JPS63210758A - Fluorescent x-ray analysis of metal - Google Patents

Fluorescent x-ray analysis of metal

Info

Publication number
JPS63210758A
JPS63210758A JP4579487A JP4579487A JPS63210758A JP S63210758 A JPS63210758 A JP S63210758A JP 4579487 A JP4579487 A JP 4579487A JP 4579487 A JP4579487 A JP 4579487A JP S63210758 A JPS63210758 A JP S63210758A
Authority
JP
Japan
Prior art keywords
fluorescent
oxide
rays
glass beads
ray analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4579487A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kuhara
久原 清
Yoshiyuki Matsuzaki
松崎 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP4579487A priority Critical patent/JPS63210758A/en
Publication of JPS63210758A publication Critical patent/JPS63210758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the accuracy of an analysis by oxidizing a metallic sample to form the oxide thereof, adding fusing agent to the oxide to fuse the oxide, forming glass beads, projecting X-rays on the glass beads and analyzing the components from the fluorescent X-rays radiated therefrom. CONSTITUTION:For example, hydrochloric acid is added to the metallic sample consisting of a hydrogen occlusion alloy to decompose the sample, and nitric acid is added thereto to form the oxide thereof. the liquid adjusted to about 8.0-8.2pH by adding ammonia thereto is then filtered and the filtrate is put into a crucible to form the oxide. Lithium borate as the fusing agent and lithium iodide as a stripping agent are added to the oxide and the oxide is fused and oscillated in the platinum crucible 6, by which the uniform glass beads 9 are obtd. The X-rays are projected to a base 90 of the beads 9 and the fluorescent X-rays radiated at this time are collated with a calibration curve which is previously formed with a metal having a known compsn. and indicates the relation between the intensity of the fluorescent X-rays and the contents of components. The content of the iron component and content of the titanium component of the sample are thus quantitatively analyzed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素吸蔵合金などの金属の蛍光xta分析方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for fluorescence xta analysis of metals such as hydrogen storage alloys.

[従来の技術] 例えば水素吸蔵合金は、蛍光X線分析づるときに、粉末
状の水素吸蔵合金を粉砕して更に細かくする必要がある
が、このように粉砕するときに、結晶構造が変わったり
、化学変化を起こし、分析精度のばらつきは、鉄で1.
20%、チタンで1゜25%であり、分析精度の向上に
は限界がある。
[Prior Art] For example, when performing fluorescent X-ray analysis on a hydrogen storage alloy, it is necessary to crush the powdered hydrogen storage alloy to make it even finer. , chemical changes occur, and the variation in analysis accuracy is 1.
20%, and 1°25% for titanium, so there is a limit to the improvement of analytical accuracy.

そのため水素吸蔵合金の分析は、一般に湿式化学分析法
により成されているが、分析時間を長く要するため、工
場での生産管理分析として活用するには限界がある。
For this reason, hydrogen storage alloys are generally analyzed by wet chemical analysis, but this method requires a long analysis time, so there is a limit to its use as production control analysis in factories.

[発明が解決しようと覆る問題点] 本発明は上記した実情に鑑みなされたものであり、その
目的は、分析精度の確保に有利であり、工場での生産管
理分析に適する金属の蛍光X線分析方法を提供するにあ
る。
[Problems that the invention attempts to solve] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a fluorescent X-ray method for metals that is advantageous in ensuring analytical accuracy and is suitable for production control analysis in factories. To provide analytical methods.

[問題点を解決するための手段] 本発明は鋭意研究の結果、金属試料をガラス質とすれば
、粉砕による化学変化、結晶構造の変化の問題を改善で
きることに着目し、本発明を完成した。本発明にかがる
金属の蛍光X線分析方法は、金属を主体とする金属試料
を酸化させて酸化物とする第1工程と、 該酸化物に融解剤を添加した状態で、該酸化物を加熱し
て融解し、その後冷W同化してガラスビードを形成づる
第2工程と、 該ガラスビードにX線を照射し、放射された蛍光X線か
ら、該金属試料の成分分析を行なう第3工程と、を順次
実施することを特徴とするものである。
[Means for Solving the Problems] As a result of intensive research, the present invention was completed by noting that if the metal sample is made of glass, the problems of chemical changes and changes in crystal structure due to crushing can be improved. . The method for fluorescent X-ray analysis of metals according to the present invention includes a first step of oxidizing a metal sample mainly composed of metal to form an oxide, and a step of adding a melting agent to the oxide. a second step of heating and melting the metal sample and then assimilating it with cold W to form glass beads; and a second step of irradiating the glass beads with X-rays and analyzing the components of the metal sample from the emitted fluorescent X-rays. This method is characterized by sequentially performing three steps.

