JPS6142796B2 - - Google Patents

Info

Publication number
JPS6142796B2
JPS6142796B2 JP2024783A JP2024783A JPS6142796B2 JP S6142796 B2 JPS6142796 B2 JP S6142796B2 JP 2024783 A JP2024783 A JP 2024783A JP 2024783 A JP2024783 A JP 2024783A JP S6142796 B2 JPS6142796 B2 JP S6142796B2
Authority
JP
Japan
Prior art keywords
plating
stainless steel
mol
ions
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2024783A
Other languages
Japanese (ja)
Other versions
JPS59145795A (en
Inventor
Hitoshi Kato
Shoji Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2024783A priority Critical patent/JPS59145795A/en
Publication of JPS59145795A publication Critical patent/JPS59145795A/en
Publication of JPS6142796B2 publication Critical patent/JPS6142796B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ステンレス鋼に亜鉛、ニツケル、
錫、鉛などの卑金属或いは金、銀、白金などの貴
金属をメツキする際該ステンレス鋼に施す前処理
に関するものである。 ステンレス鋼に金属メツキを施す場合ステンレ
ス鋼の表面は通常特有の強固な不働態皮膜で覆わ
れているため、メツキ前に次のような各種の方法
により活性化処理を行うことが不可欠となつてい
る。 即ち (A) ステンレス鋼素材を脱脂処理した後、混酸溶
液中に浸漬処理する方法 (B) ステンレス鋼素材を脱脂処理した後、塩酸あ
るいは硫酸溶液中にて陰極電解処理する方法 (C) ステンレス鋼素材を脱脂処理した後、酸洗し
更に塩酸150g/程度ニツケルイオン60g/
程度を含む塩化ニツケル溶液中で電流密度5
〜10A/dm2にてニツケルストライクメツキを
施す方法 などが行われている。 しかるに上記(A)の方法による前処理ではステン
レス鋼表面の活性化が充分に行われず、また活性
化しても直ちに不働態化皮膜が生成してしまいそ
の防止も困難であり、密着性の良い金属メツキを
得ることができない。 (B)の方法は、電気エネルギーを用いるため(A)の
方法による場合よりもステンレス鋼表面はよく活
性化されるが同様な困難は充分には避けられな
い。 (C)の方法は脱脂―酸洗―ストライクメツキと処
理工程が複雑でありまたストライクメツキの際陽
極にニツケル板を使用し、メツキ浴にも多量の塩
化ニツケルを使用し、電流効率も低いためコスト
高である。更にはニツケルストライクメツキ被膜
はポーラスな被膜であり、後に施す金属メツキ被
膜の均一性が充分得られないという問題もある。 本発明はこのような状況に鑑みなされたもので
ステンレス鋼に密着性の優れた強固な高品質の金
属メツキを施すための前処理方法を提供するもの
で、塩酸0.8mol/以上、錫イオン、インジウム
イオン及びコバルトイオンのいずれか1種又は2
種以上を0.001mol/以上含む水溶液中で被メツ
キステンレス鋼に陰極電解処理を施すことを特徴
とする被メツキステンレス鋼の前処理方法であ
る。 本発明においては単に被メツキステンレス鋼を
塩酸に浸漬するのみでなく電気エネルギーを投入
して陰極処理を行い塩酸溶液中の塩素イオンの活
性化エネルギーを増大させるので、低濃度の塩酸
溶液でもステンレス鋼表面を均一に活性化するこ
とができる。また溶液中に存在する錫イオン、イ
ンジウムイオン及びコバルトイオンの1種又は2
種以上は陰極電解処理の際ステンレス鋼表面に極
微量核状析出して、これがステンレス鋼表面との
間に局部電池を形成してアノード部分となり、カ
ソード部分となる活性化したステンレス鋼表面の
活性状態を維持して不働態化を防止するものと考
えられる。 このような前処理を受けたステンレス鋼表面に
は密着性の優れた、強固かつ平滑美麗な金属メツ
キを施すことができる。 しかして本発明に用いる水溶液の塩酸濃度、錫
イオン、インジウムイオン及びコバルトイオンの
いずれか1種又は2種以上の濃度を上記のように
限定したのは次のような理由による。 塩酸濃度を0.8mol/以上としたのは、塩酸濃
度が0.8mol/未満では陰極処理条件をどのよう
に選んでもステンレス表面の活性化が充分に行わ
れず、密着性良好な金属メツキを得ることができ
ないからである。錫イオン、インジウムイオン及
びコバルトイオンのいずれか1種又は2種以上の
濃度を0.001mol/以上としたのはこれらのイオ
ン濃度が0.001mol/未満では陰極電解処理に際
して水素発生反応のみが起こりステンレス鋼表面
にこれらのイオンが析出し難いためと考えられる
が、その後に行う金属メツキの密着性改善の効果
があまり認められないからである。 陰極電解処理の条件として、陰極電流密度は3
〜50A/dm2、望ましくは5〜20A/dm2が適当
であるがこれは電流密度が低すぎても又、電流密
度が高すぎても陰極電解処理において所望の活性
化が安定して達成できない故である。また処理時
間は常温の場合3〜180秒が適当であるが、これ
は処理時間が短か過ぎると金属イオンの析出が局
所電池を形成するのに充分でないためか、メツキ
密着性向上への効果が少なく長過ぎると生産上不
経済である故である。 以下本発明を実施例により説明する。 実施例 1 Cr17.5%,Mn0.9%,Si0.75%,C0.10%の成分
を有するフエライト系ステンレス鋼板(板厚0.1
mm)の表面を2B仕上げし、素材として用いた。
その素材を市販のジヤパンメタルフイニシング社
製脱脂剤、クリーナー160(商品名)45g/、
温度65〜75℃の水溶液中で陽極電解処理(10A/
dm2×10秒)により脱脂処理を行い水洗し、第1
表に示す各種金属イオン濃度0.05mol/と
0.5mol/を含む2.7mol/塩酸溶液中で、その
素材を陰極電解処理(10A/dm2×15秒)した後
水洗し、AgCN2g/、KCN100g/の液組成
の浴でAgストライクメツキ(3A/dm2×10秒)
を施し、続いてAgCN40g/、KCN80g/の
浴で約1μのAgメツキ(0.5A/dm2×3分)を
