JPS6142357B2 - - Google Patents

Info

Publication number
JPS6142357B2
JPS6142357B2 JP56200521A JP20052181A JPS6142357B2 JP S6142357 B2 JPS6142357 B2 JP S6142357B2 JP 56200521 A JP56200521 A JP 56200521A JP 20052181 A JP20052181 A JP 20052181A JP S6142357 B2 JPS6142357 B2 JP S6142357B2
Authority
JP
Japan
Prior art keywords
clock pulse
time
flip
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56200521A
Other languages
Japanese (ja)
Other versions
JPS58102393A (en
Inventor
Masaki Ootani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56200521A priority Critical patent/JPS58102393A/en
Publication of JPS58102393A publication Critical patent/JPS58102393A/en
Publication of JPS6142357B2 publication Critical patent/JPS6142357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers

Landscapes

  • Shift Register Type Memory (AREA)

Description

【発明の詳細な説明】 この発明は直列データ伝送回路(シフトレジス
タ)の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in serial data transmission circuits (shift registers).

第1図は従来のシフトレジスタを示すブロツク
構成図で、1,2,3,4はDタイプのフリツプ
フロツプ回路でD端子に接続された入力信号を、
T端子に接続されたクロツクパルスの立上りのエ
ツジで読込んで記憶するものである。5はフリツ
プフロツプ回路(以下FFという。)1への信号入
力端子、6はクロツクパルス入力端子、7はFF
4からの信号出力端子、aはFF1への入力信
号、bはFF1からFF2への入力信号、cはFF
2からFF3への入力信号、dはFF3からFF4
への入力信号、eはFF4からの出力信号、φ
はFF1〜FF4への共通クロツクパルスである。
Figure 1 is a block configuration diagram showing a conventional shift register. 1, 2, 3, and 4 are D-type flip-flop circuits, and input signals connected to the D terminal are
It is read and stored at the rising edge of the clock pulse connected to the T terminal. 5 is a signal input terminal to the flip-flop circuit (hereinafter referred to as FF) 1, 6 is a clock pulse input terminal, and 7 is FF
Signal output terminal from 4, a is input signal to FF1, b is input signal from FF1 to FF2, c is FF
Input signal from 2 to FF3, d is from FF3 to FF4
The input signal to , e is the output signal from FF4, φ 1
is a common clock pulse to FF1 to FF4.

以下、クロツクパルスφに伝送遅延の無視で
きる通常の場合の動作を第2図に示す各部波形図
で説明する。入力端子1への入力信号aは高レベ
ル(“1”)であり、これがクロツクパルスφ
立上りに時点t1においてFF1へ読み込まれ出力
bは“1”になる。この時点t1までは信号b,
c,dともに低レベル(“0”)であるのでFF
2,3,4はいずれも変化せず出力c,d,eは
“0”のままである。クロツクパルスφの次の
立上り時点t2の直前にはa=“1”、b=“1”、c
=“0”、d=“0”であるから、時点t2ではb=
“1”、c=“1”、d=“0”、e=“0”となる。
そして、時点t3までに図示のように入力信号aが
“0”になるとすると、時点t3直前にはa=
“0”、b=“1”、c=“1”、d=“0”、e=
“0”であるから、時点t3ではb=“0”、c=
“1”、d=“1”、e=“0”となる。以下同様に
して、第2図に示したようにシフトレジスタとし
ての動作をする。
The operation in the normal case where the clock pulse φ1 has negligible transmission delay will be described below with reference to the waveform diagram of each part shown in FIG. The input signal a to the input terminal 1 is at a high level ("1"), which is read into the FF1 at time t1 on the rising edge of the clock pulse φ1 , and the output b becomes "1". Until this point t 1 , the signal b,
Both c and d are low level (“0”), so FF
2, 3, and 4 do not change, and the outputs c, d, and e remain at "0". Immediately before the next rising edge t2 of clock pulse φ1 , a="1", b="1", c
= “0” and d = “0”, so at time t 2 b =
“1”, c=“1”, d=“0”, and e=“0”.
Then, if the input signal a becomes "0" as shown in the figure by time t3 , then just before time t3 , a=
"0", b="1", c="1", d="0", e=
Since it is “0”, at time t 3 b = “0” and c =
“1”, d=“1”, and e=“0”. Thereafter, the shift register operates in the same manner as shown in FIG.

