JPS6141989B2 - - Google Patents

Info

Publication number
JPS6141989B2
JPS6141989B2 JP6006583A JP6006583A JPS6141989B2 JP S6141989 B2 JPS6141989 B2 JP S6141989B2 JP 6006583 A JP6006583 A JP 6006583A JP 6006583 A JP6006583 A JP 6006583A JP S6141989 B2 JPS6141989 B2 JP S6141989B2
Authority
JP
Japan
Prior art keywords
tio
mgo
weight
magnesia
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6006583A
Other languages
Japanese (ja)
Other versions
JPS59185781A (en
Inventor
Yasuo Yokoyama
Toshiro Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6006583A priority Critical patent/JPS59185781A/en
Publication of JPS59185781A publication Critical patent/JPS59185781A/en
Publication of JPS6141989B2 publication Critical patent/JPS6141989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 方向性けい素鋼板は、その表面に密着性にすぐ
れた均一なフオルステライト質の耐熱性絶縁被膜
が形成され、この被膜は、鉄損劣化を伴わぬこと
が必要とされる。 一般にフオルステライト質被膜は、最終厚みに
冷間圧延した方向性けい素鋼板素材とくに鋼帯を
酸化性、就中湿潤水素雰囲気中700〜900℃で数分
間連続加熱して鋼板を脱炭すると同時に鋼中けい
素を酸化してシリカを含む酸化膜を形成させた
後、マグネシアを主成分とする焼なまし用分離剤
を塗布してから鋼帯をコイル状に巻き取つて、高
温仕上焼なましを施す過程で形成される。 上記焼なまし用分離剤については、その性状
が、フオルステライト被膜の性状ひいては、方向
性けい素鋼板の性能に大きく影響し、この分離剤
につき以下のべるところは、方向性けい素鋼板の
製造に関する技術の分野に位置づけられる。 (従来技術と問題点) この焼なまし用分離剤についてはすでに多くの
研究が行なわれ、なかでもその主成分であるマグ
ネシア(MgO)に酸化チタン(TiO2)を添加配合
すると良好な絶縁被膜を形成させ得ることが、特
公昭25−2858号、特公昭46−42299号、特公昭49
−29409号および特公昭51−12451号各公報ならび
に米国特許第3627594号明細書などに開示されて
いる。 これらの方法では、TiO2の粉末は焼なまし分
離剤をけい素鋼板に塗布する時点でMgO粉末と
混合し、水を加え、撹拌し水スラリーとして塗布
される。 しかし上記のような開示に従うだけでは、
TiO2を添加することによる利点を充分に発揮さ
せ良好な被膜外観均一性と、地鉄に対する密着
性、および良好な磁気特性を常に安定して得るこ
とは、必ずしも容易でなく、使用をするTiO2
末の性状やMgOとの混合スラリーの調製条件な
どに支配される要素も多いところに難点があつ
た。 発明者らは、さきに特公昭56−15466号公報に
おいてTiO2を配合使用する場合不所望にもたら
される、フオルステライト被膜の黒点状付着物生
成を防止するために、325メツシユのふるいを98
重量%以上が通過する粒度分布を有しかつ20μ以
下の粒子を80重量%以上含有する微細なTiO2
使用する方法を提案し、これにより黒点状付着物
の生成はほぼ解消された。 しかしこの場合もなお部分的な濃淡むらと軽度
のざらつきが依然認められ、これらは最終的にり
ん酸塩コーテイングが施されて後の色調と光沢の
むらを強調するため、商品価値をかなり損うきら
いがあつた。 またフオルステライト質の絶縁被膜は、可能な
限り平滑であることが磁気特性と占積率の上から
望ましいのであるが、上掲した各従来技術を通し
てTiO2添加分離剤による被膜は、数ミクロンの
凹凸やうねりを有し、未だ改善の余地が大きいわ
けである。 発明者らはより外観的に均一で密着性がよく、
しかも磁気特性、占積率にすぐれるフオルステラ
イト被膜の形成を目指してMgO粉末とTiO2粉末
の混合度合いをより完全化することが望ましいと
考え、スラリーの撹拌を強化する方法を試みたが
それによる効果はわずかであり、外観的に若干の
改善を得るに止まつた。 (着想の基礎) 上記の経験を踏まえてTiO2を添加する時期を
MgOの製造過程にまでさかのぼることを発想
し、MgO製造時の中間生成物である水酸化マグ
ネシウム(Mg(OH)2)にTiO2を配合し、この混
合物を焼成して、Ti化合物含有マグネシア粉末
を得、これを常法によつてけい素鋼板に塗布し、
仕上げ焼なましを施す方法を試みたところ、前述
の難点が顕著に改善され、加えて被膜の密着性向
上にも効果があることが見出された。 (発明の目的) 上記の知見に従い、フオルステライト被膜の性
状改善による方向性けい素鋼板の性能向上を実現
することができる焼なまし用分離剤の提案が、こ
の発明の目的である。 (発明の構成) 上記目的は、次の事項により有利に達成され
る。 最終厚みに冷間圧延した方向性けい素鋼板素材
の酸化性雰囲気下の加熱で形成される該素材表面
のシリカを含む酸化膜上に塗布施用して、その後
の高温下仕上焼なまし工程でフオルステライト質
被膜の形成に供するマグネシア系の焼なまし用分
離剤にして、水酸化マグネシウムに、酸化チタン
粉末を該水酸化マグネシウムの換算MgOに対
し、TiO2として1〜20重量%の範囲内で配合
し、この混合物を焼成して得られる、チタン化合
物含有マグネシアより主として成る上記分離剤。 ここにMgOの製造過程中Mg(OH)2の段階に
おいて配合する酸化チタン(TiO2)の粉末は、
Mg(OH)2の換算MgOに対し、1〜20重量%の
範囲内においてのみ、これを焼なまし用分離剤の
主成分として用いたときに、均一性、密着性に優
れ、平滑で磁気特性、占積率を劣化させないフオ
ルステライト質の耐熱性絶縁被膜が容易に得られ
る。 (焼鈍分離剤の製法) この種分離剤の原料MgOは、通常海水に直接
石灰乳(Ca(OH)2)を添加するか、又は製塩業
において、食塩を採取した残りの苦汁に石灰乳を
添加するかして、海水中のマグネシウムイオン
(Mg++)を水酸化マグネシウム(Mg(OH)2)の形
で析出させ、必要に応じて結晶の熟成を行なわせ
てからフイルタープレスで過、洗浄してケーキ
状とし、これを適当な寸法のペレツトに整形して
ロータリーキルン又はバツチ炉に装入し、1000℃
前後の温度で焼成し、その後粉砕、分級すること
による、工業的な製造過程によつて、つくられる
ことが多い。 ここに良質のフオルステライト被膜を形成させ
るためこのMgOの製法についてもこれまで多大
の改良が加えられ、とりわけ純度、粒度などに関
する適正条件に関し、数多くの提案が行なわれた
ところである。 この発明の分離剤は、Mg(OH)2粉末にTiO2
粉末を添加し、よく混合した後焼成することによ
つて得られるが、とくに上記の工業的なMgO製
造過程においてMg(OH)2の析出した反応槽又は
熟成用槽において、TiO2粉末の添加配合を行う
ことがもつとも合理的であり、かつ工程上も容易
である。 ここに所定量のTiO2粉末を予め別の容器で水
によく分散させ、これを上記のMg(OH)2槽に混
入し、液全体をゆるやかに撹拌しながら次の過
工程に移行させればよく、この際MgOの製造工
程自体、条件の格別な変更の必要はないので上記
した諸提案の中に確立されたフオルステライト被