施した。このようにして得られたAgメツキステ
ンレス鋼材を大気中で450℃×10分加熱処理した
後、180゜曲げを行つてメツキ密着性をテストし
た結果を第1表に示した。
The present invention uses zinc, nickel, and
It relates to the pretreatment applied to stainless steel when plating base metals such as tin and lead, or precious metals such as gold, silver, and platinum. When applying metal plating to stainless steel, the surface of stainless steel is usually covered with a unique strong passive film, so it is essential to perform activation treatment using the following various methods before plating. There is. Namely, (A) a method in which a stainless steel material is degreased and then immersed in a mixed acid solution (B) a method in which a stainless steel material is degreased and then cathodic electrolytically treated in a hydrochloric acid or sulfuric acid solution (C) After degreasing the material, pickle it and add 150 g of hydrochloric acid/60 g of nickel ion to the material.
The current density in a nickel chloride solution containing a degree of
A method of applying nickel strike plating at ~10 A/dm 2 has been used. However, pretreatment using method (A) above does not sufficiently activate the stainless steel surface, and even after activation, a passivation film immediately forms, which is difficult to prevent. Can't get metsuki. Method (B) uses electrical energy, so the stainless steel surface is activated better than method (A), but similar difficulties cannot be avoided to a sufficient degree. Method (C) involves a complicated process of degreasing, pickling, and strike plating, and also uses a nickel plate for the anode during strike plating, uses a large amount of nickel chloride in the plating bath, and has low current efficiency. The cost is high. Furthermore, the nickel strike plating film is a porous film, and there is also the problem that sufficient uniformity of the metal plating film applied later cannot be obtained. The present invention was developed in view of these circumstances, and provides a pretreatment method for applying strong, high-quality metal plating with excellent adhesion to stainless steel. One or two of indium ions and cobalt ions
This is a pretreatment method for stainless steel to be plated, which is characterized in that the stainless steel to be plated is subjected to cathodic electrolysis treatment in an aqueous solution containing 0.001 mol/or more of a species. In the present invention, the stainless steel to be plated is not only immersed in hydrochloric acid, but also electrical energy is applied to cathode treatment to increase the activation energy of chlorine ions in the hydrochloric acid solution. The surface can be activated uniformly. Also, one or two of tin ions, indium ions, and cobalt ions present in the solution.
