JPH06347107A - Method of controlling freezer and control device for freezer for thermo-hygrostat - Google Patents

Method of controlling freezer and control device for freezer for thermo-hygrostat

Info

Publication number
JPH06347107A
JPH06347107A JP5137637A JP13763793A JPH06347107A JP H06347107 A JPH06347107 A JP H06347107A JP 5137637 A JP5137637 A JP 5137637A JP 13763793 A JP13763793 A JP 13763793A JP H06347107 A JPH06347107 A JP H06347107A
Authority
JP
Japan
Prior art keywords
temperature
humidity
refrigerant
refrigerator
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5137637A
Other languages
Japanese (ja)
Other versions
JP3023637B2 (en
Inventor
Akinori Sakurai
彰規 櫻井
Yasuo Kawamoto
康雄 河本
Takeo Ogawa
健男 尾川
Masatoshi Ono
正敏 櫻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP5137637A priority Critical patent/JP3023637B2/en
Publication of JPH06347107A publication Critical patent/JPH06347107A/en
Application granted granted Critical
Publication of JP3023637B2 publication Critical patent/JP3023637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

PURPOSE:To prevent a disturbance in temperature control in a testing chamber caused by a variation in ambient temperature around a device, in particular, a reduction in performance of temperature where the device can reach its minimum value. CONSTITUTION:A thermo-hygrostate is operated such that an adjusted temperature and an adjusted humidity are controlled by a heater 7 and a humidifier 8 installed within a chamber 2. Condensing means 10 and 11 and a pressure reducing means 12 are connected to an evaporator 13 installed within the chamber 2 through a compressor 9, and a freezer for use in cooling the inner region of the chamber 2 to a predetermined temperature. At this time, the compressor 9 making a cooling capability variable in response to a variation in the number of rotation in its operation is employed. There is provided a refrigerant evaporating temperature sensor 15. A frequency for changing the number of rotation of the compressor 9 is calculated and controlled in such a manner that the sensed temperature is kept at a constant target value of refrigerant evaporating temperature. With such an arrangement as above, it is possible to keep the refrigerant evaporating temperature at a constant temperature so as to be stabled and thus stabilization and high accuracy of a testing chamber temperature control can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、恒温恒湿装置に係り、
特に装置室内の温度及び冷媒蒸発温度に応じて冷凍機の
圧縮機を回転数制御し、最適な冷却能力を供給して設定
された温湿度を安定維持するのに好適な恒温恒湿装置の
冷凍機制御方法及び冷凍機制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant temperature and humidity device,
Especially, it controls the rotation speed of the compressor of the refrigerator according to the temperature inside the device room and the refrigerant evaporation temperature, supplies the optimum cooling capacity and freezes the constant temperature and humidity device suitable for stably maintaining the set temperature and humidity. The present invention relates to a machine control method and a refrigerator control device.

【0002】[0002]

【従来の技術】従来の恒温恒湿装置の冷凍機制御方法に
おいては、冷凍サイクルの圧縮機に、回転数一定(固
定)のものを塔載し、冷却及び除湿能力を切換えるに
は、減圧機構及び蒸発器を2種以上並列に装備し、必要
に応じていずれか一方の減圧機構及び蒸発器に冷媒を流
すことにより、冷却能力の調整を行うのが一般的であ
り、この種の装置に関連する公知例として実開昭63−
132252号公報がある。
2. Description of the Related Art In the conventional method for controlling a refrigerator of a constant temperature and constant humidity apparatus, a compressor having a constant rotation speed (fixed) is mounted on a compressor of a refrigeration cycle, and a pressure reduction is used to switch cooling and dehumidifying abilities. It is common to equip two or more types of mechanisms and evaporators in parallel, and to adjust the cooling capacity by flowing a refrigerant to one of the decompression mechanisms and evaporators as needed. As a publicly known example related to
There is a publication No. 132252.

【0003】例えば半導体又は電子装置等を試験する恒
温恒湿装置は、基本性能として試験室の到達可能な最低
温度が決まっているが、この最低温度を達成するには試
験室最低温度に対し、適切な温度差以下の冷凍サイクル
の冷媒蒸発温度を維持する必要がある。従来のように、
冷凍サイクルの減圧機構にキャピラリチューブ又は温度
式膨張弁を用いると、装置周囲温度が高い、すなわち空
冷凝縮器による冷媒凝縮温度が高い場合、冷媒蒸発温度
も上昇して試験室最低温度の維持ができなくなり、設定
した最低温度より上昇してしまう。しかしこれを防ぐた
め、冷媒凝縮温度が高い場合でも、必要な冷媒蒸発温度
が得られるようにキャピラリチューブ又は温度式膨張弁
の減圧量を決定すると、周囲温度が低く、冷媒凝縮温度
が低い場合、冷媒蒸発温度が異常に低下し冷凍機油温度
低下による圧縮機損傷の原因となる。従って、装置周囲
温度の変化すなわち冷媒凝縮温度の変化に対し影響を受
けない冷媒蒸発温度を維持し、年間を通して装置性能を
一定に保つことがこの種の装置の重要な条件である。
For example, in a thermo-hygrostat for testing semiconductors or electronic devices, the minimum temperature that the test chamber can reach is determined as a basic performance. To achieve this minimum temperature, the minimum temperature in the test chamber must be It is necessary to maintain the refrigerant evaporation temperature of the refrigeration cycle below an appropriate temperature difference. As before,
When a capillary tube or a thermal expansion valve is used for the decompression mechanism of the refrigeration cycle, when the ambient temperature of the device is high, that is, the refrigerant condensation temperature by the air-cooled condenser is high, the refrigerant evaporation temperature also rises and the minimum test chamber temperature can be maintained. It disappears and the temperature rises above the set minimum temperature. However, in order to prevent this, even when the refrigerant condensation temperature is high, if the pressure reduction amount of the capillary tube or the thermal expansion valve is determined so that the required refrigerant evaporation temperature is obtained, the ambient temperature is low, and the refrigerant condensation temperature is low, The refrigerant evaporating temperature is abnormally lowered, which causes damage to the compressor due to a decrease in the refrigerating machine oil temperature. Therefore, it is an important condition for this type of device to maintain the refrigerant evaporation temperature that is not affected by the change of the device ambient temperature, that is, the change of the refrigerant condensation temperature, and keep the device performance constant throughout the year.