本発明にかかる蛍光X線分析方法で使用する金属試料と
しては、水素吸蔵合金、形状記憶合金が代表的なもので
ある。水素吸蔵合金は一般に粉末状であり、形状記憶合
金は箔状である。使用する水素吸蔵合金としては、鉄−
チタン系合金が代表的なものである。
Typical metal samples used in the X-ray fluorescence analysis method according to the present invention are hydrogen storage alloys and shape memory alloys. Hydrogen storage alloys are generally in powder form, and shape memory alloys are in foil form. The hydrogen storage alloy used is iron-
A typical example is titanium alloy.

第1工程では、金属試料を酸化させて酸化物とする。酸
化物とするのは、第2工程でガラス化しやづくするため
である。金属試料は金属成分が一般に100%であるが
、場合によっては有機物を多少含有していてもよい。金
属試料が水素吸蔵合金である場合には、500〜800
’C1特には600〜650℃に金属試料を10〜20
分間、特には15分程度加熱保持し、酸化物を形成する
In the first step, the metal sample is oxidized to form an oxide. The reason for using an oxide is to facilitate vitrification in the second step. A metal sample generally has a metal component of 100%, but may contain some organic matter depending on the case. When the metal sample is a hydrogen storage alloy, 500 to 800
'C1 In particular, the metal sample is heated to 600 to 650℃ for 10 to 20 minutes.
The mixture is heated and held for about 15 minutes to form an oxide.

第2工程では、酸化物に融解剤を添加した状態で、該酸
化物を加熱して融解し、その侵冷fJ]同化してガラス
ビードを形成する。ガラスビードは、ガラス質であり結
晶化していない。ガラス質にする理由は、非晶質とし、
特定の方向に結晶化させ゛ぬため、又、適冷により組成
の均一性を高めるためである。第2工程で使用する融解
剤は、ガラスにしやすくするためのものであり、融解剤
としては、ホウ酸ナトリウム、ホウ酸リチウム、を使用
することができる。第2工程は、白金ルツボの中で行な
うことができる。白金ルツボの底面は平滑であることが
好ましい。形成されるガラスビードの底面を平滑にでき
るからである。
In the second step, a melting agent is added to the oxide, the oxide is heated and melted, and the oxide is assimilated by cooling fJ] to form glass beads. Glass beads are vitreous and non-crystallized. The reason for making it glassy is to make it amorphous,
This is to prevent crystallization in a specific direction, and to improve the uniformity of the composition by appropriate cooling. The melting agent used in the second step is to facilitate glass formation, and sodium borate and lithium borate can be used as the melting agent. The second step can be performed in a platinum crucible. The bottom surface of the platinum crucible is preferably smooth. This is because the bottom surface of the formed glass bead can be made smooth.

第2工程では、冷却同化の前に又は冷W固化の途中に、
融解物に揺動又は微振動を加えることが望ましい。融解
物を均一に撹拌でき、ガラスビードの底面での偏析を防
止でき、ガラスビードの組成を均一にできるからである
In the second step, before cooling assimilation or during cold W solidification,
It is desirable to apply rocking or slight vibration to the melt. This is because the melt can be stirred uniformly, segregation at the bottom of the glass beads can be prevented, and the composition of the glass beads can be made uniform.

第3工程では、ガラスビードにX線を照射し、放射され
た蛍光X線から、金属試料の成分分析を行なう。この場
合、白金ルツボがら取り出したガラスビードのうち、白
金ルツボの底面に接していた面にX線を照射するのが一
般的である。照射面の平滑性を確保できるからである。
In the third step, the glass bead is irradiated with X-rays, and the components of the metal sample are analyzed from the emitted fluorescent X-rays. In this case, it is common to irradiate the surface of the glass beads taken out from the platinum crucible that was in contact with the bottom surface of the platinum crucible with X-rays. This is because the smoothness of the irradiated surface can be ensured.

