment of the present invention manufactured using the apparatus shown in FIG. In compound semiconductors where it is not possible to obtain

ゲート絶縁膜のかわりにGaAsよりも禁制帯幅の大き
く、しかも格子定数がGaAsに近い例えばGa1− 
xAlxAsのような混晶で形成することにより、ゲー
トを絶縁ゲート類似とすることができる。
Instead of the gate insulating film, for example, Ga1-
By forming the gate with a mixed crystal such as xAlxAs, the gate can be made similar to an insulated gate.

連続 層エビタキシャル工程 先ず、同図(a)に示すように、ドレインとなる2X1
0”C11″″3程度の低比抵抗のn形GaAs31上
に肚E法により、I X 10” al−”程度のP形
GaAs2を0.075μm形成する。この場合のML
E法は成長槽1内において真空度10′″3Paでノズ
ル4と5を用い、TMGとAsH3とを交互にそれぞれ
2秒および20秒導入するサイクルを500回繰り返し
、さらにドーパントガスとしてはDMZを用い、基板2
27の温度500℃で成長させる。さらに連続してP形
GaAs32の上に4×10”am″″3程度のn形G
aAs33を0.2μmMLE法で成長させる。この場
合はソースガスの他にDMSeとSiH,の2種類のド
ーパントガスを一定周期で交互に導入する。
Continuous layer epitaxial process First, as shown in the same figure (a), a 2X1
0.075 μm of P-type GaAs2 with a resistivity of about I x 10"al-" is formed on n-type GaAs 31 with a low resistivity of about 0"C11""3 by the E method. ML in this case
Method E uses nozzles 4 and 5 at a vacuum level of 10''' 3 Pa in the growth tank 1, and repeats a cycle of alternately introducing TMG and AsH for 2 and 20 seconds, respectively, 500 times, and further uses DMZ as a dopant gas. used, substrate 2
27 at a temperature of 500°C. Furthermore, on top of the P-type GaAs32, an n-type G of about 4×10"am""3 is placed.
aAs33 is grown at 0.2 μm using the MLE method. In this case, in addition to the source gas, two types of dopant gases, DMSe and SiH, are alternately introduced at regular intervals.

エッチングエ籠 通常用いられているi:rトレ?クスに膿を用いて、写
真蝕刻法により、ゲート領域切り込み部に相当する部分
をエツチングする為の、フォトマスクを設け、同図(b
)に示すようにPCI、を用いたプラズマもしくは光エ
ッチングにより、基板31に達するまで、約0.3μm
ドライエツチングを行い、U字型の開孔部34を形成す
る。フォトレジスト膜除去後コリンによるGaAsのス
ライドエツチングを行う。
Etching etching basket usually used i:r training? A photomask was provided for etching the portion corresponding to the notch in the gate area by photolithography using pus on the mask.
) As shown in FIG.
Dry etching is performed to form a U-shaped opening 34. After removing the photoresist film, slide etching of GaAs using choline is performed.

口への簿膜形(79゜ しかるのち、U字型開孔部34を含め、全面にMLE法
で厚さ50人のアンドープのGaAs層35および厚さ
100人のアンドープAlxGa1+ xAs層を連続
エビキシャル成長させる。 GaAs層35はSITの
チャンネル部として動作する層、A1スGa、−xAs
層36はゲート絶縁膜として動作する層である。このと
き、ノズルの方向つまりソースガスの噴出して来る方向
と。
After that, an undoped GaAs layer 35 with a thickness of 50 μm and an undoped AlxGa1+ The GaAs layer 35 is a layer that operates as a channel part of the SIT,
Layer 36 is a layer that operates as a gate insulating film. At this time, the direction of the nozzle, that is, the direction in which the source gas is ejected.

U字形の溝の方向X−Xが第3図に示すように一致する
ようにあらかじめ基板をセットしておく。第1図は第3
図においてA−A方向の断面図である。
The substrate is set in advance so that the directions XX of the U-shaped grooves match as shown in FIG. Figure 1 is the third
It is a sectional view taken along the line A-A in the figure.

