JPS6141748A - Second phase metal particle dispersion type alloy - Google Patents

Second phase metal particle dispersion type alloy

Info

Publication number
JPS6141748A
JPS6141748A JP59164693A JP16469384A JPS6141748A JP S6141748 A JPS6141748 A JP S6141748A JP 59164693 A JP59164693 A JP 59164693A JP 16469384 A JP16469384 A JP 16469384A JP S6141748 A JPS6141748 A JP S6141748A
Authority
JP
Japan
Prior art keywords
alloy
metal
phase
particles
phase metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59164693A
Other languages
Japanese (ja)
Other versions
JPH0559189B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Yoshio Harakawa
原川 義夫
Masahiro Oguchi
小口 昌弘
Nobuyoshi Yano
矢野 暢芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd, Unitika Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP59164693A priority Critical patent/JPS6141748A/en
Publication of JPS6141748A publication Critical patent/JPS6141748A/en
Publication of JPH0559189B2 publication Critical patent/JPH0559189B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled alloy having superior mechanical characteristic and the structure in which second metal fine particles are dispersed uniformly in matrix phase, by composing said alloy of a specified compsn. of matrix metal elements such as Cu, Fe and second metal particles such as Ag, Au. CONSTITUTION:The titled alloy is composed of compsn. indicated by a formula; NdZe (therein, N; matrix phase metal elements composed of >= one kind among Cu, Fe, Co, Ni, Cr, Mo, V, Z; metal element to be second metal particle after rapid cooling, solidification and composed of >= one kind among Ag, Au, Pb, Bi, Sn, Be, d; 100-e atom%, e; 1-15%) and has superior mechanical characteristic and the structure in which fine second metal particles are dispersed uniformly in matrix phase. Molten alloy having said compsn. is cooled rapidly and solidified by methods such as one side cooling, twin rolling, spinning in rotary liquid to obtain said alloy.

Description

【発明の詳細な説明】 本発明は、母相中に微細な第2相金属粒子が均一に分散
してなる組織を有する機械的特性に優れた第2相金属粒
子分散型合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a second phase metal particle dispersed alloy having excellent mechanical properties and having a structure in which fine second phase metal particles are uniformly dispersed in a matrix. .

従来、母相中に第2相粒子を分散させると1機械的強度
、耐摩耗性等が改善される傾向にあり。
Conventionally, when second phase particles are dispersed in the matrix, mechanical strength, wear resistance, etc. tend to be improved.

第2相粒子分散型複合材料の研究が盛んに行われている
Research on second phase particle dispersed composite materials is being actively conducted.

しかし1例えば第2相粒子を分散させるために通常の鋳
造法により鋳造すると、第2相粒子である酸化物、炭化
物等の粒子は、溶湯とのぬれ性が悪く、また溶湯との比
重差も大きいために分散性が悪く、偏析をおこし2機械
的強度等特性にばらつきが生じやすかった。さらに、こ
のような通常の鋳造法は、冷却速度が約10℃へecと
極めて遅いということも合金母相中の第2相粒子の分散
性を悪くする原因となっていた。
However, 1. For example, when casting using a normal casting method to disperse second phase particles, particles such as oxides and carbides that are second phase particles have poor wettability with the molten metal, and there is also a difference in specific gravity with the molten metal. Because of their large size, they had poor dispersibility, causing segregation and tending to cause variations in properties such as mechanical strength. Furthermore, in such a conventional casting method, the cooling rate is extremely slow at about 10° C. ec, which also causes poor dispersibility of the second phase particles in the alloy matrix.