第3工程は、ガラスビードから放射された蛍光xlQの
強度を検出線に照合して定日分析を行なう。この検量線
は、成分量既知の金属試料を同様に第1工程を実施して
酸化物とし、第2工程を実施してガラスビードとし、こ
のガラスビードに蛍光X線を照射し、その蛍光X線の強
度と成分含有量との関係から形成される。
In the third step, the intensity of the fluorescence xlQ emitted from the glass beads is compared with the detection line to perform a fixed-day analysis. This calibration curve is calculated by similarly performing the first step on a metal sample with known component amounts to form an oxide, performing the second step to form a glass bead, and irradiating this glass bead with fluorescent X-rays. It is formed from the relationship between line strength and component content.

[実施例] 本発明にかかる蛍光X線分析方法の一実施例について第
1図及び第2図を参照して説明する。本実施例にかかる
蛍光X線分析方法は、水素吸蔵合金の分析に適用した場
合である。
[Example] An example of the fluorescent X-ray analysis method according to the present invention will be described with reference to FIGS. 1 and 2. The fluorescent X-ray analysis method according to this example is applied to the analysis of hydrogen storage alloys.

(第1工程) 本実施例では、水素吸蔵合金からなる金属試料1を電子
天びんにより0.1g秤量した。この金属試料1をビー
カー2に入れ、更に酸としての塩酸(2(−1)を40
ccを加えて分解した後、硝F1!10mRを加えて酸
化した。次に、ビーカー2内にアンモニアを加えてPH
8,0〜8.2とする。次に上記のように形成した液を
、ろ祇3で濾過し、沈澱物と液とを分離した。本実施例
では、ろ紙はNo、Gのもの、つまり目の粗さが1μの
ものを使用した。濾過後に、沈澱物が付着したろ紙とを
ルツボ4内に入れ、そのルツボ4をエレマ炉5に挿入し
、600〜650℃で15分間加熱保持し、これにより
灼熱し酸化物を形成した。
(First Step) In this example, 0.1 g of the metal sample 1 made of a hydrogen storage alloy was weighed using an electronic balance. Put this metal sample 1 into beaker 2, and add 40% hydrochloric acid (2(-1)) as an acid.
After adding cc for decomposition, 10 mR of nitrate F1 was added for oxidation. Next, add ammonia into beaker 2 and adjust the pH.
8.0 to 8.2. Next, the liquid formed as described above was filtered through a filter 3 to separate the precipitate and the liquid. In this example, the filter paper used was No. G filter paper, that is, one with a mesh roughness of 1 μm. After filtration, the filter paper to which the precipitate had adhered was placed in the crucible 4, and the crucible 4 was inserted into the Elema furnace 5, and heated and held at 600 to 650°C for 15 minutes, thereby scorching the mixture and forming an oxide.

(第2工程) 第1工程で形成した酸化物と、融解剤としてのホウ酸リ
チウム3.59とを白金ルツボ6内に添加した。更に剥
離剤としてのヨウ化リチウム(2゜5%)を数滴滴下し
た。剥離剤は、白金ルツボ6の底面にたまり、主として
、ガラスビード9を白金ルツボ6から分離するときに機
能する。そして、白金ルツボ6内で高周波炉7により融
解し、融解物8を得た。融解温度は11cc℃、融解時
間は3分間とした。融解の際には、白金ルツボ6を揺動
した。揺動条件は、水平面に対する揺動角度が25〜3
5度であり、1分間あたりの揺動回数は5〜6回、揺動
時間は6〜10分間程度とすることが望ましい。このよ
うに揺動すれば、ガラスビード9の組成を均一にするこ
とができる。そして、融解物8が冷却固化した後、白金
ルツボ6からガラスビード9を取り出した。
(Second Step) The oxide formed in the first step and 3.59 g of lithium borate as a melting agent were added into the platinum crucible 6. Furthermore, several drops of lithium iodide (2.5%) as a stripping agent were added dropwise. The stripping agent accumulates on the bottom surface of the platinum crucible 6 and primarily functions when separating the glass beads 9 from the platinum crucible 6. Then, it was melted in a platinum crucible 6 in a high frequency furnace 7 to obtain a melt 8. The melting temperature was 11 cc°C, and the melting time was 3 minutes. During melting, the platinum crucible 6 was rocked. The swinging conditions are that the swinging angle with respect to the horizontal plane is 25 to 3.
5 degrees, the number of rockings per minute is preferably 5 to 6 times, and the rocking time is preferably about 6 to 10 minutes. By rocking in this manner, the composition of the glass bead 9 can be made uniform. After the melt 8 was cooled and solidified, the glass beads 9 were taken out from the platinum crucible 6.