ところが、第1図に示した構成において、FF
1,2で構成される()部と一点鎖線部Lから
右のFF3,4で構成される()部とが別の基
板上に設けられる場合や、極端な場合には別個の
筐体に配置され一点鎖線部Lをケーブルで接続す
る必要を生じる場合がある。この場合には()
部のクロツクパルスφと()部のクロツクパ
ルスφとの間に時間差を生じる。
However, in the configuration shown in Figure 1, the FF
In the case where the part ( ) consisting of FFs 1 and 2 and the part ( ) consisting of FFs 3 and 4 on the right from the dashed-dotted line part L are provided on different boards, or in extreme cases, they are installed in separate casings. In some cases, it may be necessary to connect the dot-dashed line portion L with a cable. In this case ()
A time difference occurs between the clock pulse φ1 of the section and the clock pulse φ2 of the section ().

第3図はこのような状態における動作を説明す
るための各部波形図である。図示のように、
()部のクロツクパルスφと()部のクロ
ツクパルスφとの間に時間遅れΔTがある場
合、時点t1の直前にはa=“1”、b=“0”であ
るので、時点t1ではb=“1”、c=“0”とな
る。()部のFF3,4はクロツクパルスφ
動作するが入力がいずれも“0”であるので、出
力d,eは“0”のままである。次に時点t2直前
にはa=“1”、b=“1”で時点t2にはb=
“1”、c=“1”となる。ところが、クロツクパ
ルスφの立上り時点t21の直前にはc=“1”、
d=“0”であるので、時点t21にはd=“1”、e
=“0”になる。すなわち、時点t3に達するまで
にa=“0”、b=“1”、c=“1”、d=“1”、

=“0”となるわけで、第2図に示した通常の動
作とは異なつた誤動作をする。以下、同様にして
FF1,2はクロツクパルスφの立上り時点、
FF3,4はクロツクパルスφの立上り時点で
状態が変化して、時点t4の直前にはb=“0”、c
=“1”、d=“1”、e=“1”となり、第2図に
示した通常の動作の場合のb=“0”、c=“1”、
d=“1”、e=“1”であるとの異つた誤動作を
する。そして、時点t5の直前にはb=“0”、c=
“0”、d=“0”、e=“1”となり、第2図の通
常動作の場合のb=“0”、c=“0”、d=“1”、
e=“1”であるのと異なつた誤動作をし、更に
時点t51の後にはb,c,d,eすべて“0”と
なり、第2図の通常動作の場合のb=“0”、c=
“0”、d=“0”、e=“1”であるのと異なつた
誤動作をする。このようにシフトレジスタとして
の動作を行なえなくなる。
FIG. 3 is a waveform diagram of each part for explaining the operation in such a state. As shown,
If there is a time delay ΔT between the clock pulse φ1 in () and the clock pulse φ2 in (), immediately before time t1 , a="1" and b="0", so at time t 1 , b="1" and c="0". The FFs 3 and 4 in the parentheses operate with the clock pulse φ2 , but since both inputs are "0", the outputs d and e remain "0". Next, just before time t 2 , a = “1”, b = “1”, and at time t 2 , b =
“1” and c=“1”. However, just before the rising time t21 of the clock pulse φ2 , c="1",
Since d="0", at time t21 d="1" and e
= “0”. That is, by the time point t3 is reached, a="0", b="1", c="1", d="1",
e
="0", which causes a malfunction that differs from the normal operation shown in FIG. Similarly below,
FF1 and 2 are at the rising edge of clock pulse φ1 ,
The states of FF3 and FF4 change at the rising edge of clock pulse φ2 , and immediately before time t4 , b="0" and c
= “1”, d = “1”, e = “1”, and b = “0”, c = “1” in the case of normal operation shown in Fig. 2.
Different malfunctions occur when d="1" and e="1". Then, just before time t 5 , b = “0” and c =
“0”, d = “0”, e = “1”, and b = “0”, c = “0”, d = “1” in the case of normal operation in Fig. 2,
There is a malfunction different from the case where e = "1", and furthermore, after time t51 , b, c, d, and e all become "0", and b = "0" in the case of normal operation in Fig. 2, c=
A different malfunction occurs than when “0”, d=“0”, and e=“1”. In this way, it becomes impossible to operate as a shift register.