【0004】[0004]

【発明が解決しようとする課題】従来の恒温恒湿装置の
冷凍機制御方法にあっては、装置周囲温度の変化、すな
わち圧縮機の冷媒凝縮温度の変化に伴って冷媒蒸発温度
が変化し、年間を通して装置性能を一定に保つことがで
きない問題点があった。
In the conventional method for controlling a refrigerator of a constant temperature and constant humidity apparatus, the refrigerant evaporation temperature changes as the apparatus ambient temperature changes, that is, the refrigerant condensation temperature of the compressor changes. There was a problem that the device performance could not be kept constant throughout the year.

【0005】本発明の目的は、装置周囲温度が変化して
も冷媒蒸発温度をほぼ一定値に維持し、室内を調温調湿
することのできる恒温恒湿装置の冷凍機制御方法及び冷
凍機制御装置を提供することにある。
An object of the present invention is to provide a refrigerator control method and a refrigerator for a constant temperature and constant humidity apparatus capable of keeping the refrigerant evaporation temperature at a substantially constant value and controlling the temperature and humidity of the room even if the ambient temperature of the apparatus changes. It is to provide a control device.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る恒温恒湿装置の冷凍機制御方法は、断
熱材に囲まれた室内の温度及び湿度を測定し、それぞれ
の測定値に基づき室内に設けた加温器及び加湿器により
調温調湿制御するとともに、室内に設けた蒸発器に圧縮
機を経由して凝縮手段と減圧手段とを接続し室内を所定
温度に冷却させる冷凍機を制御する恒温恒湿装置の冷凍
機制御方法において、室内の温度及び湿度を入力して冷
凍機の冷媒状態の目標値を設定し、目標値と冷媒状態の
測定値との差に応じて圧縮機をインバータにより回転数
制御し、冷却能力を可変にする構成とする。
In order to achieve the above object, a refrigerator control method for a constant temperature and constant humidity apparatus according to the present invention measures a temperature and a humidity in a room surrounded by a heat insulating material, and measures each of them. Based on the value, the temperature and humidity are controlled by the warmer and humidifier installed in the room, and the condenser installed in the room is connected to the decompression means via the compressor to cool the room to a predetermined temperature. In the refrigerator control method of the constant temperature and humidity apparatus to control the refrigerator to be set, the indoor temperature and humidity are input to set the target value of the refrigerant state of the refrigerator, and the difference between the target value and the measured value of the refrigerant state is set. Accordingly, the compressor is configured to control the rotation speed by an inverter to make the cooling capacity variable.

【0007】そして断熱材に囲まれた室内の温度及び湿
度を測定し、それぞれの測定値に基づき室内に設けた加
温器及び加湿器により調温調湿制御するとともに、室内
に設けた蒸発器に圧縮機を経由して凝縮手段と減圧手段
とを接続し室内を所定温度に冷却させる冷凍機を制御す
る恒温恒湿装置の冷凍機制御方法において、冷凍機の冷
媒状態に応じて冷媒状態の目標値をあらかじめ設定し、
目標値に応じて圧縮機をインバータにより回転数制御
し、冷却能力を可変にする構成でもよい。
Then, the temperature and humidity inside the room surrounded by the heat insulating material are measured, and the temperature and humidity are controlled by a warmer and a humidifier provided in the room based on the respective measured values, and an evaporator provided inside the room. In the refrigerator control method of the constant temperature and humidity device for controlling the refrigerator for cooling the room to a predetermined temperature by connecting the condenser means and the pressure reducing means via the compressor, in the refrigerant state according to the refrigerant state of the refrigerator. Set the target value in advance,
A configuration may be adopted in which the cooling speed is variable by controlling the rotation speed of the compressor with an inverter according to the target value.

【0008】また断熱材に囲まれた室内の温度及び湿度
を測定し、それぞれの測定値に基づき室内に設けた加温
器及び加湿器により調温調湿制御するとともに、室内に
設けた蒸発器に圧縮機を経由して凝縮手段と減圧手段と
を接続し室内を所定温度に冷却させる冷凍機を制御する
恒温恒湿装置の冷凍機制御方法において、室内の温度及
び湿度を入力して冷凍機の冷媒状態の目標値を設定し、
目標値と冷媒状態の測定値との差に応じて電子膨張弁で
形成した減圧手段の開度を制御し、冷却能力を可変にす
る構成でもよい。
Further, the temperature and humidity in the room surrounded by the heat insulating material are measured, and the temperature and humidity are controlled by a warmer and a humidifier provided in the room based on the respective measured values, and an evaporator provided in the room. In a refrigerator control method of a constant temperature and humidity apparatus for controlling a refrigerator for cooling a room to a predetermined temperature by connecting a condenser means and a pressure reducing means via a compressor, a refrigerator by inputting a room temperature and humidity. Set the target value of the refrigerant state of
The cooling capacity may be varied by controlling the opening degree of the pressure reducing means formed by the electronic expansion valve according to the difference between the target value and the measured value of the refrigerant state.

【0009】さらに冷媒状態は、減圧手段により減圧さ
れた冷媒のほぼ一定値に設定される冷媒蒸発温度である
構成でもよい。
Further, the refrigerant state may be a refrigerant evaporation temperature set to a substantially constant value of the refrigerant decompressed by the decompression means.