(第3工程) ガラスビード9の底面90にX線を照射し、そのとき放
射された蛍光X線から、金属試F11の鉄成分の含有量
、チタン成分の含有量を定争分析した。なお、X線管の
管電圧は5Qkv、管電流は50mA、分光結晶LiF
とした。この場合、予め組成の知れている金属を本実施
例と同様に灼熱して酸化物とし、融解物の形成模、ガラ
スビードを形成し、このガラスビードにxliを照射し
、そのガラスビードから照射される蛍光X線の強度と成
分含有分との関係を示す検m線を作成し、その検m線に
照し合わせて金属試料1の定量分析を行なった。
(Third Step) The bottom surface 90 of the glass bead 9 was irradiated with X-rays, and the iron component content and titanium component content of the metal sample F11 were quantitatively analyzed from the fluorescent X-rays emitted at that time. In addition, the tube voltage of the X-ray tube is 5Qkv, the tube current is 50mA, and the spectroscopic crystal LiF
And so. In this case, a metal whose composition is known in advance is scorched to form an oxide in the same way as in this example, a pattern of the molten material or a glass bead is formed, the glass bead is irradiated with xli, and the glass bead is irradiated with A test m-line showing the relationship between the intensity of fluorescent X-rays and the component content was prepared, and a quantitative analysis of the metal sample 1 was performed in comparison with the test m-line.

更に最適実施条件を調べるために、以下の試験を行なっ
た。
Furthermore, in order to investigate the optimal implementation conditions, the following tests were conducted.

[試験例] (灼熱温度) 第1工程で酸化物を形成する灼熱温度と分析誤差との関
係を調べた。この場合、灼熱温度を500.600,6
50,700.750,8001900.1000℃と
多段階に分け、それぞれ各温度でのルツボ4への融着m
を調べた。試験結果を第3図に示す。第3図の特性曲線
Aに示すように、灼熱温度が700℃を越えると、ルツ
ボ4へのflt?ffiが0.05%を越え、灼熱温度
が1000℃のときにはFj&着同が0.40%に増加
する。
[Test Example] (Burning temperature) The relationship between the burning temperature at which oxides are formed in the first step and analysis error was investigated. In this case, set the scorching temperature to 500.600,6
It is divided into multiple stages such as 50, 700, 750, 800, 1,900, and 1,000 degrees Celsius, and the fusion to the crucible 4 is performed at each temperature.
I looked into it. The test results are shown in Figure 3. As shown in characteristic curve A in FIG. 3, when the scorching temperature exceeds 700°C, flt? When ffi exceeds 0.05% and the scorching temperature is 1000°C, Fj & arrival increases to 0.40%.

しかし灼熱温度が500℃付近であると、m着mが少な
くなるものの酸化物形成に長時間必要とし、工場での分
析管理手段としては適さない。そこで、灼熱温度は60
0〜650℃程度が望ましいことが知れる。この場合灼
熱時間は15分間程度でよい。なお、融着量が0.05
%とは、採取量に対して融着量が0.05%であること
を意味する。
However, when the scorching temperature is around 500° C., although the amount of m deposited is reduced, it takes a long time to form an oxide, making it unsuitable as an analytical control means in a factory. Therefore, the scorching temperature is 60
It is known that a temperature of about 0 to 650°C is desirable. In this case, the burning time may be about 15 minutes. In addition, the amount of fusion is 0.05
% means that the amount of fusion is 0.05% with respect to the amount collected.

(ろ紙と濾過温度) ろ紙の種類と分析誤差との関係、濾過温度と分析誤差と
の関係について調べた。この場合には、ろ紙で濾過した
襖の濾液30に含有されている鉄およびチタン含有量を
調べた。ろ紙の種類は、目の粗さが7μのNo、A1目
の粗さが4μのNo。
(Filter paper and filtration temperature) We investigated the relationship between the type of filter paper and analysis error, and the relationship between filtration temperature and analysis error. In this case, the iron and titanium contents contained in the fusuma filtrate 30 filtered through filter paper were investigated. The types of filter paper are No. with a 7μ mesh coarseness and No. with an A1 mesh coarseness of 4μ.