絶縁物の指向性蒸着 第1図(d)に示すように、超高真空中での蒸着の指向
性を用いて、U字型切り込み部側壁には、付着しないよ
うにSiO□37を堆積する。
Directional Vapor Deposition of Insulators As shown in Figure 1(d), SiO□37 is deposited on the side wall of the U-shaped cut using the directivity of vapor deposition in an ultra-high vacuum to avoid adhesion. .

電極形成 しかる後、不純物をドープした多結晶GaAsをCVD
法で堆積し、マスクを用いてフォトエツチングを行い、
第1図(e)に示すようにゲート電極配線層38を残し
、他を全面除去する。その後、ソースコンタクトホール
を開孔1通常の蒸着法によりAu−Ga/Ni/Auを
蒸着し、リフトオフ法によりソース電極39のパターン
を形成し、また、ドレイン電極40を形成し、これらの
電極を合金化することによりSITを完成させる。
After electrode formation, polycrystalline GaAs doped with impurities is deposited by CVD.
method, photoetching using a mask,
As shown in FIG. 1(e), the gate electrode wiring layer 38 is left and the rest is completely removed. After that, Au-Ga/Ni/Au is evaporated by the normal evaporation method to open the source contact hole 1, and a pattern of the source electrode 39 is formed by the lift-off method, and a drain electrode 40 is formed, and these electrodes are SIT is completed by alloying.

なお、上記実施例では、本発明の内容について理解しや
すくするために、 GaAs/Ga、 −xA1xAs
lIl!i9ゲート型SITの製作例について説明した
が1本発明が以上の例の範囲に限られるものではなく、
本発明の基本思想にそうものならば、各工程及び材料を
変更しても何らさしつかえない、たとえば、Sin、3
7の指向性蒸着工程を省略しても良い。
In the above embodiment, GaAs/Ga, -xA1xAs
lIl! Although an example of manufacturing an i9 gate type SIT has been described, the present invention is not limited to the scope of the above example.
If this is true of the basic idea of the present invention, there is nothing wrong with changing each process and material. For example, Sin, 3
The directional vapor deposition step 7 may be omitted.

Ga□−xAlxAsのかわりに、GaNyAs、 −
y、 GaPyA81− y、 Ga0Nでも良い、ま
た、半導体もGaAsに限られるわけではなく、他の■
−■族半導体、■−■族半導体およびSiやGeのよう
な元素半導体で良いことはもちろんである。また、半導
体31,32,33をSiとして、 GaAlAs6の
かわりにSun、を形成すればMOS−5ITどなる。
GaNyAs, - instead of Ga□-xAlxAs;
y, GaPyA81-y, Ga0N may also be used, and the semiconductor is not limited to GaAs, but other
Of course, semiconductors of the -■ group, the -■ group semiconductor, and elemental semiconductors such as Si and Ge may be used. Moreover, if the semiconductors 31, 32, and 33 are made of Si and Sun is formed instead of GaAlAs6, a MOS-5IT is obtained.

この場合のSiO□はアモルファスでもよいことはもち
ろんである。あるいは、第1図(c)で形成するGaA
l、As6のかわりにZn5eを用いてZn5s−Ga
Asヘテロ構造の絶縁ゲート型SITを製造することも
可能である。Zn5eの禁制帯幅は2.67eVでGa
AsおよびAlAsの禁制帯幅よりも大きく、格子定数
は5.667人でGaAsの格子定数に近いのでZn5
e−GaAsヘテロ構造は良好な特性を示す、また、S
ITの製造法に限られるわけではなく、他の三次元構造
の半導体集積回路等の段差部を有する半導体装置に本1
発明を適用しうろことは明らかである。
Of course, SiO□ in this case may be amorphous. Alternatively, GaA formed in FIG. 1(c)
l, Zn5s-Ga using Zn5e instead of As6
It is also possible to manufacture an insulated gate SIT with an As heterostructure. The forbidden band width of Zn5e is 2.67 eV and Ga
Zn5 is larger than the forbidden band width of As and AlAs, and its lattice constant is 5.667, which is close to that of GaAs.
The e-GaAs heterostructure exhibits good properties, and S
This book 1 is applicable not only to IT manufacturing methods but also to semiconductor devices with stepped parts such as semiconductor integrated circuits with other three-dimensional structures.
The application of the invention is obvious.