膜の形成用焼鈍離剤の製造に関して改良された
種々の方法を有利に採用することができる。 Mg(OH)2に対するTiO2粉末の添加量の範囲
についてはMg(OH)2の換算MgOに対し、1〜
20重量%が実用的であり、1重量%に満たないと
TiO2の添加効果はあらわれず、一方20重量%を
こえるとフオルステライト被膜の性状が却つて害
される。 TiO2は微粉であるほど好ましく、上掲の特公
昭56−15466公報において開示された325メツシユ
通過98%以上の粒度分布を有し、かつ20μ以下の
粒子が80%以上含まれる程度に微細なものがとく
に好適である。とは云え、この発明ではとくに、
予めMg(OH)2またはその段階にてTiO2粉末を
添加配合してその混合物を焼成するので、元来
TiO2自体の凝集粒子に起因するような被膜欠陥
は効果的に回避され、従つて通常の粒度分布のも
のでも大きな支障はない。 (効果の確認実験) さて若汁法により得られたMg(OH)2に、325
メツシユ通過99.5%の粒度分布になるTiO2粉末
を次の各所定量にて添加配合し、乾式混合後空気
中950℃で3時間焼成してTi化合物を含有する
MgOを調製した。 Mg(OH)2100重量部に対しTiO23.6重量部 (対MgOで5重量%) Mg(OH)2100重量部に対しTiO27.7重量部 (対MgOで10重量%) Mg(OH)2100重量部に対しTiO217.3重量部 (対MgOで20重量%) 一方従来法に従いMg(OH)2をやはり950℃で
3時間の条件で焼成して得たMgOに、TiO2粉末
を5、10および20各重量%添加した従来分離剤
を、TiO2無添加の比較分離剤とともに準備し
た。 これら7種の供試分離剤を常法に従い脱炭焼な
まし後の方向性けい素鋼板の切板(0.3mm厚×
1030mm幅×300mm長さ)に塗布施用し、実際のコ
イルの内部にはさみ込んで高温仕上げ焼なましを
行なつた。
(Technical field) A grain-oriented silicon steel sheet has a uniform forsterite heat-resistant insulating coating with excellent adhesion formed on its surface, and this coating is required to be free from core loss deterioration. In general, a forsterite coating is created by decarburizing a grain-oriented silicon steel sheet material, especially a steel strip, which has been cold-rolled to its final thickness by heating it continuously for several minutes at 700 to 900°C in an oxidizing atmosphere, especially in a moist hydrogen atmosphere. After oxidizing the silicon in the steel to form an oxide film containing silica, an annealing separation agent containing magnesia as a main component is applied, and the steel strip is wound into a coil and subjected to high-temperature finishing annealing. It is formed during the process of applying masashi. Regarding the separating agent for annealing mentioned above, its properties greatly affect the properties of the forsterite coating and ultimately the performance of grain-oriented silicon steel sheets. It is positioned in the field of technology. (Prior art and problems) Many studies have already been conducted on this annealing separation agent, and among them, the addition of titanium oxide (TiO 2 ) to its main component, magnesia (MgO), produces a good insulating coating. It is possible to form
-29409, Japanese Patent Publication No. 51-12451, and the specification of US Pat. No. 3,627,594. In these methods, TiO 2 powder is mixed with MgO powder at the time of applying the annealing separation agent to the silicon steel sheet, water is added, stirred, and applied as a water slurry. However, simply following the disclosures above will not
It is not always easy to take full advantage of the benefits of adding TiO 2 and consistently obtain good coating appearance uniformity, adhesion to the base metal, and good magnetic properties. 2The difficulty was that there were many factors that were controlled by the properties of the powder and the conditions for preparing the slurry mixed with MgO. In Japanese Patent Publication No. 56-15466, the inventors previously reported that in order to prevent the formation of black spot-like deposits on the forsterite coating, which occurs undesirably when TiO 2 is mixed and used, a 325-mesh sieve was used with a 98-mesh sieve.