B1目の粗さが1μのNo、Cを用いた。濾過温度は、
70〜80℃と室温との2段階とした。試験結果を第4
図に示す。第4図において、特性面I!Bは濾過温度が
70〜80℃の場合の濾液中の鉄含有邑、特性曲線Cは
、濾過温度が70〜80℃の場合の濾液中のチタン含有
量、特性曲線りは濾過温度が室温の場合の濾液中の鉄含
有は、特性曲線Eは濾過温度が室温の場合の濾液中のチ
タン含有量を示す。第4図に示すように、分析誤差をな
くするためには、目の粗さが1μのろ紙No。
No. and C with B1 mesh roughness of 1 μm were used. The filtration temperature is
There were two stages: 70-80°C and room temperature. 4th test result
As shown in the figure. In FIG. 4, the characteristic surface I! B is the iron content in the filtrate when the filtration temperature is 70 to 80°C. Characteristic curve C is the titanium content in the filtrate when the filtration temperature is 70 to 80°C. Characteristic curve E shows the titanium content in the filtrate when the filtration temperature is room temperature. As shown in Fig. 4, in order to eliminate analysis errors, filter paper No. 1 with a coarseness of 1 μm is used.

Cを使用し、濾過温度が室温の方がよい。このようにす
れば、許容110.02%の範囲に納まる。
It is better to use C and keep the filtration temperature to room temperature. In this way, it falls within the allowable range of 110.02%.

(揺動時間) 揺動時間と分析誤差との関係について調べた。(oscillation time) The relationship between rocking time and analysis error was investigated.

この場合、その組成が知れている水素吸蔵合金(Fe5
4%、Ti46%)を金属試料とした。
In this case, a hydrogen storage alloy whose composition is known (Fe5
4%, Ti46%) was used as a metal sample.

揺動時間は、1.2.4.6.8.10分間とした。試
験結果を第5図に示す。第5図の特性曲線Fに示すよう
に、揺動時間は6分以上とした方が撹拌が良好となり、
分析誤差は少なくなる。一方、揺動時間を長くしても分
析誤差減少効果は飽和し、かつ作業性が低下する。そこ
で、作業性を考慮し揺動時間は8分間程度とすることが
望ましい。
The rocking time was 1.2.4.6.8.10 minutes. The test results are shown in Figure 5. As shown in characteristic curve F in Figure 5, stirring is better when the rocking time is 6 minutes or more.
Analysis errors will be reduced. On the other hand, even if the rocking time is increased, the analysis error reduction effect is saturated and workability is reduced. Therefore, in consideration of workability, it is desirable that the swinging time be approximately 8 minutes.

(剥離剤添加量) 剥離剤の添加量について調べた。この場合、添加量は5
滴、10滴、20滴の3段階とした。試験結果を第6図
に示す。第6図に示すように剥離剤を10滴にすれば、
ガラスビード9に生じる割れは少なくなる。一方、増加
しすぎれば例えば20W4とすればガラスビード9の収
縮が大きくなり、ガラスビード9が歪む。そのため剥離
剤は10滴程度が望ましい。
(Amount of release agent added) The amount of release agent added was investigated. In this case, the amount added is 5
There were three levels: drops, 10 drops, and 20 drops. The test results are shown in Figure 6. If you use 10 drops of remover as shown in Figure 6,
Cracks occurring in the glass bead 9 are reduced. On the other hand, if it increases too much, for example 20W4, the shrinkage of the glass bead 9 will increase and the glass bead 9 will be distorted. Therefore, it is desirable to use about 10 drops of the release agent.

(白金ルツボ6) 白金ルツボ6について調べた。白金ルツボ6の底面に閏
がある場合と傷がない場合について、各10回ずつ試験
した。白金ルツボ6の底面に傷があるときには、ガラス
ビード9の底面は第7図に示すように歪み、剥離剤を1
0滴添加しても、蛍光X線分析に使用できるガラスビー
ド9は50%しか(qられない。一方、白金ルツボ6の
底面に傷がないときには、剥離剤を3滴添加しただけで
、蛍光XIQ分析に使用できるガラスビード9は100
%得られた。このため、底面に傷のない白金ルツボ6を
使用することが好ましい。
(Platinum crucible 6) Platinum crucible 6 was investigated. The test was carried out 10 times each for the case where the bottom surface of the platinum crucible 6 had a pinhole and the case where there was no scratch. When there is a scratch on the bottom surface of the platinum crucible 6, the bottom surface of the glass bead 9 is distorted as shown in FIG.
Even if 0 drops are added, only 50% of the glass beads 9 can be used for fluorescent Glass beads 9 that can be used for XIQ analysis are 100
% obtained. For this reason, it is preferable to use a platinum crucible 6 with no scratches on the bottom surface.

(融解時間) 白金ルツボ6内での融解時間と分析誤差との関係につい
て調べた。この場合、予め組成が知れている水素吸蔵合
金(Fe54%、Ti46%)を金属試料として用い、
濾過温度は室温、濾紙はN06Cのもの、酸化物形成の
ための灼熱温度は600〜650℃とした。試験結果を
第8図に示す。
(Melting time) The relationship between the melting time in the platinum crucible 6 and analysis error was investigated. In this case, a hydrogen storage alloy (54% Fe, 46% Ti) whose composition is known in advance is used as a metal sample,
The filtration temperature was room temperature, the filter paper was N06C, and the firing temperature for oxide formation was 600-650°C. The test results are shown in Figure 8.

第8図においてO印は鉄、Δ印はチタンを示す。In FIG. 8, the O mark indicates iron and the Δ mark indicates titanium.

融解時間が2分のときはチタンが高値となるため融解時
間を3分とした。
When the melting time was 2 minutes, the titanium value was high, so the melting time was set to 3 minutes.

(評価) 上記した試験結果から明らかなように、水素吸蔵合金の
X線蛍光分析の場合には、分析精度を向上させるために
は、第1工程では、目の粗さが1μのNo、Cのろ紙を
使用して濾過し、灼熱温度は600〜650℃程度、第
2工程では傷なしの白金ルツボ6を使用し、剥離剤は1
0滴程度で揺動時間は8分間程度、融解時間は3分間程
度が好ましいことがわかる。
(Evaluation) As is clear from the above test results, in the case of X-ray fluorescence analysis of hydrogen storage alloys, in order to improve the analysis accuracy, it is necessary to use No. The scorching temperature is about 600 to 650℃, and in the second step, a scratch-free platinum crucible 6 is used, and the release agent is 1
It can be seen that for about 0 drops, the shaking time is preferably about 8 minutes and the melting time is about 3 minutes.

上記した実験条件に従って、実試料について12回秤邑
し、蛍光xsi分析による鉄成分、チタン成分の定置分
析を行った。その結果を第1表に示す。第1表に示すよ
うに、含有憬の平均値は、鉄で54.05%、チタンで
45.80%、であった。又はらつき度を示すσは鉄で
0.130%、チタンで0.121%であった。
According to the experimental conditions described above, the actual samples were weighed 12 times, and the iron and titanium components were analyzed in situ by fluorescence xsi analysis. The results are shown in Table 1. As shown in Table 1, the average value of the content was 54.05% for iron and 45.80% for titanium. Also, σ indicating the degree of wobble was 0.130% for iron and 0.121% for titanium.

第1表 実試料による分析結果 なお参考までに上記した実験条件に従わなかった場合に
は、ばらつき度σは鉄では0.44%であり、チタンで
は0.32%であり大きかった。
Table 1 Analysis results using actual samples For reference, when the above experimental conditions were not followed, the degree of dispersion σ was 0.44% for iron and 0.32% for titanium, which was large.

[発明の効果] 以上説明したように本発明では、分析精度が向上した蛍
光X線分析方法を提供できる。
[Effects of the Invention] As described above, the present invention can provide a fluorescent X-ray analysis method with improved analysis accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る蛍光X線分析方法の一実施例を示し
、第1図は第1工程を順に示す説明図であり、第2図は
第2工程を概略的に示す説明図であり、第3図は灼熱温
度と融着量との関係を示すグラフであり、第4図はる液
中に含有されている鉄、チタン含有mとろ紙の種類およ
び濾過温度との関係を示すグラフであり、第5図は揺動
時間と分析誤差との関係を示すグラフであり、第6図は
剥離剤の滴下量とガラスピードの割れ件数との関係を示
すグラフであり、第7図は白金ルツボの関係を示す説明
図であり、第8図は融解時間と分析−誤差との関係を示
すグラフである。 図中、1は金属試料、3はろ紙、6は白金ルツボ、8は
融解物、9はガラスビードをそれぞれ示す。 特許出願人   愛知製鋼株式会社 代理人    弁理士 大川 宏 同     弁理士 丸山明夫 ろ5夜中のFe、丁+1 第5図 第6図
The drawings show an example of the fluorescent X-ray analysis method according to the present invention, FIG. 1 is an explanatory diagram showing the first step in order, and FIG. 2 is an explanatory diagram schematically showing the second step, Figure 3 is a graph showing the relationship between the scorching temperature and the amount of fusion, and Figure 4 is a graph showing the relationship between the iron and titanium content contained in the liquid, the type of filter paper, and the filtration temperature. Figure 5 is a graph showing the relationship between the rocking time and analytical error, Figure 6 is a graph showing the relationship between the amount of dropper removed and the number of glass speed cracks, and Figure 7 is a graph showing the relationship between the droplet amount and the number of glass speed cracks. FIG. 8 is an explanatory diagram showing the relationship between crucibles, and FIG. 8 is a graph showing the relationship between melting time and analysis error. In the figure, 1 is a metal sample, 3 is a filter paper, 6 is a platinum crucible, 8 is a melt, and 9 is a glass bead. Patent Applicant Aichi Steel Co., Ltd. Agent Patent Attorney Hirotoshi Okawa Patent Attorney Akio Maruyama 5 Midnight Fe, D+1 Figure 5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)金属を主体とする金属試料を酸化させて酸化物と
する第1工程と、 該酸化物に融解剤を添加した状態で、該酸化物を加熱し
て融解し、その後冷却固化してガラスビードを形成する
第2工程と、 該ガラスビードにx線を照射し、放射された蛍光x線か
ら、該金属試料の成分分析を行なう第3工程と、を順次
実施することを特徴とする金属の蛍光x線分析方法。
(1) A first step of oxidizing a metal sample mainly composed of metal to form an oxide, heating and melting the oxide with a melting agent added to the oxide, and then cooling and solidifying the oxide. A second step of forming glass beads; and a third step of irradiating the glass beads with x-rays and analyzing the components of the metal sample from the emitted fluorescent x-rays. Fluorescence X-ray analysis method for metals.
(2)金属試料はFe−Ti系の水素吸蔵合金であり、
第1工程は該水素吸蔵合金を500〜650℃で10〜
20分間加熱保持する特許請求の範囲第1項記載の金属
の蛍光x線分析方法。
(2) The metal sample is a Fe-Ti-based hydrogen storage alloy,
The first step is to heat the hydrogen storage alloy at 500 to 650°C for 10 to
The method for fluorescent x-ray analysis of metals according to claim 1, wherein the method is heated and held for 20 minutes.
(3)第2工程は、白金ルツボ内で行ない、第3工程で
は、該白金ルツボから取り出した該ガラスビードのうち
、該白金ルツボの底面に接していた面にx線を照射する
特許請求の範囲第1項記載の金属の蛍光x線分析方法。
(3) The second step is performed in a platinum crucible, and the third step is to irradiate x-rays to the surface of the glass beads taken out from the platinum crucible that was in contact with the bottom of the platinum crucible. The method for fluorescent x-ray analysis of metals according to item 1.
(4)白金ルツボの底面は平滑である特許請求の範囲第
3項記載の金属の蛍光x線分析方法。
(4) The method for fluorescent x-ray analysis of metals according to claim 3, wherein the bottom surface of the platinum crucible is smooth.
(5)第2工程では、冷却固化の前に、又は冷却固化の
途中に融解物に揺動又は微振動を加える特許請求の範囲
第1項記載の金属の蛍光x線分析方法。
(5) In the second step, the method for fluorescent X-ray analysis of metals according to claim 1, in which the molten material is shaken or slightly vibrated before or during cooling and solidification.
(6)揺動は水平面に対する揺動角度が25〜35度、
1分間あたりの揺動回数は5〜6回、揺動時間は6〜1
0分間で実施する特許請求の範囲第5項記載の金属の蛍
光x線分析方法。
(6) The swinging angle is 25 to 35 degrees with respect to the horizontal plane.
Number of rocking per minute: 5-6 times, rocking time: 6-1
The method for fluorescent x-ray analysis of metals according to claim 5, which is carried out for 0 minutes.
(7)第3工程では、ガラスビードから放射された蛍光
x線の強度を検量線に照合して定量分析を行なう特許請
求の範囲第1項記載の金属の蛍光x線分析方法。
(7) The method for fluorescent x-ray analysis of metals according to claim 1, wherein in the third step, quantitative analysis is performed by comparing the intensity of the fluorescent x-rays emitted from the glass beads with a calibration curve.
JP4579487A 1987-02-27 1987-02-27 Fluorescent x-ray analysis of metal Pending JPS63210758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4579487A JPS63210758A (en) 1987-02-27 1987-02-27 Fluorescent x-ray analysis of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4579487A JPS63210758A (en) 1987-02-27 1987-02-27 Fluorescent x-ray analysis of metal