[発明の効果コ 以上のように本発明によれば、切り込み部側壁への均質
で、しかも原子単位の精度で厚み制御された薄膜形成が
可能であるため、従来の技術では困難であった。縦型+
11EMT、理想型SIT、三次元デバイス等の超高速
デバイス、超LSIの製造が容易になり、その工業的価
値は大きい。
[Effects of the Invention] As described above, according to the present invention, it is possible to form a thin film on the side wall of the cut portion that is homogeneous and whose thickness is controlled with atomic precision, which was difficult to do with conventional techniques. Vertical +
11EMT, ideal SIT, three-dimensional devices, and other ultra-high-speed devices and ultra-LSIs will become easier to manufacture, and their industrial value will be great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明者等が先に提案したMLE法による結
晶成長装置の説明図、第2図(a)〜(s)は本発明の
一実施例に係る半導体装置製造過程説明図。 第3図は第1図の装置を用いて第2図の半導体装置を製
造する際のソースガス導入方向とU形溝形成方向説明図
である。 1・・・成長槽、2・・・ゲートバルブ、3・・・排気
装置、4,5,6,7,8,9・・・ ノズル、10,
11,12,13,14゜15・・・バルブ、16,1
7,18,19,20,21・・・ガス源、22・・・
ヒータ、23・・・熱電対、24・・・光源、25・・
・窓、2G・・・圧力計、27・・・基板、31・・・
n◆GaAs、32− p−GaAs、33− n+G
aAs、 34− U法開孔部、35・・・アンドープ
GaAs、36・・・アンドープAlGaAs、37 
・・・ 蒸着SiO,,38−・・多結晶GaAs、3
9・・・ リース電極、40・・・ ドレイン電極。 第7図 第2図 :$3図 t
FIG. 1 is an explanatory diagram of a crystal growth apparatus using the MLE method previously proposed by the inventors of the present invention, and FIGS. 2(a) to 2(s) are explanatory diagrams of a semiconductor device manufacturing process according to an embodiment of the present invention. FIG. 3 is an explanatory view of the source gas introduction direction and the U-shaped groove formation direction when manufacturing the semiconductor device of FIG. 2 using the apparatus of FIG. 1. DESCRIPTION OF SYMBOLS 1... Growth tank, 2... Gate valve, 3... Exhaust device, 4, 5, 6, 7, 8, 9... Nozzle, 10,
11, 12, 13, 14° 15... Valve, 16, 1
7, 18, 19, 20, 21... gas source, 22...
Heater, 23...Thermocouple, 24...Light source, 25...
・Window, 2G...pressure gauge, 27...board, 31...
n◆GaAs, 32- p-GaAs, 33- n+G
aAs, 34- U method opening, 35... Undoped GaAs, 36... Undoped AlGaAs, 37
... Vapor-deposited SiO, 38--Polycrystalline GaAs, 3
9... Lease electrode, 40... Drain electrode. Figure 7 Figure 2: $3 Figure t

