JPS6142517B2 - - Google Patents

Info

Publication number
JPS6142517B2
JPS6142517B2 JP53014125A JP1412578A JPS6142517B2 JP S6142517 B2 JPS6142517 B2 JP S6142517B2 JP 53014125 A JP53014125 A JP 53014125A JP 1412578 A JP1412578 A JP 1412578A JP S6142517 B2 JPS6142517 B2 JP S6142517B2
Authority
JP
Japan
Prior art keywords
output
circuit
low
high speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53014125A
Other languages
Japanese (ja)
Other versions
JPS54108209A (en
Inventor
Tomonori Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1412578A priority Critical patent/JPS54108209A/en
Publication of JPS54108209A publication Critical patent/JPS54108209A/en
Publication of JPS6142517B2 publication Critical patent/JPS6142517B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は交流無整流子電動機(以下電動機と称
する)の制御装置に係り、特に低速から高速への
電動機側制御進み角(以下γ角と称する)切換回
路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an AC non-commutated motor (hereinafter referred to as a motor), and in particular to a circuit for switching the motor side control advance angle (hereinafter referred to as γ angle) from low speed to high speed. be.

一般に複数個のサイリスタからなる電力変換装
置、同期電動機、同期電動機の回転子位置検出器
とで構成される電動機制御においては、γ角を低
速では起動トルク増大を計るべくほぼ零度とし、
ある程度回転数のあがつた高速では電力変換装置
の転流余裕確保のために所定の値まで進ませる切
換えが必要であり、このγ角切換えはただ単に切
換えるだけでは電源短絡状態を引き起こし、過大
電流が発生する可能性をもつことが知られてい
る。これについて第1図例により説明する。
In general, in motor control consisting of a power conversion device consisting of a plurality of thyristors, a synchronous motor, and a rotor position detector of the synchronous motor, the γ angle is set to approximately zero at low speeds in order to increase the starting torque.
At high speeds where the rotational speed has increased to a certain extent, it is necessary to switch the γ angle to a predetermined value in order to ensure commutation margin in the power converter, and simply switching the γ angle will cause a short circuit in the power supply and cause excessive current. It is known that this can occur. This will be explained using an example in FIG.

第1図aは電動機誘機電圧を示し、第1図bは
低速運転(電源転流領域)中のγ角がほぼ零度の
ときの電力変換装置のサイリスタ群の電気角120
度に相当する通電モードを示している。一方この
サイリスタ群の通電モードは回転子位置検出器の
出力信号を電子的に処理することにより決定して
いるため電気角60度間隔で変化させる手が通常用
いられており、高速運転(負荷転流領域)中はγ
角がほぼ60度で運転している。第1図cはγ角が
ほぼ60度の場合の通電モードを示し、図中X−X
点で低速から高速に切換えるものとする。第1図
においてX−X点ではサイリスタ群UPからサイ
リスタ群VPへ通電モードは切換つているが、負
荷転流ができないためにそれまで流れている電流
はすぐに零になることはなく、電源側の電圧位相
が反転し電源転流が行われるまでは流れ続けるこ
とになる。γ角を高速に切換えると、前述した如
く通電モードを電気角60度に進めることになるの
で、第1図cに示すようにサイリスタ群UNが点
弧されることとなり、電流の流れ続けているサイ
リスタ群UPとサイリスタ群UNが導通状態になつ
て電源短絡を引き起こす。したがつてこのような
不具合を避けるためにγ角切換時には一旦主回路
電流を零にしたのち切換動作を行わせる手段が一
般に用いられるが、かかる手段では電動機のトル
ク変動が大きくなり機械側へ悪影響を及ぼすとい
う不具合があつた。
Figure 1a shows the motor induction voltage, and Figure 1b shows the electrical angle 120 of the thyristor group of the power converter when the γ angle is almost zero during low-speed operation (power commutation region).
It shows the energization mode corresponding to the degree. On the other hand, the energization mode of this thyristor group is determined by electronically processing the output signal of the rotor position detector, so it is usually changed in electrical angle intervals of 60 degrees, and high-speed operation (load rotation) is used. flow region) is γ
Driving at almost 60 degree angles. Figure 1c shows the energization mode when the γ angle is approximately 60 degrees, and in the figure X-X
It is assumed that the switch is made from low speed to high speed at a point. In Figure 1, at point X-X, the energization mode is switched from thyristor group UP to thyristor group VP, but because load commutation is not possible, the current flowing up to that point does not immediately become zero, and the power supply side The current will continue to flow until the voltage phase of is reversed and power commutation is performed. When the γ angle is switched rapidly, the energization mode is advanced to 60 electrical degrees as described above, so the thyristor group UN is fired as shown in Figure 1c, and the current continues to flow. Thyristor group UP and thyristor group UN become conductive, causing a power short circuit. Therefore, in order to avoid such problems, when switching the γ angle, a method is generally used in which the main circuit current is temporarily reduced to zero and then the switching operation is performed, but such a method increases the torque fluctuation of the electric motor and has a negative impact on the machine. There was a problem that caused