【0010】そして冷媒状態は、圧縮機に吸入される冷
媒の低圧圧力である構成でもよい。
The refrigerant state may be a low pressure of the refrigerant sucked into the compressor.

【0011】また冷媒状態は、圧縮機より吐出されかつ
凝縮手段で凝縮された冷媒の冷媒凝縮温度である構成で
もよい。
The refrigerant state may be a refrigerant condensation temperature of the refrigerant discharged from the compressor and condensed by the condensing means.

【0012】さらに冷媒状態は、圧縮機より吐出された
冷媒の高圧圧力である構成でもよい。
Further, the refrigerant state may be a high pressure of the refrigerant discharged from the compressor.

【0013】そして冷媒状態の目標値は、凝縮手段の装
置周囲温度に応じて設定される構成でもよい。
The target value of the refrigerant state may be set according to the ambient temperature of the condenser means.

【0014】また恒温恒湿装置の冷凍機制御装置におい
ては、前記いずれか一つの恒温恒湿装置の冷凍機制御方
法を適用する恒温恒湿装置の冷凍機制御装置において、
制御手段に、圧縮機をインバータにより回転数制御し冷
却能力を可変にする周波数制御器を備えた構成とする。
Further, in the refrigerator controller of the constant temperature and humidity apparatus, in the refrigerator controller of the constant temperature and humidity apparatus to which the refrigerator control method of any one of the above constant temperature and humidity apparatus is applied,
The control means is provided with a frequency controller for controlling the rotation speed of the compressor by an inverter and varying the cooling capacity.

【0015】[0015]

【作用】本発明によれば、回転式圧縮機の電源周波数を
変化させると、 回転数(r.p.m)=(120/p)×f p=極数, f=周波数 で示されるように、周波数に比例して回転式圧縮機の回
転数が変化する。回転数が変化すると冷媒の吐出量が変
化して冷媒循環量が変化し、冷却能力が変化する。例え
ば装置周囲温度が高く、冷凍機の冷媒凝縮温度が高い場
合、冷媒蒸発温度も高くなるが、周波数を高くして回転
式圧縮機の回転数を上昇させると、冷媒循環量が増加し
て冷媒凝縮温度が低下し、所定の冷却能力が得られる。
電源周波数は制御手段に入力される室内の測定温度によ
り決定される目標冷媒蒸発温度に対して、測定冷媒蒸発
温度を比較演算し、目標冷媒蒸発温度と測定冷媒蒸発温
度とを近似させることにより、最適な冷却能力が供給さ
れて装置周囲温度の変化による冷媒凝縮温度の変化に伴
う冷却能力の変化が抑制され、装置性能が年間を通して
一定に保たれる。
According to the present invention, when the power supply frequency of the rotary compressor is changed, the rotation speed (r.p.m) = (120 / p) × fp = the number of poles, and f = frequency In addition, the rotation speed of the rotary compressor changes in proportion to the frequency. When the rotation speed changes, the discharge amount of the refrigerant changes, the refrigerant circulation amount changes, and the cooling capacity changes. For example, when the device ambient temperature is high and the refrigerant condensation temperature of the refrigerator is high, the refrigerant evaporation temperature is also high, but when the frequency is increased and the rotation speed of the rotary compressor is increased, the refrigerant circulation amount increases and the refrigerant The condensing temperature is lowered and a predetermined cooling capacity is obtained.
The power supply frequency, relative to the target refrigerant evaporation temperature determined by the measured temperature in the room input to the control means, by comparing and calculating the measured refrigerant evaporation temperature, by approximating the target refrigerant evaporation temperature and the measured refrigerant evaporation temperature, The optimum cooling capacity is supplied to suppress the change in the cooling capacity due to the change in the refrigerant condensing temperature due to the change in the ambient temperature of the apparatus, and the apparatus performance is kept constant throughout the year.

【0016】[0016]

【実施例】本発明の第1の実施例を図1を参照しながら
説明する。図1に示すように、恒温恒湿装置は断熱層1
により囲まれた試験室(室)2と、冷媒14を循環する
周波数制御可能な回転式圧縮機9と、回転式圧縮機9よ
り吐出した冷媒ガスを冷媒液に空気冷却する凝縮器10
と凝縮器10に送風する凝縮器用送風機11とよりなる
凝縮手段と、冷媒14を減圧する減圧機構(減圧手段)
12と、試験室2内に設けられ減圧された冷媒14で試
験室2内の熱を吸収する蒸発器13と、試験室2内を加
温制御する加温ヒータ7と、試験室内を加湿制御する加
湿ヒータ8と、試験室2内の循環送風機5と、図示しな
い制御手段とにより構成される。試験室2内を空気の流
れ6が矢印図示のように循環している。循環送風機5の
吹出口には乾球温度センサ3及び湿球温度センサ4が配
置され、さらに減圧機構12の冷媒出口側で、蒸発器1
3までの配管系路に冷媒蒸発温度センサ15を取付けて
ある。なお圧縮機は定速のものを搭載し、減圧機構を電
子膨張弁で形成した構成でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the constant temperature and humidity device has a heat insulating layer 1
A test chamber (chamber) 2 surrounded by, a frequency-controllable rotary compressor 9 that circulates a refrigerant 14, and a condenser 10 that cools the refrigerant gas discharged from the rotary compressor 9 into a refrigerant liquid.
And a condenser blower 11 for blowing air to the condenser 10, and a pressure reducing mechanism (pressure reducing means) for reducing the pressure of the refrigerant 14.
12, an evaporator 13 provided in the test chamber 2 for absorbing heat in the test chamber 2 by a decompressed refrigerant 14, a heating heater 7 for heating and controlling the test chamber 2, and a humidification control for the test chamber. A humidifying heater 8, a circulating blower 5 in the test chamber 2, and a control unit (not shown). An air flow 6 circulates in the test chamber 2 as shown by an arrow. A dry-bulb temperature sensor 3 and a wet-bulb temperature sensor 4 are arranged at the outlet of the circulation blower 5, and the evaporator 1 is provided on the refrigerant outlet side of the pressure reducing mechanism 12.
A refrigerant vaporization temperature sensor 15 is attached to the piping system paths up to 3. The compressor may have a constant speed and the pressure reducing mechanism may be formed by an electronic expansion valve.