この発明は以上のような点に鑑みてなされたも
ので、クロツクパルスを反転させて反転クロツク
パルスをつくり、シフトレジスタをブロツクに分
割するときに、その分割点に上記反転クロツクパ
ルスでトリガされるFFを挿入することによつ
て、両ブロツク間のクロツクパルスに時間遅延が
あつても誤動作を生じないシフトレジスタを提供
することを目的としている。
This invention was made in view of the above points, and involves inverting a clock pulse to create an inverted clock pulse, and when dividing a shift register into blocks, inserting an FF triggered by the inverted clock pulse at the dividing point. By doing so, it is an object of the present invention to provide a shift register that does not malfunction even if there is a time delay in the clock pulses between both blocks.

第4図はこの発明の一実施例を示すブロツク構
成図で、第1図の従来例と同等部分は同一符号で
示し、その説明は省略する。2aおよび4aは反
転クロツクパルスでトリガされ、それぞれFF2
および4の次に挿入されたFF、8はFF4aから
の出力端子、9はクロツクパルスφa1を反転させ
て反転クロツクパルスφb1を得るインバータ、φ
a2,φb2は一点鎖線部Lを越えて()部に達し
た時間遅れΔTを有するクロツクパルスおよび反
転クロツクパルス、CaはFF2aの出力信号、e
aはFF4aの出力信号である。
FIG. 4 is a block configuration diagram showing an embodiment of the present invention. Portions equivalent to those of the conventional example shown in FIG. 1 are designated by the same reference numerals, and their explanation will be omitted. 2a and 4a are triggered by inverted clock pulses, respectively FF2
and FF inserted after 4, 8 is an output terminal from FF4a, 9 is an inverter that inverts clock pulse φ a1 to obtain inverted clock pulse φ b1 , φ
a2 , φ b2 are clock pulses and inverted clock pulses with a time delay ΔT that exceed the dashed-dotted line part L and reach the part ( ), C a is the output signal of FF2a, and e
a is the output signal of FF4a.

第5図はこの実施例の動作を説明するための各
部波形図である。図示のように、時点t1で信号b
が、時点t2で信号cが“1”になるのは従来の通
りであるが、次に反転クロツクパルスφb1の立上
り時点t2aにFF2aがセツトされ信号ca
“1”になる。従つて、遅延したパルスクロツク
φa2でトリガされるFF3は時点t31にセツトされ
信号dが“1”になる。なお、FF1および2は
従来どおり動作し、入力信号aが図示のように変
化すれば信号bは時点t3に“0”になり、信号c
は時点t4に“0”になる。次に、時点t41には信号
dによつてFF4がセツトされ信号eは“1”に
なる。そして、時点t4aにはFF2aがリセツト
され信号caは“0”になる。つづいて、遅延し
た反転クロツクパルスφb2の立上り時点t4a1に信
号eによつてFF4aがセツトされ信号ea
“1”となり、以下時点t51には信号dが、時点t61
には信号eが、時点t6a1には信号eaが“0”に
なることは容易に理解できよう。
FIG. 5 is a waveform diagram of each part for explaining the operation of this embodiment. As shown, at time t 1 the signal b
However, the signal c becomes "1" at time t2 as in the conventional case, but then, at the rising time t2a of the inverted clock pulse φ b1 , FF2a is set and the signal ca becomes "1". Therefore, FF3 triggered by the delayed pulse clock φ a2 is set at time t 31 and the signal d becomes "1". Note that FF1 and FF2 operate as before, and if input signal a changes as shown in the figure, signal b becomes "0" at time t3 , and signal c
becomes “0” at time t4 . Next, at time t41 , FF4 is set by the signal d, and the signal e becomes "1". Then, at time t4a , FF2a is reset and signal ca becomes "0". Subsequently, at the rising time t4a1 of the delayed inverted clock pulse φb2 , FF4a is set by the signal e, and the signal e a becomes " 1 ".
It is easy to understand that the signal e becomes "0" at time t6a1, and the signal e a becomes "0" at time t6a1 .