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも、半導体表面の一部に、その表面に対
してほぼ垂直方向に切り込み部分を形成する第1の工程
と、その切り込み部側壁に、薄膜の成分元素を含む分子
状のガスを交互に導入することにより、原子単位の精度
で厚み制御を行なって薄膜を形成する第2の工程とを有
することを特徴とする半導体装置の製造方法。
(1) A first step of forming at least a notch in a part of the semiconductor surface in a direction substantially perpendicular to the surface, and alternately applying a molecular gas containing the constituent elements of the thin film to the sidewall of the notch. a second step of forming a thin film by controlling the thickness with atomic precision by introducing a method of manufacturing a semiconductor device.
(2)特許請求の範囲第1項記載において、前記第2の
工程で形成する薄膜がAlxGa_1−xAsもしくは
AlxGa_1−xAs_1−yPyである半導体装置
の製造方法。
(2) A method for manufacturing a semiconductor device according to claim 1, wherein the thin film formed in the second step is AlxGa_1-xAs or AlxGa_1-xAs_1-yPy.
(3)特許請求の範囲第1項記載において、前記第2の
工程で形成する薄膜が、SiO_2である半導体装置の
製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the thin film formed in the second step is SiO_2.
(4)特許請求の範囲第1項記載において、前記第2の
工程で形成する薄膜が、不純物密度、不純物導電型、も
しくは材料のうち少なく共いずれかが異なる、少なく共
2種類以上の多層膜である半導体装置の製造方法。
(4) In claim 1, the thin film formed in the second step is a multilayer film of at least two or more types that differs in impurity density, impurity conductivity type, or material. A method for manufacturing a semiconductor device.
(5)特許請求の範囲第4項記載において、前記少なく
共2種類以上の多層膜がGaAsとAlxGa_1−x
Asから成る複合膜を含む半導体装置の製造方法。
(5) In claim 4, the at least two or more types of multilayer films are GaAs and AlxGa_1-x.
A method for manufacturing a semiconductor device including a composite film made of As.
(6)特許請求の範囲第1項から第5項までのいずれか
の記載において、切り込み部側壁の面方向と、ガスの噴
出方向がほぼ平行である半導体装置の製造方法。
(6) The method of manufacturing a semiconductor device according to any one of claims 1 to 5, wherein the surface direction of the side wall of the cut portion and the direction of gas ejection are substantially parallel.
JP59164822A 1984-08-08 1984-08-08 Method for manufacturing semiconductor device Expired - Lifetime JP2577544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164822A JP2577544B2 (en) 1984-08-08 1984-08-08 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164822A JP2577544B2 (en) 1984-08-08 1984-08-08 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6143412A true JPS6143412A (en) 1986-03-03
JP2577544B2 JP2577544B2 (en) 1997-02-05

Family

ID=15800574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164822A Expired - Lifetime JP2577544B2 (en) 1984-08-08 1984-08-08 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2577544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286942A (en) * 2005-03-31 2006-10-19 Eudyna Devices Inc Semiconductor device and method of manufacturing the same
JP2009246405A (en) * 2009-07-30 2009-10-22 Tokyo Electron Ltd Film foming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101499B2 (en) 2001-10-31 2008-06-18 パイロットインキ株式会社 Ballpoint pen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130896A (en) * 1979-02-28 1980-10-11 Lohja Ab Oy Method and device for growing compound thin membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286942A (en) * 2005-03-31 2006-10-19 Eudyna Devices Inc Semiconductor device and method of manufacturing the same
JP2009246405A (en) * 2009-07-30 2009-10-22 Tokyo Electron Ltd Film foming method

Also Published As

Publication number Publication date
JP2577544B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
JPH05251339A (en) Semiconductor substrate and its manufacture
JPS6143412A (en) Manufacture of semiconductor device
JPH01270593A (en) Method for forming compound semiconductor layer
JP2577550B2 (en) Impurity doping of III-V compound semiconductor single crystal thin films
JPH06224219A (en) Manufacture of film transistor
JPS61260622A (en) Growth for gaas single crystal thin film
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JPH07120625B2 (en) Method for forming compound semiconductor single crystal thin film
JP2654608B2 (en) Method for manufacturing GaAs semiconductor diode
JPS62132312A (en) Manufacture of semiconductor thin film
JPS58134478A (en) Manufacture of compound semiconductor fet
JPH01149483A (en) Solar cell
JPS6134987A (en) Manufacture of semiconductor laser
JPH0782990B2 (en) Method for manufacturing semiconductor device
JPS6134930A (en) Growing process of selective type crystal
JP2747823B2 (en) Method for producing gallium arsenide layer and method for producing gallium arsenide / aluminum gallium arsenide laminate
JP2577543B2 (en) Single crystal thin film growth equipment
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JPH02191319A (en) Method of forming soi structure
JP2620546B2 (en) Method for producing compound semiconductor epitaxy layer
JPS6134926A (en) Growing device of semiconductor single crystal
JP2897107B2 (en) Crystal growth method
JPH0267723A (en) Manufacture of compound semiconductor thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term