JPS614206A - Ultralow temperature apparatus - Google Patents

Ultralow temperature apparatus

Info

Publication number
JPS614206A
JPS614206A JP59124944A JP12494484A JPS614206A JP S614206 A JPS614206 A JP S614206A JP 59124944 A JP59124944 A JP 59124944A JP 12494484 A JP12494484 A JP 12494484A JP S614206 A JPS614206 A JP S614206A
Authority
JP
Japan
Prior art keywords
helium
container
pressure
heating element
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124944A
Other languages
Japanese (ja)
Inventor
Osamu Osaki
大崎 治
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59124944A priority Critical patent/JPS614206A/en
Publication of JPS614206A publication Critical patent/JPS614206A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To keep an approximately constant heat load of a refrigerator while setting the compressor intake pressure at a value above an atmospheric pressure, by making an output of a resistive heater being mounted in a helium vessel variable according to its internal pressure. CONSTITUTION:A resistive heater 20 is mounted on an internal face being positioned under the liquid helium face in the helium vessel 2. A controller 21 which is connected to the heater 20, controls the output of the heater 20 according to a signal sent from a detector for detecting an internal pressure in the helium vessel. In this way, with the intake pressure of the compressor being above an atmospheric pressure, it can be prevented that air, etc. may be mixed into helium. Moreover, the heat load of the refrigerator can be maintained at an approximately constant level and a stable ultralow temperature condition can be held.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ヘリウムガスを用いて超電導コイルのような
被冷却体を冷却するため゛の極低温装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic device for cooling an object to be cooled, such as a superconducting coil, using helium gas.

〔発明の技術的背景〕[Technical background of the invention]

この種の極低温装置は、第4図に示すように、液体ヘリ
ウム1を収容したヘリウム容器2と、このヘリウム容器
2を真空断熱するための真空容器3と、この真空容器3
に付設される冷凍装置4とを有して構成され、冷凍装置
4は、コンプレッサ5とヘリウム容器2内に設けた冷却
器6とを熱交換器等を収納した装置本体7およびジュー
ルトムソン弁8を介して閉回路を形成するように管路9
で接続し、冷凍サイクルを構成している。
As shown in FIG. 4, this type of cryogenic equipment includes a helium container 2 containing liquid helium 1, a vacuum container 3 for vacuum insulating the helium container 2, and a vacuum container 3.
The refrigeration device 4 includes a compressor 5, a cooler 6 provided in the helium container 2, a device main body 7 housing a heat exchanger, etc., and a Joule-Thomson valve 8. Conduit 9 to form a closed circuit through
are connected to form a refrigeration cycle.

一方上記ヘリウム容器2の液体ヘリウム内へ浸漬配置さ
れる超電導コイル10は、給電線11を介して図示しな
い電源に接続され工いる。
On the other hand, the superconducting coil 10 immersed in the liquid helium of the helium container 2 is connected to a power source (not shown) via a power supply line 11.

己かしてヘリウム容器2には、給電線11からの熱侵入
、給電線11の発熱、超電導コイル10の電流変化に伴
なう渦電流損失等により熱負荷が生じ、これをコンプレ
ッサ5で昇圧したヘリウムガスを装置本体7で冷却し、
ジュールトムソン弁8で断熱膨張させた後、冷却器6へ
導き、冷却器6から出る冷熱でヘリウム容器2を冷却し
、上記負荷に伴なう液体ヘリウムの蒸発を控え得るよう
にしている。
A thermal load is generated in the helium container 2 due to heat intrusion from the power supply line 11, heat generated by the power supply line 11, eddy current loss due to current changes in the superconducting coil 10, etc., and this is boosted by the compressor 5. The helium gas is cooled in the device main body 7,
After being adiabatically expanded by the Joule-Thomson valve 8, the helium is led to the cooler 6, and the cold heat emitted from the cooler 6 cools the helium container 2, thereby preventing the liquid helium from evaporating due to the above-mentioned load.

一方冷凍装装置の冷凍能力は、第5図に示すように、大
気圧(OKg/ cm G )での液体ヘリウム温度(
4,225K)でo、i〜10W程度であり、温度が高
いほどずなわちコンプレッサの吸入圧が高いほど冷凍能
力は高くなる。
On the other hand, the refrigeration capacity of the refrigeration equipment is determined by the liquid helium temperature at atmospheric pressure (OKg/cm G), as shown in Figure 5.
4,225K) and about 10 W, and the higher the temperature, that is, the higher the suction pressure of the compressor, the higher the refrigerating capacity.