We proposed a method using fine TiO 2 that has a particle size distribution that allows more than 80% by weight of particles to pass through and contains more than 80% by weight of particles of 20μ or less, and this method almost eliminates the formation of black spot deposits. However, even in this case, local uneven shading and slight roughness are still observed, and these tend to significantly reduce the product value as they accentuate the uneven color tone and gloss after the final phosphate coating is applied. It was hot. Furthermore, it is desirable for the forsterite insulating film to be as smooth as possible from the viewpoint of magnetic properties and space factor, but through the above-mentioned conventional techniques, the film formed by the TiO 2 -added separating agent has a thickness of several microns. It has unevenness and undulations, and there is still a lot of room for improvement. The inventors have found that the appearance is more uniform and the adhesion is better.
Moreover, in order to form a forsterite film with excellent magnetic properties and space factor, we thought it would be desirable to improve the degree of mixing of MgO powder and TiO 2 powder, so we tried a method of strengthening slurry stirring, but this did not work. The effect was slight, and only a slight improvement in appearance was obtained. (Basic idea) Based on the above experience, we decided when to add TiO 2 .
Thinking back to the manufacturing process of MgO, TiO 2 is blended with magnesium hydroxide (Mg(OH) 2 ), which is an intermediate product during MgO manufacturing, and this mixture is fired to produce magnesia powder containing Ti compounds. was obtained and applied to a silicon steel plate by a conventional method.
When a method of final annealing was tried, it was found that the above-mentioned difficulties were significantly improved, and that it was also effective in improving the adhesion of the coating. (Object of the Invention) In accordance with the above findings, the object of the present invention is to propose a separating agent for annealing that can improve the performance of grain-oriented silicon steel sheets by improving the properties of the forsterite coating. (Structure of the Invention) The above object is advantageously achieved by the following matters. It is applied onto the silica-containing oxide film on the surface of a grain-oriented silicon steel sheet material that has been cold-rolled to its final thickness by heating it in an oxidizing atmosphere, and is applied in the subsequent high-temperature preliminary annealing process. As a magnesia-based annealing separating agent for forming a forsterite film, titanium oxide powder is added to magnesium hydroxide in an amount of 1 to 20% by weight as TiO 2 based on the MgO equivalent of the magnesium hydroxide. The above separation agent is mainly composed of titanium compound-containing magnesia, which is obtained by blending the mixture with the following: and firing the mixture. The titanium oxide (TiO 2 ) powder blended at the Mg(OH) 2 stage in the MgO manufacturing process is
When used as the main component of an annealing separation agent only in the range of 1 to 20% by weight based on MgO (Mg(OH) 2) , it has excellent uniformity and adhesion, and is smooth and magnetic. A forsterite heat-resistant insulating film that does not deteriorate properties or space factor can be easily obtained. (Production method of annealing separating agent) The raw material MgO for this type of separating agent is usually obtained by adding milk of lime (Ca(OH) 2 ) directly to seawater, or by adding milk of lime to the bittern left over from the salt production in the salt industry. The magnesium ions (Mg ++ ) in the seawater are precipitated in the form of magnesium hydroxide (Mg(OH) 2 ) by adding the magnesium ions (Mg ++ ) in the seawater, and if necessary, the crystals are aged and then filtered using a filter press. The pellets are washed and shaped into a cake, shaped into pellets of appropriate size, charged into a rotary kiln or batch furnace, and heated to 1000°C.