鋳造時の冷却速度を上げることにより、第2相粒子の分
散性を向上させた合金材料として、特開昭59−473
41号公報及び59−47352号公報がある。この合
金は、非晶質合金、非平衡結晶質合金の製造法である液
体急冷法により製造されたもので、この液体急冷法は、
冷却速度が10’〜106℃/secである。しかし、
このような急冷凝固方法である液体急冷法を用いても、
より微細な第2相粒子をより均一に分散させ、特性の向
上を得るという点において、まだ改善の余地があった。
JP-A-59-473 is an alloy material that improves the dispersibility of second phase particles by increasing the cooling rate during casting.
There are 41 publications and 59-47352 publications. This alloy was manufactured using the liquid quenching method, which is a method for manufacturing amorphous alloys and non-equilibrium crystalline alloys.
The cooling rate is 10' to 106°C/sec. but,
Even if we use the liquid quenching method, which is such a rapid solidification method,
There is still room for improvement in terms of more uniformly dispersing finer second phase particles and improving properties.

というのは。I mean.

この合金の製造法が溶湯と溶湯に相溶しない第2相粒子
である酸化物、炭化物、金属粉末1合金粉末とを混合し
、その混合体を急冷凝固しているためである。すなわち
、溶湯に混合される第2相粒子は、溶湯との濡れ性が悪
いため、偏析を生じやすかったのである。具体的には、
その実施例にもあるように混合される第2相粒子の粒径
は1〜5μ信であり、形状も角形のものが多く、応力集
中源になりやすく、さらに分散性も最近接粒子の間隔も
1〜100μmとばらついていた。
This is because the method for manufacturing this alloy mixes molten metal with second phase particles that are incompatible with the molten metal, such as oxides, carbides, and metal powder 1 alloy powder, and rapidly solidifies the mixture. In other words, the second phase particles mixed with the molten metal had poor wettability with the molten metal, and were therefore likely to cause segregation. in particular,
As shown in the example, the particle size of the second phase particles to be mixed is 1 to 5 microns, and the shape is often rectangular, which tends to become a stress concentration source, and the dispersibility is also affected by the distance between the nearest neighboring particles. It also varied from 1 to 100 μm.

本発明者らは5従来の第2相粒子分散型合金よりもさら
に微細な第2相金属粒子が均一に分散してなる組織を有
する第2相粒子分散型合金を提供することを目的として
鋭意検討した結果、特定の組成からなる合金を急冷凝固
させると、上記の目的が達成され、さらに機械的特性に
優れた第2相金属粒子分散型合金であることを見い出し
2本発明を完成した。
The present inventors have made efforts to provide a second-phase particle-dispersed alloy having a structure in which second-phase metal particles are evenly dispersed, which are finer than those of conventional second-phase particle-dispersed alloys. As a result of the investigation, it was discovered that when an alloy consisting of a specific composition is rapidly solidified, the above objects are achieved, and the second phase metal particle dispersed alloy has excellent mechanical properties. 2. The present invention was completed.

すなわち1本発明は弐;NdZe(式中Nは母相金属元
素で、 Cu、 Fe、 Co、 Ni、 Cr、 M
o+ Vからなる群より選ばれた1種又は2種以上の元
素であり。
That is, 1) the present invention is 2; NdZe (in the formula, N is a matrix metal element, Cu, Fe, Co, Ni, Cr, M
One or more elements selected from the group consisting of o+V.

Zは急冷凝固後第2相金属粒子となる金属元素で。Z is a metal element that becomes second phase metal particles after rapid solidification.

八g+ Au、 Pb、 Bi、 Sn、 Beからな
る群より選ばれた1種又は2種以上の元素であり、dは
100−eで与えられる原子%で、eは1〜15原子%
である。)で示される組成よりなり、かつ母相中に微細
な第2相金属粒子が均一に分散してなる組織を有する機
械的特性に優れた第2相金属粒子分散型合金である。
8g+ One or more elements selected from the group consisting of Au, Pb, Bi, Sn, and Be, d is atomic% given by 100-e, and e is 1 to 15 atomic%
It is. ) and has a structure in which fine second phase metal particles are uniformly dispersed in the matrix, and is a second phase metal particle dispersed alloy with excellent mechanical properties.