【0017】本装置の制御系路(制御手段)を図2を参
照しながら説明する。乾球温度センサ3及び湿球温度セ
ンサ4の各々の検出温度は、室内の設定温度及び設定湿
度との比較演算をマイクロコンピュータ20で行ない、
ヒータ出力制御器21,22で加温ヒータ7及び加湿ヒ
ータ8への出力信号をPID制御することにより、高精
度の調温調湿制御を可能としている。これに対し、除湿
冷却用として用いられる冷凍サイクルは、乾球温度セン
サ3及び湿球温度センサ4の各々の検出温度に基づき冷
媒状態の目標値の設定と冷媒状態の測定値との差、例え
ば冷媒蒸発温度センサ15による検出温度と設定冷媒蒸
発温度との差の比較演算をマイコン20で行い、周波数
制御器23で回転式圧縮機の回転数を制御するための周
波数をPID制御している。なお冷媒状態は、圧縮機に
吸入される冷媒の低圧圧力、圧縮機より吐出されかつ凝
縮手段で凝縮された冷媒の冷媒凝縮温度、又は圧縮機よ
り吐出された冷媒の高圧圧力のいずれでもよく、また設
定冷媒蒸発温度等の目標値は室内の温度及び湿度に応じ
て装置の仕様上あらかじめ決められていてもよい。さら
に減圧手段を電子膨張弁で形成して圧縮機は定速のもの
を搭載し、電子膨張弁をマイコンにより開度制御するよ
うにしてもよい。
The control system path (control means) of this apparatus will be described with reference to FIG. The temperatures detected by the dry-bulb temperature sensor 3 and the wet-bulb temperature sensor 4 are compared with the set temperature and the set humidity in the room by the microcomputer 20,
The heater output controllers 21 and 22 perform PID control of the output signals to the heating heater 7 and the humidification heater 8 to enable highly accurate temperature and humidity control. On the other hand, in the refrigeration cycle used for dehumidifying cooling, the difference between the setting of the target value of the refrigerant state and the measured value of the refrigerant state based on the detected temperatures of the dry-bulb temperature sensor 3 and the wet-bulb temperature sensor 4, for example, The microcomputer 20 performs a comparison calculation of the difference between the temperature detected by the refrigerant evaporation temperature sensor 15 and the set refrigerant evaporation temperature, and the frequency controller 23 performs PID control of the frequency for controlling the rotation speed of the rotary compressor. Note that the refrigerant state may be either the low pressure of the refrigerant sucked into the compressor, the refrigerant condensation temperature of the refrigerant discharged from the compressor and condensed by the condensing means, or the high pressure of the refrigerant discharged from the compressor, Further, the target value such as the set refrigerant evaporation temperature may be determined in advance in the specifications of the device according to the temperature and humidity in the room. Further, the pressure reducing means may be formed by an electronic expansion valve, a constant speed compressor may be mounted, and the opening degree of the electronic expansion valve may be controlled by a microcomputer.

【0018】回転式圧縮機の周波数制御のフローチャー
トを図3に示す。回転式圧縮機は電源周波数の変化に応
じて回転数が変化し、冷媒循環量が増減するものであ
り、回転式圧縮機の運転開始と同時に初期設定周波数で
回転し、これ以降は、常時、蒸発温度センサの測定温度
と目標冷媒蒸発温度との差の比較演算を行い、測定温度
が高い場合は周波数増とし、また低い場合は周波数減と
し、さらに増減量はPID制御することにより回転式圧
縮機へ伝送する最適な電源周波数を決定し、測定冷媒蒸
発温度を目標冷媒蒸発温度に近似させ、さらに一致させ
る運転が可能となる。
A flow chart of the frequency control of the rotary compressor is shown in FIG. The rotary compressor changes its rotation speed according to the change of the power supply frequency, and the amount of refrigerant circulation increases and decreases.It rotates at the initial setting frequency at the same time as the operation of the rotary compressor starts, and thereafter, always, The difference between the measured temperature of the evaporation temperature sensor and the target refrigerant evaporation temperature is compared and calculated. If the measured temperature is high, the frequency is increased, if it is low, the frequency is decreased, and the increase / decrease amount is controlled by PID to perform rotary compression. The optimum power supply frequency to be transmitted to the machine is determined, the measured refrigerant evaporation temperature is approximated to the target refrigerant evaporation temperature, and the operation can be further matched.

【0019】本発明の第2の実施例を図4を参照しなが
ら説明する。第1の実施例における冷媒蒸発温度センサ
のかわりに、冷凍サイクル低圧力センサを用いた構成で
ある。減圧機構12と蒸発器13とを介して回転式圧縮
機9との間に低圧圧力センサ16を取付けることによ
り、第1の実施例における設定冷媒蒸発温度と検出温度
との比較演算と同様に、目標低圧圧力と検出圧力との比
較演算を行い回転式圧縮機の周波数を制御し、目標低圧
圧力と検出圧力とを近似させることが可能となる。
A second embodiment of the present invention will be described with reference to FIG. A refrigeration cycle low pressure sensor is used instead of the refrigerant evaporation temperature sensor in the first embodiment. By installing the low pressure sensor 16 between the rotary compressor 9 and the pressure reducing mechanism 12 and the evaporator 13, as in the comparison calculation between the set refrigerant evaporation temperature and the detected temperature in the first embodiment, It is possible to make a comparison between the target low pressure and the detected pressure to control the frequency of the rotary compressor, and to approximate the target low pressure and the detected pressure.