また超電導コイルを定格で運転した場合の熱負荷をQa
+ax、無励時熱負荷をQ minとすると、冷却器の
温度圧力は(Tmtn 、 Pm1n )、(Tll1
ax 、 PIIl、ax >となり、ヘリウム容器の
圧力はそれぞれpmin 、 Pmaxより若干高いp
’ min 。
In addition, the heat load when the superconducting coil is operated at the rated value is Qa.
+ax, and the non-excitation heat load is Q min, the temperature pressure of the cooler is (Tmtn, Pm1n), (Tll1
ax , PIIl, ax >, and the pressure in the helium container is p slightly higher than pmin and Pmax, respectively.
' min.

P’maxになる。becomes P'max.

〔背景技術の問題点〕[Problems with background technology]

しかし上記形式の極低温装置では、Plnが大気圧より
低い場合にはコンプレッサ部で空気を吸い込みヘリウム
ガスの純度を低下させるとともに、−”+−Jibmo
t気“冷?!l−i”ll、=(7)各機器1蓄積され
冷凍能力の低下の因となり、また超電導コイルの電流を
変化させた場合の熱負荷の変動に対する冷凍能力変化応
答速度が遅いため、全体の熱分布がアンバランスになり
、ヘリウム容器内の液体ヘリウムを蒸発させてしまうと
いう難点がある。
However, in the above-mentioned type of cryogenic equipment, when Pln is lower than atmospheric pressure, air is sucked in at the compressor section and the purity of helium gas is reduced.
t air "cold?! l-i"ll, = (7) Each device 1 accumulates and causes a decrease in refrigeration capacity, and the response speed of refrigeration capacity change to changes in heat load when changing the current of the superconducting coil. The problem is that the heat distribution is unbalanced, causing the liquid helium in the helium container to evaporate.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされたもので、コンプレ
ッサの吸入圧を大気圧以上にして空気等のヘリウム中へ
の混入を防ぎ、かつ冷凍装置の熱負荷を全体としてほぼ
一定に保ち、安定した極低温状態を保ち得るようにした
極低温装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and it is possible to prevent air from entering helium by increasing the suction pressure of the compressor to above atmospheric pressure, and to keep the heat load of the refrigeration system almost constant as a whole, thereby stabilizing it. An object of the present invention is to provide a cryogenic device that can maintain a cryogenic state.

〔発明の概要〕[Summary of the invention]

本発明は、真空容器内に設【ノたヘリウム容器に、抵抗
発熱体および容器内圧検出器を設け、抵抗発熱体の制御
器を、上記容器内圧検出器で検出した容器内圧に応じて
制御し、抵抗発熱体の発熱量を調整するようにしたもの
である。
In the present invention, a helium container installed in a vacuum container is provided with a resistance heating element and a container internal pressure detector, and a controller for the resistance heating element is controlled in accordance with the container internal pressure detected by the container internal pressure detector. , the amount of heat generated by the resistance heating element is adjusted.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の位置実施例を図面につき説明する。 Embodiments of the present invention will be explained below with reference to the drawings.

なお第1図において第4図と同一部材については同一符
号を付す。
In FIG. 1, the same members as in FIG. 4 are given the same reference numerals.

第1図において符号20は、ヘリウム容器2の液体ヘリ
ウムの液面下に位置する内壁面に設けた抵抗発熱体であ
って、この抵抗発熱体20は、たとえばニッケル、ステ
ンレス鋼等の金属線またはストリップを素材として作ら
れていて、0.1〜50W程度と容量となるように設定
されている。
In FIG. 1, reference numeral 20 denotes a resistance heating element provided on the inner wall surface of the helium container 2 located below the liquid helium level. It is made from strip material and has a capacity set to about 0.1 to 50W.

すなわち抵抗発熱体20の出力qは、ヘリウム容器2の
内圧をたとえばpop’  tに設定する場合、抵抗発
熱体20のリード線や導入部からの熱侵入量、超電導コ
イル10の無励時熱負荷Q minに対して無視できる
値であるから、下式で示される。
In other words, when the internal pressure of the helium container 2 is set to, for example, pop' t, the output q of the resistance heating element 20 is determined by the amount of heat intrusion from the lead wire or introduction part of the resistance heating element 20, and the thermal load of the superconducting coil 10 when not excited. Since it is a value that can be ignored with respect to Q min, it is expressed by the following formula.

q−伴用7t、圭具市x (Q apt −Q m1n
)ここでP′はヘリウム容器の内圧を示す。  ゛抵抗
発熱体出力と圧力差の関係を第2図に示す。
q - companion 7t, Keiguichi x (Q apt -Q m1n
) Here, P' represents the internal pressure of the helium container. Figure 2 shows the relationship between resistance heating element output and pressure difference.