このようにしてこの実施例によれば、クロツク
パルスに伝送遅延があつても、時点t2の直前には
b=“1”、c=“0”、d=“0”、e=“0”、時

t3の直前にはb=“1”、c=“1”、d=“0”、e
=“0”、時点t4の直前にはb=“0”、c=“1”、
d=“1”、e=“0”、そして時点t5にはb=
“0”、c=“0”、d=“1”、e=“1”、時点t6

はb=“0”、c=“0”、d=“0”、e=“1”、

に時点t61以後はb,c,d,eはすべて“0”
になり、第2図に示した正常のシフトレジスタの
動作と同一の動作をする。
In this way, according to this embodiment, even if there is a transmission delay in the clock pulse, immediately before time t2 , b="1", c="0", d="0", e="0" , point in time
Immediately before t 3 , b = “1”, c = “1”, d = “0”, e
= “0”, immediately before time t 4 , b = “0”, c = “1”,
d=“1”, e=“0”, and at time t 5 b=
“0”, c = “0”, d = “1”, e = “1”, time t 6
b = “0”, c = “0”, d = “0”, e = “1”,
Furthermore, after time t 61 , b, c, d, and e are all “0”
The operation is the same as that of the normal shift register shown in FIG.

なお、上記実施例ではインバータ9を用い、
FF2a,4aには他のFFと同様のクロツクパル
スの立上りで動作するものを用いたが、FF2
a,4aにクロツクパルスの立下りで動作するも
のを用いればインバータ9を用いなくとも同様の
効果が得られることは理解できるであろう。ま
た、実施例におけるクロツクパルスφとφ
は反転関係に限らず、1周期以下の遅延関係にあ
ればよい。
Note that in the above embodiment, the inverter 9 is used,
For FF2a and 4a, we used those that operate on the rising edge of the clock pulse like other FFs, but FF2
It will be understood that the same effect can be obtained without using the inverter 9 if a and 4a are used that operate on the falling edge of the clock pulse. Further, the clock pulses φ 1 and φ 2 in the embodiment are not limited to an inverse relationship, but may have a delayed relationship of one period or less.