【0020】本発明の第3の実施例を図5を参照しなが
ら説明する。第1の実施例における冷媒蒸発温度センサ
のかわりに、冷凍サイクル凝縮温度センサを用いた構成
である。凝縮器10の内部又は凝縮器10の出口部に冷
媒凝縮温度センサ17を取付けることにより、冷媒凝縮
温度を検出し、あらかじめ冷媒凝縮温度に対し冷媒蒸発
温度を一定に保つために必要な回転式圧縮機の周波数を
設定しておく。この制御例を図6に示す。第3の実施例
により、装置周囲温度の変化に伴う冷媒凝縮温度の変化
に応じた設定周波数で、回転式圧縮機を運転することに
より冷媒蒸発温度を一定に保つことが可能となる。
A third embodiment of the present invention will be described with reference to FIG. A refrigeration cycle condensation temperature sensor is used instead of the refrigerant evaporation temperature sensor in the first embodiment. By installing the refrigerant condensing temperature sensor 17 inside the condenser 10 or at the outlet of the condenser 10, the rotary compression necessary to detect the refrigerant condensing temperature and to keep the refrigerant evaporating temperature constant with respect to the refrigerant condensing temperature in advance. Set the machine frequency. An example of this control is shown in FIG. According to the third embodiment, it becomes possible to keep the refrigerant evaporation temperature constant by operating the rotary compressor at the set frequency according to the change of the refrigerant condensation temperature accompanying the change of the device ambient temperature.

【0021】本発明の第4の実施例を図7を参照しなが
ら説明する。第3の実施例における冷媒凝縮温度センサ
のかわりに、冷凍サイクル高圧圧力センサを用いた構成
である。回転式圧縮機9と減圧機構12との間に高圧圧
力センサ18を取付けることにより冷媒の高圧圧力を検
出し、第3の実施例における検出した冷媒凝縮温度によ
る回転式圧縮機の周波数設定のかわりに、検出した高圧
圧力により周波数を設定することにより同一の効果を得
ることができる。
A fourth embodiment of the present invention will be described with reference to FIG. A refrigeration cycle high pressure sensor is used instead of the refrigerant condensation temperature sensor in the third embodiment. The high pressure pressure of the refrigerant is detected by mounting the high pressure sensor 18 between the rotary compressor 9 and the pressure reducing mechanism 12, and instead of the frequency setting of the rotary compressor according to the detected refrigerant condensation temperature in the third embodiment. Moreover, the same effect can be obtained by setting the frequency according to the detected high pressure.

【0022】本発明の第5の実施例を図8を参照しなが
ら説明する。第3の実施例における冷媒凝縮温度センサ
のかわりに空気温度センサを用いた場合を図8に示す。
装置周辺部又は凝縮器10の空気吸込部に空気温度セン
サ19を取付けることにより、空気温度(装置周囲温
度)を検出し第3の実施例における検出した冷媒凝縮温
度による回転式圧縮機の周波数設定のかわりに、検出し
た空気温度により周波数を設定することにより同一の効
果を得ることができる。
A fifth embodiment of the present invention will be described with reference to FIG. FIG. 8 shows a case where an air temperature sensor is used instead of the refrigerant condensation temperature sensor in the third embodiment.
By mounting the air temperature sensor 19 on the peripheral portion of the device or on the air suction part of the condenser 10, the temperature of the air (device ambient temperature) is detected, and the frequency setting of the rotary compressor according to the detected refrigerant condensation temperature in the third embodiment. Instead, the same effect can be obtained by setting the frequency according to the detected air temperature.

【0023】本発明により、装置周囲温度の変化、すな
わち冷媒凝縮温度の変化に対して、冷媒蒸発温度を目標
温度に維持し、安定させることができる。本発明による
回転式圧縮機の周波数制御と冷凍サイクル特性の一例を
図9に示す。本発明の冷媒蒸発温度による周波数制御を
採用することにより、装置周囲温度が変化し、冷媒凝縮
温度が変化しても、冷媒蒸発温度は設定冷媒蒸発温度で
ある−45℃を一定に保つことができ、この結果、試験
室設定温度−40℃を年間を通して維持し、安定を保つ
ことが可能となる。なお、従来技術による周波数固定
(60Hz)の場合は、図9中に破線で示すように、装
置周囲温度変化に対し、冷媒蒸発温度が変化し、この結
果、周囲高温時試験室温度が−40℃を維持することが
できなくなる。
According to the present invention, it is possible to maintain and stabilize the refrigerant evaporation temperature at the target temperature with respect to the change of the ambient temperature of the apparatus, that is, the change of the refrigerant condensation temperature. FIG. 9 shows an example of frequency control and refrigeration cycle characteristics of the rotary compressor according to the present invention. By adopting the frequency control according to the refrigerant evaporation temperature of the present invention, even if the apparatus ambient temperature changes and the refrigerant condensation temperature changes, the refrigerant evaporation temperature can be kept constant at the set refrigerant evaporation temperature of -45 ° C. As a result, it is possible to maintain the test room set temperature of -40 ° C throughout the year and keep it stable. In the case of the fixed frequency (60 Hz) according to the conventional technique, as shown by the broken line in FIG. 9, the refrigerant evaporation temperature changes with respect to the device ambient temperature change, and as a result, the ambient high temperature test chamber temperature is −40. It becomes impossible to maintain ℃.