It is often produced through an industrial manufacturing process that involves firing at varying temperatures, followed by crushing and classification. In order to form a high-quality forsterite film, many improvements have been made to the MgO production method, and many proposals have been made, especially regarding the appropriate conditions for purity, particle size, etc. The separating agent of this invention combines Mg(OH) 2 powder with TiO 2
It can be obtained by adding powder, mixing well, and then firing, but it is especially possible to add TiO 2 powder in the reaction tank or aging tank where Mg(OH) 2 is precipitated in the above industrial MgO production process. It is rational to carry out blending, and the process is also easy. Here, a predetermined amount of TiO 2 powder is well dispersed in water in a separate container, and this is mixed into the Mg(OH) 2 tank mentioned above, and the entire liquid is gently stirred and transferred to the next step. In this case, there is no need to change the conditions of the MgO manufacturing process itself, so various improved methods for manufacturing an annealing release agent for forming a forsterite film established in the above proposals can be used. It can be advantageously employed. Regarding the range of the amount of TiO 2 powder added to Mg(OH) 2 , it is 1 to
20% by weight is practical, less than 1% by weight
The effect of adding TiO 2 does not appear, and on the other hand, if the amount exceeds 20% by weight, the properties of the forsterite coating are adversely affected. The finer TiO 2 is, the more preferable it is, and it has a particle size distribution of 98% or more that passes through the 325 mesh disclosed in the above-mentioned Japanese Patent Publication No. 15466/1983, and is so fine that it contains 80% or more of particles of 20μ or less. Particularly suitable are However, in this invention, in particular,
Since Mg(OH) 2 or TiO 2 powder is added and blended in advance and the mixture is fired, the original
Coating defects such as those caused by agglomerated particles of TiO 2 itself are effectively avoided, and therefore even particles with a normal particle size distribution do not cause any major problems. (Effect confirmation experiment) Now, Mg(OH) 2 obtained by the Wakajiru method has 325
TiO 2 powder with a particle size distribution of 99.5% passing through the mesh is added and blended in the following predetermined amounts, and after dry mixing, it is fired at 950°C in air for 3 hours to contain Ti compounds.
MgO was prepared. 3.6 parts by weight of TiO 2 per 100 parts by weight of Mg(OH) 2 (5% by weight relative to MgO) 7.7 parts by weight TiO 2 per 100 parts by weight Mg(OH) 2 (10% by weight relative to MgO) Mg(OH) 2 17.3 parts by weight of TiO 2 per 100 parts by weight (20% by weight of MgO) On the other hand, TiO 2 powder was added to MgO obtained by baking Mg(OH) 2 at 950°C for 3 hours according to the conventional method. Conventional separating agents added at 5, 10, and 20% by weight were prepared along with a comparative separating agent without TiO 2 added. Cut grain-oriented silicon steel sheets (0.3 mm thick x
The coil was applied to an area (1030mm wide x 300mm long), inserted inside the actual coil, and subjected to high-temperature finish annealing.

【表】 この発明に従いMg(OH)2段階でのTiO2粉末
の添加配合を経た場合には、被膜外観の均一性、
密着性、占積率および磁気特性とくに鉄損のいず
れにおいても従来法に勝ることが知られる。 TiO2添加配合時期の選択が有効に作用する機
構について明確な断定を下すことは難しいが、次
の事実を指摘することは可能である。 MgOは原料であるMg(OH)2を焼成する過程
で相当に焼成し粒成長が行なわれ、粒子同志の凝
集も著しい性質があるのでTiO2粒子との均一混
合には限界があるのに対し、この発明では原料段
階にて極めて微細なMg(OH)2粒子とTiO2粒子
を接触させることから、焼成後のMgOとTiO2
微視的な混合度合いが非常に優れるものとなるこ
とは推測できる。なお焼成後にX線回折法で組成
を調べると、チタンはチタン酸マグネシウム
(MgTiO3)として存在し、単なるMgOとTiO2
混合物ではないことも、好ましい被膜形成反応に
微妙な影響を与えることも推定される。 この発明によるチタン化合物を有するマグネシ
アは、そのままでももちろん、さらにこれを主成
分として、磁気特性、被膜特性を、改善する働き
が従来知られている種々の添加物例えばH3BO3
よびその塩;Mg、Ca、Sr、Baの硫酸塩;Mn、
Cr、Vなどの酸化物の如きを効果的に配合して
使用し得るのは論をまたない。 実施例 Si3.25重量%、Mn0.06重量%、Se0.02重量%、
Sb0.02重量%、C0.04重量%を含有する最終厚み
0.30mm、幅1025mm、重量約7400Kgのけい素鋼帯
を、露点60℃、H255%残部N2の雰囲気中で820℃
4分間の脱炭焼なましを行なつたのち、表2に示
す各焼なまし分離剤を塗布施用し、ついで該鋼帯
をコイル状に巻き取つて850℃×40時間の2次再
結晶のための保定を経て1180℃×5時間の高温箱
焼なましを行なつた。分離剤の塗布量は鋼板1m2
当り、10〜11g/m2に一定にした。得られた被膜
と磁性の調査結果を表2に示す。
[Table] When Mg(OH) and TiO 2 powder are added in two stages according to the present invention, the uniformity of the film appearance and
It is known that it is superior to conventional methods in terms of adhesion, space factor, and magnetic properties, especially iron loss. Although it is difficult to make a clear conclusion about the mechanism by which the selection of the timing of TiO 2 addition is effective, it is possible to point out the following facts. MgO undergoes considerable calcination and grain growth during the firing process of the raw material Mg(OH) 2 , and the particles tend to aggregate significantly, so there is a limit to homogeneous mixing with TiO 2 particles. In this invention, extremely fine Mg(OH) 2 particles and TiO 2 particles are brought into contact at the raw material stage, so the degree of microscopic mixing of MgO and TiO 2 after firing is extremely excellent. I can guess. Furthermore, when examining the composition using X-ray diffraction after firing, it was found that titanium exists as magnesium titanate (MgTiO 3 ), and that it is not simply a mixture of MgO and TiO 2 and that it has a subtle influence on the desired film-forming reaction. Presumed. The magnesia having a titanium compound according to the present invention can be used as it is, or can be used as a main component with various additives conventionally known to improve magnetic properties and coating properties, such as H 3 BO 3 and its salts; Sulfate of Mg, Ca, Sr, Ba; Mn,
It goes without saying that oxides such as Cr and V can be effectively blended and used. Example Si3.25% by weight, Mn0.06% by weight, Se0.02% by weight,
Final thickness containing 0.02 wt% Sb, 0.04 wt% C
A silicon steel strip of 0.30mm, width 1025mm, and weight approximately 7400Kg was heated at 820℃ in an atmosphere with a dew point of 60℃ and an atmosphere of 55% H2 and balance N2 .
After 4 minutes of decarburization annealing, each annealing separation agent shown in Table 2 was applied, and the steel strip was then wound into a coil and subjected to secondary recrystallization at 850°C for 40 hours. After holding for a long time, high-temperature box annealing was performed at 1180°C for 5 hours. The amount of separating agent applied is 1 m 2 of steel plate.
It was kept constant at 10 to 11 g/m 2 per unit. Table 2 shows the results of the investigation of the obtained coating and magnetism.

【表】 表2から明らかなようにこの発明による分離剤
を使用すると、従来通りにTiO2を使用した場合
に比べて、より容易に外観、密着性の優れた平滑
な被膜が得られ、磁性にも有利であることが分
る。 (発明の効果) 以上のとおりこの発明は、フオルステライト被
膜の性状改善による方向性けい素鋼板の性能向上
を、有利に実現できる。
[Table] As is clear from Table 2, when using the separating agent according to the present invention, a smooth coating with excellent appearance and adhesion can be obtained more easily than when TiO 2 is used conventionally, and it has magnetic properties. It turns out that it is also advantageous. (Effects of the Invention) As described above, the present invention can advantageously improve the performance of grain-oriented silicon steel sheets by improving the properties of the forsterite coating.

Claims (1)

【特許請求の範囲】 1 最終厚みに冷間圧延した方向性けい素鋼板素
材の酸化性雰囲気下における加熱で形成される、
該素材表面のシリカを含む酸化膜上に塗布施用し
て、その後の高温下仕上焼なまし工程でフオルス
テライト質被膜の形成に供するマグネシア系の焼
なまし用分離剤にして、 水酸化マグネシウムに、酸化チタン粉末を、該
水酸化マグネシウムの換算MgOに対し、TiO2
して1〜20重量%の範囲内で配合し、この混合物
を焼成して得られる、チタン化合物含有マグネシ
アより主として成る上記分離剤。 2 酸化チタン粉末が、マグネシアの製造過程
中、水酸化マグネシウム段階で配合されたもので
ある1記載の分離剤。
[Claims] 1. Formed by heating a grain-oriented silicon steel sheet material cold-rolled to the final thickness in an oxidizing atmosphere.
Magnesium hydroxide is used as a magnesia-based annealing separation agent that is applied onto the silica-containing oxide film on the surface of the material to form a forsterite film in the subsequent high-temperature preliminary annealing process. , the separation agent mainly consists of titanium compound-containing magnesia, which is obtained by blending titanium oxide powder in an amount of 1 to 20% by weight of TiO 2 based on the MgO of the magnesium hydroxide and firing the mixture. . 2. The separating agent according to 1, wherein the titanium oxide powder is blended at the magnesium hydroxide stage during the magnesia manufacturing process.
JP6006583A 1983-04-07 1983-04-07 Protective coating material for annealing grain-oriented silicon steel plate Granted JPS59185781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006583A JPS59185781A (en) 1983-04-07 1983-04-07 Protective coating material for annealing grain-oriented silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006583A JPS59185781A (en) 1983-04-07 1983-04-07 Protective coating material for annealing grain-oriented silicon steel plate

Publications (2)

Publication Number Publication Date
JPS59185781A JPS59185781A (en) 1984-10-22
JPS6141989B2 true JPS6141989B2 (en) 1986-09-18

Family

ID=13131305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006583A Granted JPS59185781A (en) 1983-04-07 1983-04-07 Protective coating material for annealing grain-oriented silicon steel plate

Country Status (1)

Country Link
JP (1) JPS59185781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876662B2 (en) 2017-03-15 2020-12-29 Novelis Inc. Corrugated heat protection tube and methods of making the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202144A (en) * 1984-03-27 1985-10-12 Sumitomo Chem Co Ltd Polypropylene resin composition
WO2004106261A1 (en) * 2003-05-30 2004-12-09 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
CN106086921B (en) * 2016-06-14 2018-05-08 大连理工大学 Si/TiO is constructed in a kind of crystal face induction2The preparation method of complex light anode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876662B2 (en) 2017-03-15 2020-12-29 Novelis Inc. Corrugated heat protection tube and methods of making the same

Also Published As

Publication number Publication date
JPS59185781A (en) 1984-10-22

Similar Documents

Publication Publication Date Title
KR100762436B1 (en) Annealing separating agent for grain oriented silicon steel sheet excellent in surface characteristic and production method of grain oriented silicon steel sheet using the same
EP3219825A1 (en) Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
JP2016199460A (en) Separation agent for annealing for grain oriented silicon steel sheet
JP4192282B2 (en) Method for producing MgO for annealing separator
JP3475258B2 (en) Ceramic film forming agent and method for producing the same
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JPH09510503A (en) Method for manufacturing magnetic steel sheet having glass coating
JP2004238668A (en) Magnesium oxide for separation agent for annealing, and grain-oriented electromagnetic steel sheet
WO2017191953A1 (en) Annealing separator composition, method for manufacturing same, and method for manufacturing grain-oriented electrical steel sheet using same
JPS6141989B2 (en)
JP4192283B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1088244A (en) Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP2698549B2 (en) Low iron loss unidirectional silicon steel sheet having magnesium oxide-aluminum oxide composite coating and method for producing the same
WO2022262144A1 (en) Preparation method for annealing separating agent, annealing separating agent, and directional electromagnetic steel plate
KR101155606B1 (en) Manufacturing process of magnesia for annealing separator of grain oriented electrical steel
JP3356933B2 (en) Annealing separator with excellent film-forming ability and method for producing grain-oriented electrical steel sheet using the same
JP2005171387A (en) MANUFACTURING METHOD OF MgO FOR ANNEALING SEPARATING AGENT
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
JP3059338B2 (en) Annealing separating agent for grain-oriented electrical steel sheet having extremely excellent reactivity and method of using the same
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JP3091088B2 (en) Annealing separation agent having extremely excellent reactivity and method of using the same
JPH0456781A (en) Separating agent for annealing for grain-oriented silicon steel sheet
JPH0941153A (en) Separation agent at annealing, excellent in reactivity, and production of grain oriented silicon steel sheet using the same
JPH09256068A (en) Production of grain-oriented silicon steel sheet for obtaining excellent glass coating