一方上記抵抗発熱体20には、リード線を介して制御器
21が接続されており、この制御器21は、ヘリウム容
器2の内圧を検出するための検出器22から線を介して
送られる検出信号に応じて抵抗線発熱体20の出力を可
変するようにしている。
On the other hand, a controller 21 is connected to the resistance heating element 20 via a lead wire, and this controller 21 detects a signal sent from a detector 22 via a wire for detecting the internal pressure of the helium container 2. The output of the resistance wire heating element 20 is varied according to the signal.

次に作用を説明する。Next, the effect will be explained.

超電導コイル10の無励磁熱負荷はQ sinであり、
ヘリウム容器内圧はp’ winであれば、抵抗発熱体
20の出力qはQopt −Qminとなり、冷凍装置
の全熱負荷はQ Optとなる。
The non-excitation thermal load of the superconducting coil 10 is Q sin,
If the internal pressure of the helium container is p' win, the output q of the resistance heating element 20 will be Qopt - Qmin, and the total heat load of the refrigeration system will be Q Opt.

ヘリウム容器の内圧P′がQop’ を以下であれば、
上式より全熱負荷Q optは一定となり、この時コン
プレッサ5の吸入圧poptは一定でこの吸入圧は大気
圧以上に保たれることになる。
If the internal pressure P' of the helium container is less than Qop', then
From the above equation, the total heat load Qopt becomes constant, and at this time, the suction pressure popt of the compressor 5 is constant, and this suction pressure is maintained above atmospheric pressure.

なお上記実施例では、抵抗発熱体をヘリウム容器の内壁
面に設けたが、これをヘリウム容器の外壁またはヘリウ
ム容器内の適当位置に設けてよいのはもちろんである。
In the above embodiment, the resistance heating element was provided on the inner wall surface of the helium container, but it goes without saying that it may be provided on the outer wall of the helium container or at an appropriate position within the helium container.

第3図は本発明の他の実施例を示すものであって、この
実施例では、圧力検出器として接点付圧力計を用い、制
御器21に記憶回路を付設して抵抗発熱体20の出力を
段階的に可変するようにしている。
FIG. 3 shows another embodiment of the present invention, in which a pressure gauge with contacts is used as the pressure detector, a memory circuit is attached to the controller 21, and the output of the resistance heating element 20 is is made to vary in stages.

なおヘリウム容器の熱時定数によっては制御器21に時
間遅れ回路を設ける必要があるのはもちろんである。ま
た熱負荷がQ optを上回る場合には、付設した弁を
保圧弁や内圧により開度が変化する弁にすると都合がよ
い。
Note that it is of course necessary to provide a time delay circuit in the controller 21 depending on the thermal time constant of the helium container. Further, when the heat load exceeds Q opt, it is convenient to use a pressure holding valve or a valve whose opening degree changes depending on the internal pressure as the attached valve.

(発明の効果〕 以上述べたように本発明によれば、ヘリウム容器の内圧
に応じて付設した抵抗発熱体の出力を可変するようにし
たので、コンプレッサの吸入圧を大気圧以上の値に設定
し得、したがって液体ヘリウム中に空気等の不純物が混
入することがなく、冷凍能力が低下せず、また冷凍装置
の熱負荷をほず一定に保ち得るから、超電導コイルの電
流変化時にも熱分布がアンバランスになることがなく、
したがって常の安定した極低温状態を保ち得るという効
果を奏する。
(Effects of the Invention) As described above, according to the present invention, the output of the attached resistance heating element is varied according to the internal pressure of the helium container, so the suction pressure of the compressor is set to a value higher than atmospheric pressure. Therefore, impurities such as air do not get mixed into the liquid helium, the refrigeration capacity does not decrease, and the heat load on the refrigeration equipment can be kept more or less constant, so the heat distribution is maintained even when the current in the superconducting coil changes. will not become unbalanced,
Therefore, it is possible to maintain a stable cryogenic state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による極体温装置の概略図、第′2図は
抵抗発熱体と圧力差の関係を示す図、第3図は本発明の
他の実施例による抵抗発熱体と圧力差の関係を示づ図、
第4図は従来の極低温装置の概略図、第5図は冷凍装置
の冷凍能力を示す説明図である。 1・・・液体ヘリウム、2・・・ヘリウム容器、3・・
・真空容器、4・・・冷凍装置、5・・・コンプレッサ
、6・・・冷却器、10・・・超電導コイル、20・・
・抵抗発熱体、21・・・制御器、22・・・検出器。 出願人代理人  猪  股    消 第1図 ?? 第2図     第3図 第41 ′$5図
Fig. 1 is a schematic diagram of the extreme body temperature device according to the present invention, Fig. 2 is a diagram showing the relationship between the resistance heating element and the pressure difference, and Fig. 3 is a diagram showing the relationship between the resistance heating element and the pressure difference according to another embodiment of the invention. A diagram showing the relationship,
FIG. 4 is a schematic diagram of a conventional cryogenic device, and FIG. 5 is an explanatory diagram showing the refrigerating capacity of the refrigeration device. 1...Liquid helium, 2...Helium container, 3...
・Vacuum container, 4... Refrigeration device, 5... Compressor, 6... Cooler, 10... Superconducting coil, 20...
- Resistance heating element, 21...controller, 22...detector. Applicant's representative Inomata Figure 1? ? Figure 2 Figure 3 Figure 41 '$5