【0024】[0024]

【発明の効果】本発明によれば、装置周囲温度の変化、
すなわち冷媒凝縮温度の変化に対して、冷媒蒸発温度を
目標温度に維持し、安定させることができるため、室内
の設定温度が年間を通して高精度に維持され、安定化す
ることが可能となる。
According to the present invention, changes in the ambient temperature of the device,
That is, since the refrigerant evaporation temperature can be maintained and stabilized at the target temperature with respect to the change of the refrigerant condensation temperature, the set temperature in the room can be maintained and stabilized with high accuracy throughout the year.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図である。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1の制御系路を示すフローチャートである。FIG. 2 is a flowchart showing a control system path of FIG.

【図3】図1の回転式圧縮機の周波数制御を示すフロー
チャートである。
3 is a flowchart showing frequency control of the rotary compressor of FIG.

【図4】本発明の第2の実施例を示す構成図である。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す構成図である。FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】本発明実施例3による冷媒凝縮温度と設定圧縮
機周波数
FIG. 6 is a refrigerant condensing temperature and set compressor frequency according to the third embodiment of the present invention.

【図7】本発明の第4の実施例を示す構成図である。FIG. 7 is a configuration diagram showing a fourth embodiment of the present invention.

【図8】本発明の第5の実施例を示す構成図である。FIG. 8 is a configuration diagram showing a fifth embodiment of the present invention.

【図9】本発明による圧縮機周波数制御と冷凍サイクル
特性とを示す図である。
FIG. 9 is a diagram showing compressor frequency control and refrigeration cycle characteristics according to the present invention.

【符号の説明】[Explanation of symbols]

3 乾球温度センサ 4 湿球温度センサ 7 加温ヒータ 8 加湿ヒータ 9 回転式圧縮機 10 凝縮器 12 電子式比例制御弁 13 蒸発器 14 冷媒 15 冷媒蒸発温度センサ 16 低圧圧力センサ 17 冷媒凝縮温度センサ 18 高圧圧力センサ 19 空気温度センサ 3 Dry-bulb temperature sensor 4 Wet-bulb temperature sensor 7 Heating heater 8 Humidification heater 9 Rotary compressor 10 Condenser 12 Electronic proportional control valve 13 Evaporator 14 Refrigerant 15 Refrigerant evaporation temperature sensor 16 Low pressure sensor 17 Refrigerant condensation temperature sensor 18 High pressure sensor 19 Air temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾川 健男 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 櫻野 正敏 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takeo Ogawa 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi Shimizu Plant (72) Inventor Masatoshi Sakurano 390 Muramatsu, Shimizu City, Shizuoka Hitachi Ltd. Shimizu Plant, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 断熱材に囲まれた室内の温度及び湿度を
測定し、それぞれの測定値に基づき前記室内に設けた加
温器及び加湿器により調温調湿制御するとともに、前記
室内に設けた蒸発器に圧縮機を経由して凝縮手段と減圧
手段とを接続し前記室内を所定温度に冷却させる冷凍機
を制御する恒温恒湿装置の冷凍機制御方法において、前
記室内の温度及び湿度を入力して前記冷凍機の冷媒状態
の目標値を設定し、該目標値と前記冷媒状態の測定値と
の差に応じて前記圧縮機をインバータにより回転数制御
し、冷却能力を可変にすることを備えことを特徴とする
恒温恒湿装置の冷凍機制御方法。
1. The temperature and humidity inside a room surrounded by a heat insulating material are measured, and the temperature and humidity are controlled by a warmer and a humidifier installed inside the room based on the measured values, and the temperature and humidity are controlled inside the room. In the refrigerator control method of the constant temperature and humidity apparatus, which controls the refrigerator for cooling the room to a predetermined temperature by connecting the condenser means and the pressure reducing means to the evaporator via a compressor, the temperature and humidity of the room are controlled. Inputting and setting a target value of the refrigerant state of the refrigerator, and controlling the rotation speed of the compressor by an inverter according to the difference between the target value and the measured value of the refrigerant state to make the cooling capacity variable. A refrigerator control method for a constant temperature and constant humidity apparatus, comprising:
【請求項2】 断熱材に囲まれた室内の温度及び湿度を
測定し、それぞれの測定値に基づき前記室内に設けた加
温器及び加湿器により調温調湿制御するとともに、前記
室内に設けた蒸発器に圧縮機を経由して凝縮手段と減圧
手段とを接続し前記室内を所定温度に冷却させる冷凍機
を制御する恒温恒湿装置の冷凍機制御方法において、前
記冷凍機の冷媒状態に応じて該冷媒状態の目標値をあら
かじめ設定し、該目標値に応じて前記圧縮機をインバー
タにより回転数制御し、冷却能力を可変にすることを備
えことを特徴とする恒温恒湿装置の冷凍機制御方法。
2. The temperature and humidity inside a room surrounded by a heat insulating material are measured, and the temperature and humidity are controlled by a warmer and a humidifier provided inside the room based on the respective measured values, and the temperature and humidity are controlled inside the room. In the refrigerator control method of the constant temperature and humidity device for controlling the refrigerator for cooling the room to a predetermined temperature by connecting the condenser means and the pressure reducing means to the evaporator via a compressor, the refrigerant state of the refrigerator is set. According to the target value, the target value of the refrigerant state is set in advance according to the target value, the rotation speed of the compressor is controlled by an inverter, and the cooling capacity is made variable. Machine control method.
【請求項3】 断熱材に囲まれた室内の温度及び湿度を
測定し、それぞれの測定値に基づき前記室内に設けた加
温器及び加湿器により調温調湿制御するとともに、前記
室内に設けた蒸発器に圧縮機を経由して凝縮手段と減圧
手段とを接続し前記室内を所定温度に冷却させる冷凍機
を制御する恒温恒湿装置の冷凍機制御方法において、前
記室内の温度及び湿度を入力して前記冷凍機の冷媒状態
の目標値を設定し、該目標値と前記冷媒状態の測定値と
の差に応じて電子膨張弁で形成した前記減圧手段の開度
を制御し、冷却能力を可変にすることを特徴とする恒温
恒湿装置の冷凍機制御方法。
3. The temperature and humidity in a room surrounded by a heat insulating material are measured, and the temperature and humidity are controlled by a warmer and a humidifier provided in the room based on the measured values, and the temperature and humidity are controlled in the room. In the refrigerator control method of the constant temperature and humidity apparatus, which controls the refrigerator for cooling the room to a predetermined temperature by connecting the condenser means and the pressure reducing means to the evaporator via a compressor, the temperature and humidity of the room are controlled. By inputting and setting a target value of the refrigerant state of the refrigerator, the opening degree of the pressure reducing means formed by the electronic expansion valve is controlled according to the difference between the target value and the measured value of the refrigerant state, and the cooling capacity is set. A method for controlling a refrigerator of a constant temperature and constant humidity apparatus, wherein:
【請求項4】 冷媒状態は、減圧手段により減圧された
冷媒のほぼ一定値に設定される冷媒蒸発温度であること
を特徴とする請求項1〜3のいずれか1項記載の恒温恒
湿装置の冷凍機制御方法。
4. The constant temperature and humidity apparatus according to claim 1, wherein the refrigerant state is a refrigerant evaporation temperature set to a substantially constant value of the refrigerant depressurized by the depressurizing means. Refrigerator control method.
【請求項5】 冷媒状態は、圧縮機に吸入される冷媒の
低圧圧力であることを特徴とする請求項1〜3のいずれ
か1項記載の恒温恒湿装置の冷凍機制御方法。
5. The refrigerating machine control method for a constant temperature and constant humidity apparatus according to claim 1, wherein the refrigerant state is a low pressure of the refrigerant sucked into the compressor.
【請求項6】 冷媒状態は、圧縮機より吐出されかつ凝
縮手段で凝縮された冷媒の冷媒凝縮温度であることを特
徴とする請求項1〜3のいずれか1項記載の恒温恒湿装
置の冷凍機制御方法。
6. The constant temperature and humidity device according to claim 1, wherein the refrigerant state is a refrigerant condensation temperature of the refrigerant discharged from the compressor and condensed by the condensing means. Refrigerator control method.
【請求項7】 冷媒状態は、圧縮機より吐出された冷媒
の高圧圧力であることを特徴とする請求項1〜3のいず
れか1項記載の恒温恒湿装置の冷凍機制御方法。
7. The refrigerator control method for a constant temperature and humidity apparatus according to claim 1, wherein the refrigerant state is a high pressure of the refrigerant discharged from the compressor.
【請求項8】 冷媒状態の目標値は、凝縮手段の装置周
囲温度に応じて設定されることを特徴とする請求項1〜
7のいずれか1項記載の恒温恒湿装置の冷凍機制御方
法。
8. The target value of the refrigerant state is set according to the device ambient temperature of the condensing means.
7. The method for controlling a refrigerator of a constant temperature and constant humidity apparatus according to claim 7.
【請求項9】 請求項1、2又は4〜8のいずれか1項
記載の恒温恒湿装置の冷凍機制御方法を適用する恒温恒
湿装置の冷凍機制御装置において、制御手段に、圧縮機
をインバータにより回転数制御し冷却能力を可変にする
周波数制御器を備えたことを特徴とする恒温恒湿装置の
冷凍機制御装置。
9. A refrigerating machine controller for a constant temperature and constant humidity apparatus to which the refrigerating machine control method for a constant temperature and constant humidity apparatus according to claim 1, 2 or 4 is applied, wherein the control means is a compressor. A refrigerator control device for a constant temperature and humidity device, comprising a frequency controller for controlling the rotation speed of an inverter by means of an inverter and varying the cooling capacity.
JP5137637A 1993-06-08 1993-06-08 Refrigeration control method for constant temperature and humidity apparatus Expired - Fee Related JP3023637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137637A JP3023637B2 (en) 1993-06-08 1993-06-08 Refrigeration control method for constant temperature and humidity apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137637A JP3023637B2 (en) 1993-06-08 1993-06-08 Refrigeration control method for constant temperature and humidity apparatus