また従来の電動機制御においては第2図例に示
すように交流電源電圧を位相制御することによつ
て電動機へ供給する電力を可変させており、第2
図にその一例を示す。
In addition, in conventional motor control, as shown in the example in Figure 2, the power supplied to the motor is varied by controlling the phase of the AC power supply voltage.
An example is shown in the figure.

2図aは交流電源電圧の位相を示し、第2図b
はサイリスタ群の電気角120度に相当する通電モ
ードを示している。交流電源の周波数は通常50Hz
または60Hzであり、ここで言う電動機の低高速切
換時点では電動機誘起電圧の周波数は交流電源周
波数と比較すると格段に低い領域である。これは
通常低高速切換点が電動機最高回転数の1/20〜1/
30程度の回転数に選定されるからである。さてγ
角切換時点X−X点においてサイリスタ群UPの
通電モードがサイリスタ群Pへ切換つたのち電源
側の電圧位相が反転するまでつまり電源転流が完
了するまでの時間が確保されていれば電源短絡を
引き起こす可能性は全くなくなる。
Figure 2a shows the phase of the AC power supply voltage, and Figure 2b shows the phase of the AC power supply voltage.
indicates the energization mode corresponding to 120 electrical degrees of the thyristor group. The frequency of AC power supply is usually 50Hz
or 60 Hz, and the frequency of the motor induced voltage at the time of low-speed switching of the motor referred to here is in a much lower region compared to the AC power frequency. This means that the low/high speed switching point is usually 1/20 to 1/20 of the motor's maximum rotation speed.
This is because the rotation speed is selected to be about 30. Now γ
If time is secured after the energization mode of thyristor group UP switches to thyristor group P at the angle switching point X-X until the voltage phase on the power supply side is reversed, that is, until the power supply commutation is completed, the power supply short-circuit can be avoided. There's no chance of it happening at all.

本発明は上述したような点に鑑みなされたもの
で、従来手段の不具合を除去し安定な切換えを動
作し得るγ角切換回路を提供するにある。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a gamma angle switching circuit capable of eliminating the problems of the conventional means and performing stable switching.

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第3図は本発明の一実施例を示す回路図で、1
は回転子位置検出器出力11を入力する低高速判
別回路、2はカウンタ回路、3はカウンタ回路2
の出力14と低高速判別回路1の出力12とを入
力とするオアゲートを示す。カウンタ回路2は低
高速判別回路1の出力12をリセツト入力(デジ
タル信号1にてリセツト)、交流電源の位相制御
出力パルス群13をクロツク入力、オアゲート3
の出力15をカウントエネイブル入力(デジタル
信号0にてカウントエネイブル)としている。こ
こで低高速判別回路1は例えば回転子位置検出器
出力11をクロツクとして用い、これよりモノマ
ルチ回路を駆動しモノマルチ回路出力と回転子位
置検出器出力11とのパルス間隔を比較して低高
速判別動作を行うように構成しており、その出力
12は回転子位置検出器出力11に同期すること
になり、第4図aに示すサイリスタ群の通電モー
ドに同期して第4図bに図示のように動作する。
つまり低高速判別回路1は判別機能が回転子位置
検出器出力11に同期するようになされるもので
あればよい。
FIG. 3 is a circuit diagram showing one embodiment of the present invention.
2 is a low/high speed discrimination circuit which inputs the rotor position detector output 11, 2 is a counter circuit, and 3 is a counter circuit 2.
1 shows an OR gate whose inputs are the output 14 of the circuit 1 and the output 12 of the low/high speed discrimination circuit 1. The counter circuit 2 receives the output 12 of the low/high speed discrimination circuit 1 as a reset input (reset with digital signal 1), receives the phase control output pulse group 13 of the AC power supply as a clock input, and OR gate 3
The output 15 is used as a count enable input (count is enabled when the digital signal is 0). Here, the low/high speed discrimination circuit 1 uses, for example, the rotor position detector output 11 as a clock, drives the mono multi circuit from this, compares the pulse interval between the mono multi circuit output and the rotor position detector output 11, and determines whether the low/high speed discrimination circuit 1 is low or high. It is configured to perform a high-speed discrimination operation, and its output 12 is synchronized with the rotor position detector output 11, and the output mode shown in FIG. 4b is synchronized with the energization mode of the thyristor group shown in FIG. 4a. It works as shown.
In other words, the low/high speed discrimination circuit 1 may be of any type as long as its discrimination function is synchronized with the output 11 of the rotor position detector.