Claims (1)

【特許請求の範囲】[Claims]  液体ヘリウムを収容したヘリウム容器と、このヘリウ
ム容器を真空断熱するための真空容器と、ヘリウム容器
内部を冷却するための冷凍装置を有する極低温装置にお
いて、上記ヘリウム容器に抵抗発熱体を設けるとともに
、容器内圧検出器を設け、抵抗体発熱体に設けた制御器
を上記容器内圧検出器の信号で制御して発熱量を調整す
るようにしたことを特徴とする極低温装置。
In a cryogenic apparatus having a helium container containing liquid helium, a vacuum container for vacuum insulating the helium container, and a refrigeration device for cooling the inside of the helium container, the helium container is provided with a resistance heating element, 1. A cryogenic apparatus characterized in that a container internal pressure detector is provided, and a controller provided on a resistor heating element is controlled by a signal from the container internal pressure detector to adjust the amount of heat generated.
JP59124944A 1984-06-18 1984-06-18 Ultralow temperature apparatus Pending JPS614206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124944A JPS614206A (en) 1984-06-18 1984-06-18 Ultralow temperature apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124944A JPS614206A (en) 1984-06-18 1984-06-18 Ultralow temperature apparatus

Publications (1)

Publication Number Publication Date
JPS614206A true JPS614206A (en) 1986-01-10

Family

ID=14898057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124944A Pending JPS614206A (en) 1984-06-18 1984-06-18 Ultralow temperature apparatus

Country Status (1)

Country Link
JP (1) JPS614206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116363A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Cryogenic apparatus
US5400041A (en) * 1991-07-26 1995-03-21 Strickland; Peter C. Radiating element incorporating impedance transformation capabilities
EP1644674A2 (en) * 2003-06-19 2006-04-12 Superpower, Inc. Method and apparatus of cryogenic cooling for high temperature superconductor devices
JP2008025938A (en) * 2006-07-24 2008-02-07 Toshiba Corp Low temperature device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116363A (en) * 1990-09-05 1992-04-16 Mitsubishi Electric Corp Cryogenic apparatus
US5400041A (en) * 1991-07-26 1995-03-21 Strickland; Peter C. Radiating element incorporating impedance transformation capabilities
EP1644674A2 (en) * 2003-06-19 2006-04-12 Superpower, Inc. Method and apparatus of cryogenic cooling for high temperature superconductor devices
EP1644674A4 (en) * 2003-06-19 2012-03-21 Superpower Inc Method and apparatus of cryogenic cooling for high temperature superconductor devices
JP2008025938A (en) * 2006-07-24 2008-02-07 Toshiba Corp Low temperature device
JP4724063B2 (en) * 2006-07-24 2011-07-13 株式会社東芝 Cryogenic equipment

Similar Documents

Publication Publication Date Title
US20150068235A1 (en) Auxiliary ambient air refrigeration system for cooling and controlling humidity in an enclosure
HUP0204171A2 (en) Method and device for cool-drying gas containing water vapor
JPH06347107A (en) Method of controlling freezer and control device for freezer for thermo-hygrostat
CA2056691C (en) Control system for liquefied gas container
JPS614206A (en) Ultralow temperature apparatus
CN114593539A (en) Multi-strategy combined refrigeration system capable of accurately controlling low-temperature environment
KR840002372B1 (en) Humidity-measuring device for use with an air condittoner
US3786650A (en) Air conditioning control system
JPH0497538A (en) Cryostat
JPH04240373A (en) Temperature and humidity control device for refrigerator
JPS6150220B2 (en)
JP2646917B2 (en) Refrigeration equipment
JPH01196610A (en) Cooling water supplying device for lsi
JPH0237273A (en) Operation control method for refrigerated open display case
JPS5618248A (en) Defrosting control apparatus of air conditioner
JPS59151878A (en) Thawer
JP2621695B2 (en) Refrigeration equipment
JPS5829022A (en) Controller for refrigerator
US2102740A (en) Refrigerating apparatus
JPH06283769A (en) Superconducting magnet refrigerating system
KR910001339A (en) Defrost control device of the freezer
KR830001109B1 (en) Cold Water Fixed Point Temperature Automatic Control
JPS62116878A (en) Refrigerator
KR0127379Y1 (en) Fan driving motor control circuit according to the condenser temperature of showcase
JPH01264248A (en) Cooling water supply apparatus of lsi