Publications (2)

Publication Number Publication Date
JPH06347107A true JPH06347107A (en) 1994-12-20
JP3023637B2 JP3023637B2 (en) 2000-03-21

Family

ID=15203300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137637A Expired - Fee Related JP3023637B2 (en) 1993-06-08 1993-06-08 Refrigeration control method for constant temperature and humidity apparatus

Country Status (1)

Country Link
JP (1) JP3023637B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913199A2 (en) * 1997-10-28 1999-05-06 KENDRO Laboratory Products GmbH Device for humidifying the working space of an incubator
JP2007071418A (en) * 2005-09-05 2007-03-22 Fuji Ika Sangyo Kk Calm environment-type plant growing chamber and temperature adjusting method
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
CN1327968C (en) * 2005-06-01 2007-07-25 北京清能创新科技有限公司 Constant tempeature reactor for reactor type biochemical oxygen-demand rapid measuring instrument
JP2007198646A (en) * 2006-01-25 2007-08-09 Mitsubishi Electric Corp Air conditioner
WO2008030008A1 (en) * 2006-09-05 2008-03-13 Dosub Hwang Thermohygrostat employing heat pump
US7395677B2 (en) 2004-03-31 2008-07-08 Daikin Industries, Ltd. Air conditioning system
US20110126565A1 (en) * 2009-11-30 2011-06-02 Sanyo Electric Co., Ltd. Incubator
CN105618171A (en) * 2015-12-23 2016-06-01 广州国睿科学仪器有限公司 Automatic metal bath calibration method and system
CN106584854A (en) * 2017-01-16 2017-04-26 中国计量大学 Super-precision 3D printing equipment hood
CN108273572A (en) * 2018-04-09 2018-07-13 山东农业大学 A kind of novel constant-temperature constant humidity cabinet for jujube aging blacking
CN108371964A (en) * 2017-10-24 2018-08-07 谢言 It is a kind of can high/low temperature adjust thermostat water bath
CN109341166A (en) * 2018-11-20 2019-02-15 天津怡顺行环保科技有限公司 A kind of refrigerant-cycle systems guard method
KR101996867B1 (en) * 2018-11-26 2019-07-05 박태운 The intelligent controller for energy saving, constant temperature and humidity
JP2020094719A (en) * 2018-12-11 2020-06-18 エスペック株式会社 Environment formation device and cooling device
CN111650224A (en) * 2020-05-09 2020-09-11 北京科技大学 Constant temperature and humidity device for industrial CT scanning
KR102279043B1 (en) * 2020-12-11 2021-07-22 주식회사 다우일렉트론 Cooling system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963105B1 (en) * 2013-03-22 2017-05-03 Panasonic Healthcare Holdings Co., Ltd. Culture apparatus
EP2963106B1 (en) * 2013-03-22 2017-03-08 Panasonic Healthcare Holdings Co., Ltd. Culture apparatus
KR102190259B1 (en) * 2019-03-20 2020-12-11 주식회사 진성피엘티 Apparatus and controll method for constant temperature and humidity