このような低高速判別回路1による出力12を
リセツト入力とするカウンタ回路2はリセツト条
件がX′−X′点で解除になるので、クロツク入力
である第4図cに示すような位相制御出力パルス
群13をカウントし始める。いま一例としてカウ
ント数を4と仮定すると、カウンタ回路2の出力
14は第4図dに示すようにクロツク入力を4だ
け計数した時点でX″−X″点のように変化するこ
とになる。またオアゲート3はカウンタ回路2の
出力14を保持させる。そこでカウンタ回路2の
出力14をγ角の切換指令として図示していない
が電動機の制御装置へ接続し、γ角切換を行うよ
う用いる。なおカウンタ回路2の計数量は次の負
荷転流までの間で確実に電源転流を完了している
という条件であれば、任意であることは言うまで
もないが、電動機の加速度、低高速判別回路1の
精度や安定性などによつて左右されるので、通常
は2〜4程度に選定するのが好ましい。さらにカ
ウンタ回路2をアナログ的な方法による構成とし
た場合、例えば抵抗、コンデンサを用いたタイマ
ーなどとすれば、電動機側、交流電源側のパルス
の同期位相ズレの修正ができなく、部品定数のバ
ラツキ、温度や経年変化などの問題を生じ、動作
点の選定が困難なものとなる。
Since the reset condition of the counter circuit 2 which uses the output 12 from the low/high speed discrimination circuit 1 as the reset input is canceled at the point X'-X', the phase control output as shown in Fig. 4c, which is the clock input, is Start counting pulse group 13. As an example, assuming that the count number is 4, the output 14 of the counter circuit 2 changes as shown in the point X''-X'' when the clock input is counted by 4, as shown in FIG. 4d. Further, the OR gate 3 causes the output 14 of the counter circuit 2 to be held. Therefore, the output 14 of the counter circuit 2 is connected to a motor control device (not shown) as a γ-angle switching command, and is used to switch the γ-angle. It goes without saying that the count of the counter circuit 2 is arbitrary as long as the power supply commutation is reliably completed before the next load commutation; Since it depends on the accuracy and stability of 1, it is usually preferable to select about 2 to 4. Furthermore, if the counter circuit 2 is constructed using an analog method, such as a timer using resistors and capacitors, it is impossible to correct the synchronization phase shift of the pulses on the motor side and the AC power supply side, and variations in component constants occur. , problems such as temperature and aging occur, making it difficult to select the operating point.