Publications (1)

Publication Number Publication Date
JPS63210758A true JPS63210758A (en) 1988-09-01

Family

ID=12729185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4579487A Pending JPS63210758A (en) 1987-02-27 1987-02-27 Fluorescent x-ray analysis of metal

Country Status (1)

Country Link
JP (1) JPS63210758A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035565A3 (en) * 2001-10-24 2003-11-20 3M Innovative Properties Co Glass beads and uses thereof
CN103940839A (en) * 2014-04-21 2014-07-23 济南裕兴化工有限责任公司 Titanium liquid element analysis method and application thereof in production
JP2018119940A (en) * 2017-01-23 2018-08-02 有限会社アメナ工房 Manufacture method of fluorescent x-ray analyser glass bead

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892845A (en) * 1981-11-28 1983-06-02 Miyagiken Fluorescent x-ray analyzing method for boiler scale using glass beads
JPS6027847A (en) * 1983-07-26 1985-02-12 Nippon Steel Corp Preparation of specimen for fluorescent x-ray analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892845A (en) * 1981-11-28 1983-06-02 Miyagiken Fluorescent x-ray analyzing method for boiler scale using glass beads
JPS6027847A (en) * 1983-07-26 1985-02-12 Nippon Steel Corp Preparation of specimen for fluorescent x-ray analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035565A3 (en) * 2001-10-24 2003-11-20 3M Innovative Properties Co Glass beads and uses thereof
US6800574B2 (en) 2001-10-24 2004-10-05 3M Innovative Properties Company Glass beads and uses thereof
US6914024B2 (en) 2001-10-24 2005-07-05 3M Innovative Properties Company Glass beads and uses thereof
US7312168B2 (en) 2001-10-24 2007-12-25 3M Innovative Properties Company Glass beads and uses thereof
CN103940839A (en) * 2014-04-21 2014-07-23 济南裕兴化工有限责任公司 Titanium liquid element analysis method and application thereof in production
JP2018119940A (en) * 2017-01-23 2018-08-02 有限会社アメナ工房 Manufacture method of fluorescent x-ray analyser glass bead

Similar Documents

Publication Publication Date Title
JPS63210758A (en) Fluorescent x-ray analysis of metal
Seo et al. Volatilization of fluorine in a CaO–SiO2–CaF2‐based system with the substitution of Na2O with K2O
Fothergill et al. Determination of Traces of Platinum and Palladium in the Atmosphere of a Platinum Refinery: By a Combined Chemical and Spectrographic Method
JPS6362695B2 (en)
CN106383062A (en) Method for evaluating mineral raw materials
RU2800284C1 (en) Method for manufacturing multi-component reference samples for x-ray fluorescence analysis of rocks
CN113866143B (en) Quick detection of SiO in resource samples 2 And/or CaO content
US3841863A (en) Purification of platinum
Andreev et al. The Influence of the Chemical Composition on the Color of Lead-Silicate Glass Caused by Gold Nanoparticles
Blanchette A quick and reliable fusion method for silicon and ferrosilicon
JPS60122363A (en) Analyzing method of fine granular metal
JPH0835920A (en) Dissolving treatment method of sample for chemical analysis
KR20020039433A (en) A method of preparing glass-bead for analysis of total iron quantity in iron ore
JPH0210265A (en) Quantitative analysis method of ni in granulation powder for zno element
Lounamaa Spectrographic analysis of copper-making and lead-making slags for major constituents
JPH1164186A (en) Preparing method for specimen for fluorescent x-ray analysis
Farkas et al. The solid solubility and constitution of yttrium in iron-20 to 40 w/o chromium alloys
Siddaiah et al. Preconcentration of noble metals in geological and environmental samples: A nickel sulfide mini-bead technique
JPH0255941A (en) Analysis of metal oxide
Owens Emission Spectrographic Analysis of Fused Aluminum Oxide and Fused Tin Oxide Crystals
JPS6258142A (en) Method for analyzing composite oxide
Chirnside et al. The determination of small amounts of iron and chromium in sapphire and ruby for maser applications
Muehlberg An Explosion Method for Peroxide Fusions.
Sycheva et al. Effect of Water on the Nucleation of Tin Pyrophosphate Crystals in Tin Zinc Phosphate Glass
Kulikov et al. Comparative Studies into Composition and Properties of FPR-23 and Biomag Covering and Degassing Fluxes