During cathodic electrolytic treatment, the seeds or more precipitate in minute amounts on the stainless steel surface, forming a local battery with the stainless steel surface and becoming the anode part, which increases the activity of the activated stainless steel surface which becomes the cathode part. It is thought that this maintains the state and prevents passivation. A stainless steel surface that has undergone such pretreatment can be plated with a strong, smooth, and beautiful metal plating with excellent adhesion. However, the reason why the concentration of hydrochloric acid and the concentration of any one or more of tin ions, indium ions, and cobalt ions in the aqueous solution used in the present invention are limited as described above is as follows. The reason why the hydrochloric acid concentration was set to 0.8 mol/or more is because if the hydrochloric acid concentration is less than 0.8 mol/, the stainless steel surface will not be activated sufficiently no matter how the cathodic treatment conditions are selected, making it difficult to obtain metal plating with good adhesion. Because you can't. The reason why the concentration of one or more of tin ions, indium ions, and cobalt ions is set to 0.001 mol/or more is because if the concentration of these ions is less than 0.001 mol/only, only hydrogen generation reaction occurs during cathodic electrolytic treatment, and stainless steel This is thought to be because these ions are difficult to precipitate on the surface, but the effect of improving the adhesion of the subsequent metal plating is not very noticeable. As a condition for cathodic electrolytic treatment, the cathodic current density is 3
~50 A/dm 2 , preferably 5 to 20 A/dm 2 is suitable, but even if the current density is too low or too high, the desired activation can be stably achieved in cathodic electrolytic treatment. This is because it cannot be done. In addition, the appropriate treatment time is 3 to 180 seconds at room temperature, but this may be because if the treatment time is too short, the precipitation of metal ions is not sufficient to form a local battery. This is because if it is too small and too long, it is uneconomical in terms of production. The present invention will be explained below with reference to Examples. Example 1 A ferritic stainless steel plate (thickness 0.1
mm) surface was finished with 2B and used as a material.
The material is a commercially available Japan Metal Finishing degreaser, Cleaner 160 (trade name) 45g/
Anodic electrolysis treatment (10A/
dm 2 × 10 seconds), rinsed with water, and
The various metal ion concentrations shown in the table are 0.05mol/
The material was subjected to cathodic electrolysis treatment (10 A/dm 2 × 15 seconds) in a 2.7 mol/hydrochloric acid solution containing 0.5 mol/min, washed with water, and Ag strike plating (3A/ dm 2 × 10 seconds)
Subsequently, Ag plating (0.5 A/dm 2 ×3 minutes) of about 1 μm was applied in a bath of 40 g of AgCN and 80 g of KCN. The thus obtained Ag-plated stainless steel material was heat-treated in the atmosphere at 450°C for 10 minutes, and then bent by 180° to test the plating adhesion. Table 1 shows the results.

【表】【table】

【表】 第1表から明らかな如く、本発明方法であるコ
バルトまたはインジウムまたは錫イオンを添加し
た2.7mol/塩酸溶液で陰極処理を施したステン
レス鋼板には密着性の優れたAgメツキを得るこ
とができる。これに対し他の金属イオンでは密着
性の優れたAgメツキを得ることができない。 実施例 2 実施例1で記述した脱脂工程まで同様で、その
後Coイオン(Co2+)を0.005mol/含んだ
5.5mol/塩酸でその素材を陰極電解処理
(20A/dm2×30秒)を行い、水洗後Auストライ
ク(青化金1.2g/、KCN20g/、Na3PO44
g/;Dc1A/dm2、浴温65℃)0.1μ、その後
青化金8.5g/、KCN11g/の液組成を用
い、メツキ条件、浴温60〜70℃、陰極電流密度
0.5A/dm2で1μのAuメツキを行つた。そのAu
メツキステンレス鋼材につき、実施例1と同様
の180゜折り曲げテストクロスカツト、テープ
剥離テスト450℃、60分間加熱後水中への急冷
テストの3種の密着性テストを行つた結果いずれ
のテストでもAuメツキ被膜の剥離は認められな
かつた。 注:クロスカツトテープ剥離テストとは、メツキ
面にカツターナイフ等で2〜3mm間隔で縦横に
直線状に切傷をつけ、その上にポリエステープ
等を貼りつけて、はがした時にテープ裏面にメ
ツキ被膜がついてくる場合をメツキ密着性が悪
いとするものである。 実施例 3 Cr18%,Mn1.95%,Si0.75%,C0.08%,
Ni8.5%の成分を有するオーステナイト系ステン
レス鋼板(板厚0.08mm)の表面を2B仕上げし、素
材として用いた。実施例1と同様に脱脂工程まで
行い、Inイオン(I )0.03mol/を含む
2.7mol/塩酸溶液で陰極電解(20A/dm2×30
秒)の活性化処理を行つた後、実施例1のAgス
トライクを行い、水洗後1.5μのロジウムメツキ
(液組成、ロジウム10g/、H2SO450c.c./;
浴温40〜50℃、Dc0.75A/dm2)を行つた。以下
実施例2に示す3種の密着性テストを行つたがい
ずれのテストでもロジウムのメツキ被膜の剥離は
認められなかつた。 実施例 4 実施例3と同様であるが、活性化処理液とし
て、0.4mol/Sn(Sn2+)を含む4mol/塩酸溶
液を用いた後、2μのSuメツキ(液組成:Sn25
g/、H2SO470g/、クレゾールスルホン酸
40g/、ゼラチン1g/、βナフトール1
g/;メツキ条件:浴温20℃、陰極電流密度
1.5A/dm2)を行つた。そのSnメツキステンレ
ス鋼材につき、実施例2に示した3種の密着性テ
ストを行つたが、いずれのテストにおいてもSn
メツキ被膜の剥離は認められなかつた。 実施例 5 実施例1と同様であるが、活性化処理として
0.08mol/ Sn(Sn2+)を含む1mol/塩酸で
陰極電解処理(10A/dm2×20秒)を行つた。
Agメツキの代りに1μAg―Sb合金メツキ(液組
成:AgCN40g/、NaCN120g/、
Na2CO315g/、シエーリング社製光沢剤アル
ガルツクス(64)4c.c./、硬化剤アルガルツク
ス(64)10c.c./;メツキ条件:陰極電流密度
2A/dm2)を行い、前記3種の密着性テストを
行つたがいずれのテストにおいてもAg―Sb合金
メツキ被膜の剥離は認められなかつた。 比較例 1 実施例1で用いた鋼板を同様に脱脂処理を行
い、その後Sn,InおよびCoをそれぞれ
0.0005mol/含む2mol/塩酸で陰極電解処理
(10A/dm2×20秒)を行つた。次に、AgCN2
g/、KCN100g/の液組成の浴でAgスト
ライクメツキ(3A/dm2×10秒)を施し、続い
てAgCN40g/、KCN80g/の浴で約1μの
Agメツキステンレス鋼材を大気中で450℃×10分
加熱処理した後、密着性テスト(180゜曲げ)を
行つたが、いずれもAgメツキ膜の剥離が認めら
れた。 比較例 2 実施例1で用いた鋼板を同様に脱脂処理まで行
い、その後Sn,InおよびCoをそれぞれ0.1mol/
含む0.5mol/塩酸で陰極電解処理(10A/d
m2×20秒)を行つた。以下比較例1と同様にAg
ストライクメツキ、Agメツキを行い、大気中で
450℃10分間加熱後密着性テスト(180゜曲げ)を
行つたがいずれもAgメツキ膜の剥離が認められ
た。 以上述べた如く、本発明方法を施したステンレ
ス鋼表面には密着性の優れた各種の金属メツキを
得ることができ、工業上顕著な効果を有するもの
である。
[Table] As is clear from Table 1, it is possible to obtain Ag plating with excellent adhesion on stainless steel sheets cathodically treated with a 2.7 mol/hydrochloric acid solution containing cobalt, indium, or tin ions, which is the method of the present invention. I can do it. On the other hand, Ag plating with excellent adhesion cannot be obtained using other metal ions. Example 2 The process was the same as described in Example 1 until the degreasing step, and then Co ions (Co 2+ ) were added at 0.005 mol/
The material was subjected to cathodic electrolysis treatment (20 A/dm 2 × 30 seconds) with 5.5 mol/hydrochloric acid, and after washing with water, Au strike (1.2 g of blue gold/, 20 g of KCN/, Na 3 PO 4 4
g/; Dc1A/dm 2 , bath temperature 65°C) 0.1 μ, then using a liquid composition of 8.5 g/g of blued gold/11 g/KCN, plating conditions, bath temperature 60-70°C, cathode current density.
1μ Au plating was performed at 0.5A/ dm2 . That Au
Three types of adhesion tests were conducted on the plated stainless steel material: a 180° bending test (cross cut) similar to Example 1, and a tape peeling test (heating at 450°C for 60 minutes followed by rapid cooling in water). No peeling of the film was observed. Note: The cross-cut tape peeling test is to make straight cuts vertically and horizontally at intervals of 2 to 3 mm on the plating surface with a cutter knife, etc., then apply polyester tape, etc. on top of the cuts, and when the tape is peeled off, there is no plating film on the back of the tape. If this occurs, plating adhesion is considered to be poor. Example 3 Cr18%, Mn1.95%, Si0.75%, C0.08%,
The surface of an austenitic stainless steel plate (thickness: 0.08 mm) with a Ni content of 8.5% was given a 2B finish and used as the material. The degreasing process was carried out in the same manner as in Example 1, and the mixture contained 0.03 mol/In ion (I + o ).
Cathodic electrolysis with 2.7mol/hydrochloric acid solution (20A/dm 2 ×30
After performing the activation treatment (seconds), the Ag strike of Example 1 was performed, and after washing with water, 1.5μ rhodium plating (liquid composition, rhodium 10g/, H 2 SO 4 50c.c./;
The bath temperature was 40 to 50°C, Dc0.75A/ dm2 ). Three types of adhesion tests were carried out as shown in Example 2 below, but no peeling of the rhodium plating film was observed in any of the tests. Example 4 Same as Example 3, but after using a 4 mol/hydrochloric acid solution containing 0.4 mol/Sn (Sn 2+ ) as the activation treatment solution, 2μ of Su plating (liquid composition: Sn25
g/, H 2 SO 4 70g/, cresol sulfonic acid
40g/, gelatin 1g/, β-naphthol 1
g/; plating conditions: bath temperature 20℃, cathode current density
1.5A/dm 2 ). The three types of adhesion tests shown in Example 2 were conducted on the Sn-plated stainless steel material, but in all tests, Sn
No peeling of the plating film was observed. Example 5 Same as Example 1, but as activation treatment
Cathodic electrolysis treatment (10 A/dm 2 × 20 seconds) was performed using 1 mol/hydrochloric acid containing 0.08 mol/Sn (Sn 2+ ).
1μAg-Sb alloy plating instead of Ag plating (liquid composition: AgCN40g/, NaCN120g/,
Na 2 CO 3 15g/, Schering brightener Algartux (64) 4 c.c./, curing agent Algartux (64) 10 c.c./; Plating conditions: cathode current density
2 A/dm 2 ) and the three types of adhesion tests mentioned above were conducted, but no peeling of the Ag--Sb alloy plating film was observed in any of the tests. Comparative Example 1 The steel plate used in Example 1 was degreased in the same way, and then Sn, In, and Co were added to the steel plate.
Cathodic electrolysis treatment (10 A/dm 2 × 20 seconds) was performed with 0.0005 mol/containing 2 mol/hydrochloric acid. Next, AgCN2
Ag strike plating (3A/dm 2 × 10 seconds) was performed in a bath with a liquid composition of 100g/g/, KCN100g/, and then about 1μ was applied in a bath of 40g/agCN, 80g/kCN.
After heat-treating the Ag-plated stainless steel material in the air at 450°C for 10 minutes, an adhesion test (180° bending) was performed, but peeling of the Ag-plated film was observed in all cases. Comparative Example 2 The steel plate used in Example 1 was similarly degreased, and then Sn, In, and Co were added at 0.1 mol/each.
Cathodic electrolytic treatment (10A/d) with 0.5mol/hydrochloric acid containing
m 2 × 20 seconds). Below, as in Comparative Example 1, Ag
Strike Metsuki, Ag Metsuki, in the atmosphere
After heating at 450°C for 10 minutes, an adhesion test (180° bending) was performed, but peeling of the Ag plating film was observed in all cases. As described above, various metal platings with excellent adhesion can be obtained on the stainless steel surface subjected to the method of the present invention, which has a remarkable industrial effect.

Claims (1)

【特許請求の範囲】[Claims] 1 塩酸0.8mol/以上、錫イオン、インジウム
イオン及びコバルトイオンのいずれか1種又は2
種以上を0.001mol/以上含む水溶液中で被メツ
キステンレス鋼に陰極電解処理を施すことを特徴
とする被メツキステンレス鋼の前処理方法。
1 Hydrochloric acid 0.8mol/or more, one or two of tin ions, indium ions, and cobalt ions
1. A pretreatment method for stainless steel to be plated, characterized by subjecting the stainless steel to cathode electrolysis treatment in an aqueous solution containing 0.001 mol or more of a species.
JP2024783A 1983-02-09 1983-02-09 Pretreatment of stainless steel to be plated Granted JPS59145795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024783A JPS59145795A (en) 1983-02-09 1983-02-09 Pretreatment of stainless steel to be plated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024783A JPS59145795A (en) 1983-02-09 1983-02-09 Pretreatment of stainless steel to be plated

Publications (2)

Publication Number Publication Date
JPS59145795A JPS59145795A (en) 1984-08-21
JPS6142796B2 true JPS6142796B2 (en) 1986-09-24

Family

ID=12021860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024783A Granted JPS59145795A (en) 1983-02-09 1983-02-09 Pretreatment of stainless steel to be plated

Country Status (1)

Country Link
JP (1) JPS59145795A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216921A (en) * 2002-12-27 2011-10-27 Kyushu Hitachi Maxell Ltd Semiconductor device and method of manufacturing the same
JP2013042187A (en) * 2012-11-29 2013-02-28 Hitachi Maxell Ltd Semiconductor device
JP2013058816A (en) * 2012-12-28 2013-03-28 Hitachi Maxell Ltd Intermediate component for semiconductor device and manufacturing method of the same
JP2013168686A (en) * 2013-06-03 2013-08-29 Hitachi Maxell Ltd Semiconductor device and semiconductor device manufacturing method
JP2015233166A (en) * 2015-10-01 2015-12-24 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017005261A (en) * 2016-08-22 2017-01-05 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017118131A (en) * 2017-02-13 2017-06-29 日立マクセル株式会社 Intermediate component for semiconductor device and manufacturing method of the same, and semiconductor device and manufacturing method of the same
JP2017195414A (en) * 2017-07-20 2017-10-26 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018029214A (en) * 2017-11-24 2018-02-22 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018160707A (en) * 2018-07-23 2018-10-11 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692284B1 (en) * 1992-06-12 1995-06-30 Ugine Sa COATED SHEET AND METHOD FOR MANUFACTURING SAME.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216921A (en) * 2002-12-27 2011-10-27 Kyushu Hitachi Maxell Ltd Semiconductor device and method of manufacturing the same
JP2013042187A (en) * 2012-11-29 2013-02-28 Hitachi Maxell Ltd Semiconductor device
JP2013058816A (en) * 2012-12-28 2013-03-28 Hitachi Maxell Ltd Intermediate component for semiconductor device and manufacturing method of the same
JP2013168686A (en) * 2013-06-03 2013-08-29 Hitachi Maxell Ltd Semiconductor device and semiconductor device manufacturing method
JP2015233166A (en) * 2015-10-01 2015-12-24 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017005261A (en) * 2016-08-22 2017-01-05 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2017118131A (en) * 2017-02-13 2017-06-29 日立マクセル株式会社 Intermediate component for semiconductor device and manufacturing method of the same, and semiconductor device and manufacturing method of the same
JP2017195414A (en) * 2017-07-20 2017-10-26 日立マクセル株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018029214A (en) * 2017-11-24 2018-02-22 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method
JP2018160707A (en) * 2018-07-23 2018-10-11 マクセルホールディングス株式会社 Semiconductor device and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPS59145795A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
US3654099A (en) Cathodic activation of stainless steel
US4789437A (en) Pulse electroplating process
JPS6142796B2 (en)
JPS61243193A (en) Method for plating pure gold on stainless steel
US3213004A (en) Surface preparation of platinum group metals for electrodeposition
US3554881A (en) Electrochemical process for the surface treatment of titanium,alloys thereof and other analogous metals
US2389131A (en) Electrodeposition of antimony
US2457059A (en) Method for bonding a nickel electrodeposit to a nickel surface
US4349390A (en) Method for the electrolytical metal coating of magnesium articles
JP3247517B2 (en) Plating method of titanium material
US2966448A (en) Methods of electroplating aluminum and alloys thereof
US2092130A (en) Anodic cleaning process
JPS61204393A (en) Production of nickel coated stainless steel strip
JPH0154438B2 (en)
CA1153978A (en) Coating aluminium alloy with cyanide-borate before electroplating with bronze
US4028064A (en) Beryllium copper plating process
JPS6142795B2 (en)
JPS6123790A (en) Method for plating ni or ni alloy surface
US4035247A (en) Method of manufacturing a reflecting mirror
JP3672374B2 (en) Lead frame manufacturing method
JPH0240751B2 (en)
US3075894A (en) Method of electroplating on aluminum surfaces
US2894890A (en) Jacketing uranium
JPS6047913B2 (en) How to apply gold plating directly to stainless steel
US2897124A (en) Pretreating thorium for electroplating