上述したように本発明は交流電源の位相制御出
力パルスを所定数カウントしたのちγ角切換指令
を送出するので電源短絡を生じることなく、しか
も電動機側と交流電源のパルスを使用してデジタ
ル的に処理しているため両者の同期位相ズレなど
も自動的に修正でき、トルク変動の少い安定した
γ角切換えが可能である。
As described above, the present invention sends out the γ-angle switching command after counting a predetermined number of phase control output pulses from the AC power supply, so there is no short circuit in the power supply, and moreover, the pulses from the motor side and the AC power supply are used to digitally control the output pulses. Because of this processing, it is possible to automatically correct synchronization phase deviations between the two, and stable γ angle switching with little torque fluctuation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来のγ角切換動作の説明の
ために示した動作説明図、第3図は本発明の一実
施例を示す回路図、第4図は第3図の説明のため
に示した動作説明図である。 1……低高速判別回路、2……カウンタ回路、
3……オアゲート、11……回転子位置検出器出
力、13……位相制御出力パルス群。
1 and 2 are operational explanatory diagrams shown to explain the conventional γ angle switching operation, FIG. 3 is a circuit diagram showing an embodiment of the present invention, and FIG. 4 is a diagram for explaining the conventional γ angle switching operation. FIG. 1...Low/high speed discrimination circuit, 2...Counter circuit,
3...OR gate, 11...rotor position detector output, 13...phase control output pulse group.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個のサイリスタからなる電力変換装置、
同期電動機、該同期電動機の回転子位置検出器を
備えた交流無整流子電動機の制御装置において、
前記回転子位置検出器出力を入力としかつ該回転
子位置検出器出力に同期した判別機能を有する低
高速判別回路と、該低高速判別回路出力および位
相制御出力パルスを入力とするカウンタ回路とか
ら成り、該カウンタ回路出力を制御進み角切換指
令として用いるとともに、前記同期電動機の低速
から高速への移行時に、前記低高速判別回路出力
後位相制御出力パルスを所定数計数せしめるべく
構成したことを特徴とする交流無整流子電動機の
制御進み角切換回路。
1. Power conversion device consisting of multiple thyristors,
In a control device for a synchronous motor and an AC non-commutated motor equipped with a rotor position detector of the synchronous motor,
A low/high speed discrimination circuit which receives the output of the rotor position detector as an input and has a discrimination function synchronized with the output of the rotor position detector, and a counter circuit which receives the output of the low/high speed discrimination circuit and the phase control output pulse as input. The output of the counter circuit is used as a control advance angle switching command, and when the synchronous motor changes from low speed to high speed, it is configured to count a predetermined number of phase control output pulses after the output of the low/high speed discrimination circuit. Control lead angle switching circuit for an AC non-commutator motor.
JP1412578A 1978-02-13 1978-02-13 Control advance switching circuit for commutatorless ac motor Granted JPS54108209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1412578A JPS54108209A (en) 1978-02-13 1978-02-13 Control advance switching circuit for commutatorless ac motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1412578A JPS54108209A (en) 1978-02-13 1978-02-13 Control advance switching circuit for commutatorless ac motor

Publications (2)

Publication Number Publication Date
JPS54108209A JPS54108209A (en) 1979-08-24
JPS6142517B2 true JPS6142517B2 (en) 1986-09-22

Family

ID=11852393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1412578A Granted JPS54108209A (en) 1978-02-13 1978-02-13 Control advance switching circuit for commutatorless ac motor

Country Status (1)

Country Link
JP (1) JPS54108209A (en)

Also Published As

Publication number Publication date
JPS54108209A (en) 1979-08-24

Similar Documents

Publication Publication Date Title
US4250435A (en) Clock rate control of electronically commutated motor rotational velocity
EP0166501A2 (en) Turbo with pulse width modulated control method and means
US3529223A (en) Variable speed induction motor controller with rotor frequency sensing
US5247235A (en) Method of supplying power to a single phase step motor
US3355646A (en) Optimum driving method for step motors
EP0241867B1 (en) Acceleration/deceleration control apparatus using slip speed
US4470001A (en) Induction motor control
KR0138780B1 (en) Method for controlling the current direction of d.c motor
US4517636A (en) Inverter apparatus
JPS6142517B2 (en)
US3697841A (en) Induction motor structure and reversing circuit therefor
US4288732A (en) Forced commutated starting circuit for load commutated inverter drive system
SU783939A1 (en) Device for regulating three-phase induction electric motor r.p.m.
RU2064731C1 (en) Device for start of induction motor
JPS61214788A (en) Starter of commutatorless motor
GB2045021A (en) Drive system with a two-phase synchronous motor
SU847480A1 (en) Ac electric drive
SU1398062A1 (en) Method of controlling bi-supplied machine
GB1415172A (en) Ac motor control circuits
SU1661958A1 (en) Multi-motor ac drive
SU788327A1 (en) Device for regulating rotational speed of three-phase induction electric motor
JPH0323832Y2 (en)
JPS5854890A (en) Controller for angle of allowance of commutation of commutator-less motor
JPH0250720B2 (en)
JP2641420B2 (en) Motor control circuit