本発明の合金について説明すると、Nとは、母相となる
金属元素で、 Cu、 Fe、 Ni、 Co、 Cr
、 Moか−らなる群より選ばれた1種又は2種以上の
元素であり、Zとは、第2相金属粒子となる元素で、 
Ag。
To explain the alloy of the present invention, N is a metal element serving as a matrix, and includes Cu, Fe, Ni, Co, Cr.
, Mo is one or more elements selected from the group consisting of Mo, Z is an element that becomes the second phase metal particles,
Ag.

Au、 Pb、 Bi+ Sn、 Beからなる群より
選ばれた1種又は2種以上の元素であり、dは100−
eで与えられる原子%で、eは1〜15原子%であるこ
とが必要である。特にeは1〜14原子%であることが
好ましい、eが1原子%未溝の場合には、得られた合金
の母相中に第2相金属粒子は観察されず、特性に対する
寄与はほとんど見い出せない。また。
One or more elements selected from the group consisting of Au, Pb, Bi+Sn, and Be, and d is 100-
In the atomic % given by e, e needs to be between 1 and 15 atomic %. In particular, e is preferably 1 to 14 at%. If e is 1 at% ungrooved, no second phase metal particles are observed in the parent phase of the resulting alloy, and their contribution to properties is negligible. I can't find it. Also.

eが15原子%を超える場合には、溶湯噴出用ノズル内
の溶湯中で合金の2相分離がおこるようになり、得られ
る合金の母相中の第2相金属粒子の偏析、あるいは粒径
の増大が見られ1本発明の目的を達することができない
If e exceeds 15 atomic percent, two-phase separation of the alloy will occur in the molten metal in the molten metal injection nozzle, resulting in segregation of second phase metal particles in the matrix of the resulting alloy, or a decrease in particle size. However, the object of the present invention cannot be achieved.

また1本発明の合金にAI+ Sit B+ Cr P
+ Ge、 Zrからなる群より選ばれた1種又は2種
以上の元素を15原子%以下、好ましくは13原子%以
下で添加すると、第2相金属粒子の粒径の均−性及び分
散状態は良好のままで、母相を強化し1機械的性質を向
上させる効果や耐摩耗性を改善する効果がみられる。
In addition, one of the alloys of the present invention includes AI+ Sit B+ Cr P
+ Adding one or more elements selected from the group consisting of Ge and Zr in an amount of 15 atomic % or less, preferably 13 atomic % or less, improves the uniformity of the particle size and the dispersion state of the second phase metal particles. remains good, and the effect of strengthening the matrix and improving mechanical properties and wear resistance can be seen.

本発明の合金を製造するには、前記合金組成を用い、雰
囲気中もしくは真空中で加熱溶融し、これを急冷凝固さ
せればよい。その急冷方法としては種々あるが1例えば
液体急冷法として知られる片ロール法、双ロール法及び
回転液中紡糸法等が特に有効である。これら片ロール法
、双ロール法では薄帯材料が1回転液中紡糸法では細線
材料が容易に連続的に、しかも低コストで製造すること
が可能である。
In order to produce the alloy of the present invention, the alloy composition described above may be heated and melted in an atmosphere or in a vacuum, and then rapidly solidified. There are various methods for quenching, but for example, single roll method, twin roll method, and rotating liquid spinning method, which are known as liquid quenching methods, are particularly effective. In the single roll method and double roll method, a ribbon material can be produced in one rotation, whereas in the submerged spinning method, a thin wire material can be easily produced continuously and at low cost.