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913199A2 (en) * 1997-10-28 1999-05-06 KENDRO Laboratory Products GmbH Device for humidifying the working space of an incubator
EP0913199A3 (en) * 1997-10-28 2000-03-29 KENDRO Laboratory Products GmbH Device for humidifying the working space of an incubator
US7395677B2 (en) 2004-03-31 2008-07-08 Daikin Industries, Ltd. Air conditioning system
CN1327968C (en) * 2005-06-01 2007-07-25 北京清能创新科技有限公司 Constant tempeature reactor for reactor type biochemical oxygen-demand rapid measuring instrument
JP2007071418A (en) * 2005-09-05 2007-03-22 Fuji Ika Sangyo Kk Calm environment-type plant growing chamber and temperature adjusting method
JP4529164B2 (en) * 2005-09-05 2010-08-25 富士医科産業株式会社 Windless environment type plant growth chamber and temperature adjustment method
JP2007138919A (en) * 2005-10-17 2007-06-07 Kobe Steel Ltd Two-stage screw compressor and two-stage compression refrigerator using this compressor
JP2007198646A (en) * 2006-01-25 2007-08-09 Mitsubishi Electric Corp Air conditioner
WO2008030008A1 (en) * 2006-09-05 2008-03-13 Dosub Hwang Thermohygrostat employing heat pump
US8733117B2 (en) * 2009-11-30 2014-05-27 Panasonic Healthcare Co., Ltd. Incubator
US20110126565A1 (en) * 2009-11-30 2011-06-02 Sanyo Electric Co., Ltd. Incubator
EP2327759B1 (en) * 2009-11-30 2015-11-25 Panasonic Healthcare Holdings Co., Ltd. Incubator
CN105618171A (en) * 2015-12-23 2016-06-01 广州国睿科学仪器有限公司 Automatic metal bath calibration method and system
CN106584854A (en) * 2017-01-16 2017-04-26 中国计量大学 Super-precision 3D printing equipment hood
CN108371964A (en) * 2017-10-24 2018-08-07 谢言 It is a kind of can high/low temperature adjust thermostat water bath
CN108273572A (en) * 2018-04-09 2018-07-13 山东农业大学 A kind of novel constant-temperature constant humidity cabinet for jujube aging blacking
CN108273572B (en) * 2018-04-09 2023-08-25 山东农业大学 Novel constant temperature and humidity box for aging and blackening red dates
CN109341166A (en) * 2018-11-20 2019-02-15 天津怡顺行环保科技有限公司 A kind of refrigerant-cycle systems guard method
KR101996867B1 (en) * 2018-11-26 2019-07-05 박태운 The intelligent controller for energy saving, constant temperature and humidity
JP2020094719A (en) * 2018-12-11 2020-06-18 エスペック株式会社 Environment formation device and cooling device
CN111650224A (en) * 2020-05-09 2020-09-11 北京科技大学 Constant temperature and humidity device for industrial CT scanning
KR102279043B1 (en) * 2020-12-11 2021-07-22 주식회사 다우일렉트론 Cooling system

Also Published As

Publication number Publication date
JP3023637B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP3023637B2 (en) Refrigeration control method for constant temperature and humidity apparatus
US20170030600A1 (en) Hvac unit with hot gas reheat
KR100349296B1 (en) Refrigerant weighing control system and cooling cycle control method of heat pump system
JP5514787B2 (en) Environmental test equipment
KR20070054462A (en) Refrigerator and its control method
JP6670146B2 (en) Environmental test equipment
JPH10325621A (en) Air-conditioning device
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP6895919B2 (en) Environment forming device and environment forming method
JPH05126414A (en) Refrigerator and apparatus for constant-temperature and constant-humidity
CN104508408A (en) Refrigerator
US2423382A (en) Control for air conditioning systems
JPH0579746A (en) Method and device for humidity detection in high humidity refrigerator and humidity controller
JPH05126384A (en) Air conditioner
JP2506377B2 (en) Air conditioner and its control method
US6257006B1 (en) Cooling method and cooling apparatus
JPH0315943Y2 (en)
US20230184474A1 (en) Method of varying defrost trigger for heat pump
KR100606267B1 (en) Air conditioner capable of continuous cooling operation
KR100208366B1 (en) Refrigerator and its temperature control method
JP7098513B2 (en) Environment forming device and cooling device
JP2651327B2 (en) Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
US6257008B1 (en) Cooling method and cooling apparatus
JP2923109B2 (en) Refrigeration cycle control method for constant temperature and humidity apparatus, and constant temperature and humidity apparatus
JPH0432598Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees