JPS6141945A - Production of bead sample for component analysis - Google Patents

Production of bead sample for component analysis

Info

Publication number
JPS6141945A
JPS6141945A JP16379984A JP16379984A JPS6141945A JP S6141945 A JPS6141945 A JP S6141945A JP 16379984 A JP16379984 A JP 16379984A JP 16379984 A JP16379984 A JP 16379984A JP S6141945 A JPS6141945 A JP S6141945A
Authority
JP
Japan
Prior art keywords
bead
ore
temp
stage
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16379984A
Other languages
Japanese (ja)
Other versions
JPH0327061B2 (en
Inventor
Otoaki Tomita
富田 己夫
Toichi Kikuchi
菊池 統一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16379984A priority Critical patent/JPS6141945A/en
Publication of JPS6141945A publication Critical patent/JPS6141945A/en
Publication of JPH0327061B2 publication Critical patent/JPH0327061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To prevent the curving of the top surface of a bead by providing a plane forming stage in the cooling process after a melting and stirring stage and holding ore for >=5sec at the prescribed temp. within the range of the solidifying temp. of the ore +10-500 deg.C. CONSTITUTION:The powder ore is melted by a flux and stirred uniformly in the melting and stirring stage. The molten ore is held for about >=5sec in the range of the solidifying temp. of the ore +10-500 deg.C in the plane forming stage. The temp. at which the plane is formed varies with the kind of the flux, the peeling agent to be added and the side wall angle of a platinum vessel and therefore the optimum temp. is preferably selected for each of the conditions for bead production. The molten ore is allowed to cool down to a room temp. after the plane forming stage as a cooling stage. The curving of the top surface of the bead is thus prevented and the bead sample optimum for a fluorescent X-ray analysis is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野9 本発明は鉱物類の化学成分分析用ビード試料の製造方法
fこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field 9) The present invention relates to a method for producing a bead sample for chemical component analysis of minerals.

(従来の技術〕 JIS −M −8205tこ示すよう1こ、該鉱物類
を融剤やはぐり剤と混合して白金容器内で浴融撹拌後葡
却してガラス質のビード資料を製造する方法で、溶融物
が凝固する時tこ表面張力1こよってビード周縁部に上
反シ(まれに下皮シシの湾曲が生ずる。
(Prior art) As shown in JIS-M-8205t, 1 is a method of manufacturing glassy bead materials by mixing the minerals with a fluxing agent and a peeling agent, stirring the mixture in a platinum container, and then discarding the mixture. When the molten material solidifies, the surface tension 1 causes an inversion (in rare cases, a curvature of the lower skin) at the bead periphery.

螢光X線分析法ではX1v15!照射距離が重要な管理
項目となる。例えば、上皮シ湾曲部の高さが0.6mf
こなるとT、Feの分析値が0.6%(at50%T、
Fe%)低値となる。このため、特開昭56−6033
7号に示すような上皮シ湾曲部を補正するようなスペー
サーを用いるか、或いは一般的1こ行われているビード
下面を分析する方法が行なわれている。
X1v15 in fluorescent X-ray analysis! Irradiation distance is an important control item. For example, the height of the epithelial curve is 0.6 mf.
In this case, the analysis value of T and Fe is 0.6% (at50%T,
Fe%) becomes a low value. For this reason, JP-A-56-6033
A spacer such as that shown in No. 7 is used to correct the curved portion of the epithelium, or a commonly used method is to analyze the underside of the bead.

(発明が解決しようとする問題点) %開昭56−60337号の如くスペーサーを用いる方
法は効果的であるが、X線強度がスペーサーの分だけ弱
くなυ微量成分析1こは不利になる。又、従来技術の他
の一つであるビード下面を分析する方法は常に白金容器
の底面を平らに保たなければならないが、加熱冷却の繰
り返しで歪が生ずるため白金容器の底面を平らに保つこ
とは困難である。
(Problems to be Solved by the Invention) Although the method using a spacer as in Patent Publication No. 56-60337 is effective, the X-ray intensity is weaker due to the spacer, which is disadvantageous for υ trace component analysis. . In addition, in the method of analyzing the bottom surface of the bead, which is another conventional technique, the bottom surface of the platinum container must be kept flat at all times, but since distortion occurs due to repeated heating and cooling, it is difficult to keep the bottom surface of the platinum container flat. That is difficult.

本発明は前記したビード試料の周縁近傍に発生する上反
り状、下皮り状の湾曲の発生を防止することを目的とす
るものである。
The object of the present invention is to prevent the above-mentioned curvature or curvature that occurs near the periphery of the bead sample from occurring.

(問題点を解決するための手段〕 本発明は粉末鉱物類を融剤とともに白金容器内で加熱融
解してビード試料を製造する方法1こ於いて、溶融撹拌
工程、該鉱物類の凝固温度+10℃〜500℃の範囲内
の所定温度で5秒以上保持する平面成形工程、冷却工程
を順次経ることを特徴とする成分分析用ビード試料製造
方法にある。
(Means for Solving the Problems) The present invention provides a method 1 for manufacturing a bead sample by heating and melting powdered minerals together with a flux in a platinum container, in which the melting and stirring step is performed at a solidification temperature of the minerals + 10%. A method for producing a bead sample for component analysis, characterized by sequentially carrying out a flat molding step of holding at a predetermined temperature within the range of 500° C. for 5 seconds or more, and a cooling step.

(作用〕 本発明における前記溶融撹拌工程、平面形成工程及び冷
却工程の各々の条件限定にもとすく作用1こついて以下
1こ述べる。
(Function) The following is a description of one effect of limiting the conditions for each of the melting and stirring step, the plane forming step, and the cooling step in the present invention.

■溶融撹拌工程 該粉末鉱物を融剤で溶融し、均一に撹拌するものである
(2) Melting and stirring process The powdered mineral is melted with a flux and stirred uniformly.

■平面成形工程 ビード上面の周縁近傍の上皮シ又は下反りの湾曲は、凝
固直前の溶融物の表面張力によって左右され、この表面
張力は溶融物の温度によって大きく異なる。ビード上面
を平面状に形成される温度が凝固温反+10℃〜500
℃の範囲中にあることは本発明者が種々の実験と検討を
重ねて見いだしたものであり、鉄鉱石類に於いては凝固
点+250℃を超えると周縁近傍部に上反りの湾曲が生
じ、)χ固点+50℃以下では上皮シ又は下皮シの湾曲
となり好ましくない。
(2) Plane forming process The curvature of the epithelium or downward curvature near the periphery of the upper surface of the bead is influenced by the surface tension of the molten material just before solidification, and this surface tension varies greatly depending on the temperature of the molten material. The temperature at which the top surface of the bead is formed into a flat shape is the solidification temperature +10℃~500℃.
The inventor of the present invention has discovered through various experiments and studies that the iron ore is within the range of 250°C above the freezing point, and an upward curvature occurs near the periphery of the iron ore. ) Below χ solid point +50°C, the epithelium or hypodermis becomes curved, which is not preferable.

なお、平面が形成される温度は融剤の種類、添加するは
くυ剤及び白金容器の側壁角度によって異なるので、ビ
ード製造条件毎に最適湿度を選定する。保持する時間は
上反り部分が表面張力の変化によってゼロ1こなるまで
、通常10秒以ユ必要である。
Note that the temperature at which the flat surface is formed varies depending on the type of flux, the added foil, and the side wall angle of the platinum container, so the optimum humidity is selected for each bead production condition. The holding time is usually 10 seconds or more until the warped portion becomes zero-1 due to a change in surface tension.

■冷却工程 平面形成工程温度温まで放冷する。はぐり性の悪い粉末
鉱物類のビードを作成する場合には特開昭57−619
38に示すように凝固点直下で所定時間保持する方法が
あるが、不法では放冷のみで良好なはくシ性を示す。
■ Cooling process Plane forming process Allow to cool to temperature. When making beads of powdered minerals with poor peelability, please refer to Japanese Patent Application Laid-Open No. 57-619.
As shown in No. 38, there is a method of holding the material just below the freezing point for a predetermined period of time, but illegally, it shows good adhesive properties only by allowing it to cool.

(実施例) 樹、下鉄鉱石類で本発明を実施した一例1こついて説明
する。
(Example) An example 1 in which the present invention was implemented using iron ores will be explained.

鉄鉱石類0.5gを融剤(ホウ酸ナトリウム)5gと酸
化剤(KIO,) 0.05 gを白金容器に入れ、第
1図に示すごとく高周波炉で溶融撹拌工程950℃×4
分間、千面形成工程800℃×1分間加熱して放冷する
ヒートパターンで、100個のビード試料を作成した結
果、全ての試料が良好な平面になった。それfこ比較し
て第2図1ご示す従来技術のヒートパターンでは全ての
ビードに上皮シの湾曲が生じた。
0.5 g of iron ore, 5 g of flux (sodium borate) and 0.05 g of oxidizing agent (KIO) were placed in a platinum container, and melted and stirred in a high frequency furnace at 950°C x 4 times as shown in Figure 1.
As a result of creating 100 bead samples using a heat pattern of heating at 800° C. for 1 minute and cooling for 1 minute, all samples had good flat surfaces. In comparison, in the conventional heat pattern shown in FIG. 2, all beads had epithelial curvature.

なお、平面形成工程の最適温度は、融剤の種類及び添加
するはくり剤の種類や量によって異なるが、融剤にホウ
酸ナトリウム5gxはくシ剤にヨウ素酸カリウム0.0
5g用いた場合の平面形成工程温度とビード周縁部の湾
曲は第3図1こ示すごとく800℃が最適である。
The optimum temperature for the plane forming process varies depending on the type of flux and the type and amount of the peeling agent added, but the temperature should be 5 g of sodium borate for the flux and 0.0 g of potassium iodate for the foil.
When 5g is used, the optimum temperature for the flat surface forming process and the curvature of the bead periphery are 800°C as shown in FIG. 3.

(発明の効果〕 本発明によれば溶融撹拌工程後の冷却過程1こ平面形成
工程を設け、平面形成に最適な温度に保持することで、
ビード上面の湾曲が防止でき、螢光X線分析に最適など
−ド試料が得られる。
(Effect of the invention) According to the present invention, by providing a plane forming step in the cooling process after the melting and stirring step and maintaining the temperature at the optimum temperature for forming the plane,
Curving of the upper surface of the bead can be prevented, and an ideal sample for fluorescent X-ray analysis can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるヒートパターンであり、第2図は
特開昭57−61938によるヒートパターンである。 第3図はビード平面形成工程の温度を900℃、800
℃、  700℃、  600℃と変化させた場合の湾
曲状況を示す図で、(イ)は断面図、(ロ)は平面図で
ある。
FIG. 1 shows a heat pattern according to the present invention, and FIG. 2 shows a heat pattern according to Japanese Patent Application Laid-Open No. 57-61938. Figure 3 shows the temperatures of the bead plane forming process at 900°C and 800°C.
700° C., 700° C., and 600° C., in which (a) is a cross-sectional view and (b) is a plan view.

Claims (1)

【特許請求の範囲】[Claims] 粉末鉱物類を融剤とともに白金容器内で加熱融解してビ
ード試料を製造する方法に於いて、溶融撹拌工程、該鉱
物類の凝固温度+10℃〜500℃の範囲内の所定温度
で5秒以上保持する平面成形工程、冷却工程を順次経る
ことを特徴とする成分分析用ビード試料製造方法。
In a method of manufacturing a bead sample by heating and melting powdered minerals together with a flux in a platinum container, the melting and stirring step is performed at a predetermined temperature within the range of the solidification temperature of the mineral +10°C to 500°C for 5 seconds or more. A method for producing a bead sample for component analysis, characterized by sequentially carrying out a holding flat forming process and a cooling process.
JP16379984A 1984-08-06 1984-08-06 Production of bead sample for component analysis Granted JPS6141945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16379984A JPS6141945A (en) 1984-08-06 1984-08-06 Production of bead sample for component analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16379984A JPS6141945A (en) 1984-08-06 1984-08-06 Production of bead sample for component analysis

Publications (2)

Publication Number Publication Date
JPS6141945A true JPS6141945A (en) 1986-02-28
JPH0327061B2 JPH0327061B2 (en) 1991-04-12

Family

ID=15780920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16379984A Granted JPS6141945A (en) 1984-08-06 1984-08-06 Production of bead sample for component analysis

Country Status (1)

Country Link
JP (1) JPS6141945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069758A1 (en) * 2003-01-06 2004-08-19 Lang, G Flux for producing beads for x-fluorescent analysis and method for producing said flux

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069758A1 (en) * 2003-01-06 2004-08-19 Lang, G Flux for producing beads for x-fluorescent analysis and method for producing said flux

Also Published As

Publication number Publication date
JPH0327061B2 (en) 1991-04-12

Similar Documents

Publication Publication Date Title
DE3883030D1 (en) HYDROMETALLURGICAL METHOD FOR PRODUCING FINE SPHERICAL PRECIOUS METAL POWDER.
DE3883031T2 (en) Hydrometallurgical process for the production of fine spherical powder from refractory metal.
DE292793T1 (en) HYDROMETALLURGICAL PROCESS FOR PRODUCING FINE POWDER FROM COPPER OR FROM COPPER ALLOYS.
DE3766317D1 (en) METHOD FOR PRODUCING SPHERICAL POWDER.
JPS6141945A (en) Production of bead sample for component analysis
CN103930250A (en) Preparation of inorganic samples by fusion
JPS6141948A (en) Production of bead sample for component analysis
US3975187A (en) Treatment of carbothermically produced aluminum
ATE93426T1 (en) HYDROMETALLURGIC PROCESS FOR THE PRODUCTION OF FINE IRON BASED POWDER.
JP2018119940A (en) Manufacture method of fluorescent x-ray analyser glass bead
US4994398A (en) Assistant combustion agent for use in high-frequency combustion furnace
ATE161760T1 (en) METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF METAL MATRIX COMPOSITE MATERIAL
CN106637417A (en) Color changing method of artificial sapphire crystal
JPS61261402A (en) Simple chamfering method for sintered member
DE3883036D1 (en) HYDROMETALLURGICAL METHOD FOR PRODUCING FINE SPHERICAL POWDER FROM LOW-MELTING METALS.
JPH0130766B2 (en)
JPS61186408A (en) Production of amalgam for fluorescent lamp
RU2224805C1 (en) Method of preliminary roasting of sulfide ores and gold- and-silver containing products of their processing in assaying
JP2853580B2 (en) Dissolution treatment method for chemical analysis samples
JPS63210758A (en) Fluorescent x-ray analysis of metal
RU2092807C1 (en) Process of preparation of powdery sample for examination
US1922490A (en) Separation of metals from ores
JPS6228062A (en) Casting method for base body for lead storage battery
RU2161094C1 (en) Method of preparing browning alloy for decorative treatment of surfaces of articles
JPH06341937A (en) Preparation method of glass bead sample for analyzing fluorescent x ray