以上詳述したように、この発明ではシフトレジ
スタを互いに間隔をおいて複数個のブロツクに分
割して配設する場合に、そのブロツク間に、その
シフトレジスタを構成する主フリツプフロツプを
トリガするクロツクパルスよりその1周期以下の
遅延をさせたパルスでトリガされる補助フリツプ
フロツプ回路を設けたので、クロツクパルスの伝
播に遅延があつてもシフト動作の誤動作を防止で
きる。
As described in detail above, in the present invention, when a shift register is divided into a plurality of blocks spaced apart from each other, a clock pulse that triggers the main flip-flop constituting the shift register is inserted between the blocks. Since an auxiliary flip-flop circuit is provided which is triggered by a pulse delayed by one cycle or less, malfunction of the shift operation can be prevented even if there is a delay in the propagation of the clock pulse.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシフトレジスタを示すブロツク
構成図、第2図はその通常の動作を説明するため
の各部波形図、第3図はクロツクパルスの伝播遅
延による誤動作を説明するための各部波形図、第
4図はこの発明の一実施例を示すブロツク構成
図、第5図はこの実施例の動作を説明するための
各部波形図である。 図において、1,2,3,4は主フリツプフロ
ツプ回路、2a,4aは補助フリツプフロツプ回
路、5は信号入力端子、6はクロツクパルス入力
端子、φa1,φa2は主フリツプフロツプ回路トリ
ガ用クロツクパルス、φb1,φb2は位相反転クロ
ツクパルスである。なお、図中同一符号は同一ま
たは相当部分を示す。
Fig. 1 is a block configuration diagram showing a conventional shift register, Fig. 2 is a waveform diagram of each part to explain its normal operation, and Fig. 3 is a waveform diagram of each part to explain malfunctions due to propagation delay of clock pulses. FIG. 4 is a block diagram showing one embodiment of the present invention, and FIG. 5 is a waveform diagram of each part for explaining the operation of this embodiment. In the figure, 1, 2, 3, and 4 are main flip-flop circuits, 2a and 4a are auxiliary flip-flop circuits, 5 is a signal input terminal, 6 is a clock pulse input terminal, φ a1 and φ a2 are clock pulses for triggering the main flip-flop circuit, φ b1 , φ b2 are phase-inverted clock pulses. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 複数段の主フリツプフロツプ回路を縦続接続
してなり、信号入力端側から供給されるクロツク
パルスによつて共通にトリガされるように構成さ
れるとともに、上記複数段の主フリツプフロツプ
回路が互いに間隔をおいた複数個のブロツクに分
割して配設されたものにおいて、上記各ブロツク
の間に上記主フリツプフロツプ回路のトリガ時点
より上記クロツクパルスの1周期以下の時間遅延
をもつてトリガされる補助フリツプフロツプ回路
を挿入したことを特徴とする直列データ伝送回
路。 2 補助フリツプフロツプ回路は主フリツプフロ
ツプ回路をトリガするクロツクパルスの逆相パル
スでトリガされるようにしたことを特徴とする特
許請求の範囲第1項記載の直列データ伝送回路。 3 補助フリツプフロツプ回路はクロツクパルス
の主フリツプフロツプ回路をトリガするパルス端
と逆のパルス端でトリガされるようにしたことを
特徴とする特許請求の範囲第1項記載の直列デー
タ伝送回路。
[Scope of Claims] 1 Main flip-flop circuits in multiple stages are connected in cascade and configured to be commonly triggered by a clock pulse supplied from a signal input terminal side, and the main flip-flop circuits in multiple stages are Where the circuit is divided into a plurality of blocks spaced apart from each other, the circuit is triggered with a time delay of one period or less of the clock pulse from the triggering point of the main flip-flop circuit between each of the blocks. A serial data transmission circuit characterized by inserting an auxiliary flip-flop circuit. 2. The serial data transmission circuit according to claim 1, wherein the auxiliary flip-flop circuit is triggered by a pulse having an opposite phase to the clock pulse that triggers the main flip-flop circuit. 3. The serial data transmission circuit according to claim 1, wherein the auxiliary flip-flop circuit is triggered by a pulse edge of the clock pulse opposite to the pulse edge that triggers the main flip-flop circuit.
JP56200521A 1981-12-11 1981-12-11 Serial data transmitting circuit Granted JPS58102393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56200521A JPS58102393A (en) 1981-12-11 1981-12-11 Serial data transmitting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56200521A JPS58102393A (en) 1981-12-11 1981-12-11 Serial data transmitting circuit

Publications (2)

Publication Number Publication Date
JPS58102393A JPS58102393A (en) 1983-06-17
JPS6142357B2 true JPS6142357B2 (en) 1986-09-20

Family

ID=16425688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56200521A Granted JPS58102393A (en) 1981-12-11 1981-12-11 Serial data transmitting circuit

Country Status (1)

Country Link
JP (1) JPS58102393A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422784C2 (en) * 1994-06-29 1999-05-27 Texas Instruments Deutschland Circuit arrangement with at least one circuit unit such as a register, a memory cell, a memory arrangement or the like

Also Published As

Publication number Publication date
JPS58102393A (en) 1983-06-17

Similar Documents

Publication Publication Date Title
US4070630A (en) Data transfer synchronizing circuit
JP3114215B2 (en) Clock frequency doubler
KR950012058B1 (en) Register control circuit
US6690221B1 (en) Method and apparatus to delay signal latching
JPS6142357B2 (en)
EP0124942B1 (en) Integrated memory circuit of a series-parallel-series type
JPS63227113A (en) Propagating circuit
JP3084856B2 (en) Bidirectional buffer circuit
JP2776642B2 (en) Chattering elimination circuit
SU1624532A1 (en) D flip-flop
JP3236235B2 (en) Toggle flip-flop
JPH0690657B2 (en) Clock switching circuit
JP2903548B2 (en) Logic circuit diagnostic system
JP2528219B2 (en) Status register device
JPS597973B2 (en) data processing equipment
JPS63313919A (en) Parallel/serial converting device
JPH0354897B2 (en)
JPS59207724A (en) Input circuit
JPH0744521B2 (en) Erasable store memory circuit
JPH0750558A (en) Logic circuit
JPH05250891A (en) Shift register circuit
JPH0767070B2 (en) Select circuit
JPH04255110A (en) Semiconductor integrated circuit
JPH0750559B2 (en) Shift register IC
JPS6022542B2 (en) synchronization circuit