また1本発明の合金を製造する場合、溶湯噴出用ノズル
内で合金を溶解する際、溶湯攪拌作用のある高周波加熱
が良いが、超音波振動を溶湯に与えて2相分離をおさえ
る方法、又は溶解用の高周波コイルとは別に内側に溶湯
攪拌用コイルを併設して合金の2相分離をおさえる方法
も好ましい結果を与える。また、溶湯噴出用ノズル内で
合金を溶解したあと、噴出孔までの経路の中で堰又はセ
ラミックフィルターを設置し、溶湯のミキシングを効果
よく行うことも1本発明の合金の特性の向上に寄与がみ
られる。
In addition, when producing the alloy of the present invention, high-frequency heating with a molten metal stirring effect is preferable when melting the alloy in a molten metal spouting nozzle, but a method of applying ultrasonic vibration to the molten metal to suppress two-phase separation, or A method of suppressing two-phase separation of the alloy by installing a coil for stirring the molten metal inside in addition to the high-frequency coil for melting also gives preferable results. Furthermore, after the alloy is melted in the molten metal spouting nozzle, installing a weir or a ceramic filter in the path to the spouting hole to effectively mix the molten metal also contributes to improving the properties of the alloy of the present invention. can be seen.

本発明の合金は、溶湯状態では偏析2相分が全くなく、
完全に合金化しているが、これを適当な速度で急冷凝固
化することにより1例えば母相中に粒径が1〜1100
n程度の非常に微細で、かつ1〜1100n程度の間隔
に均一に分散した第2相金属粒子を含む組織となる。
The alloy of the present invention has no segregated two-phase components in the molten state, and
Although the alloy is completely alloyed, by rapidly solidifying it at an appropriate rate, the grain size of
This results in a structure containing very fine second phase metal particles of about n size and uniformly dispersed at intervals of about 1 to 1100 n.

二・三の具体例をあげると、 97Cu−3Pbの合金
組成を有する本発明の第2相金属粒子分散型合金は。
To give a few specific examples, the second phase metal particle dispersed alloy of the present invention has an alloy composition of 97Cu-3Pb.

Cuの母相中に粒径約25nmでほぼ完全な球形を有す
るpb粒子が約35〜45nmの間隔で分散しており、
これは従来の粒子分散型合金と比較して粒子の微細さ2
分散の均一性において非常に優れたものであるというこ
とができ、また68Fa−8Ni−10Cr−10AI
−3C−IAuの組成を有する合金は、急冷凝固材で破
断強度が188 kg/mm”と、 Au粒子を含まな
い超急冷合金材料と比較して約13 kg/mm!破断
強度は高くなっている。
Pb particles having a particle size of about 25 nm and an almost perfect spherical shape are dispersed at intervals of about 35 to 45 nm in the Cu matrix,
This is due to the fineness of the particles compared to conventional particle-dispersed alloys.
It can be said that the uniformity of dispersion is very excellent, and 68Fa-8Ni-10Cr-10AI
The alloy with the composition -3C-IAu has a breaking strength of 188 kg/mm'' as a rapidly solidified material, which is approximately 13 kg/mm compared to a super rapidly solidified alloy material that does not contain Au particles!The breaking strength is higher. There is.

本発明の第2相金属粒子分散型合金は、上記の組織を有
しているため1機械的特性°が改善され。
Since the second phase metal particle dispersed alloy of the present invention has the above-mentioned structure, mechanical properties are improved by 1 degree.

例えば破断強度の向上は軽量化、信頼性の向上に寄与し
、また細線状材料はフィルター、ストレーナ用等に最適
で、寿命の向上環がみられる。
For example, improved breaking strength contributes to weight reduction and improved reliability, and fine wire materials are ideal for filters, strainers, etc., and can improve lifespan.

以下9本発明を実施例により具体的に説明する。The present invention will be explained in detail below by way of nine examples.

実施例1〜32.比較例1〜14 表−1に示す各種組成の合金をアルゴンガス雰囲気中で
溶融させ、 4000rpmで回転する直径100mm
の銅製ロールにアルゴンガス噴出圧3.5kg/−で噴
出して1幅2mm、厚さ60μmの薄帯状材料を得た。
Examples 1-32. Comparative Examples 1 to 14 Alloys with various compositions shown in Table 1 were melted in an argon gas atmosphere, and a diameter of 100 mm was rotated at 4000 rpm.
Argon gas was ejected onto a copper roll at a pressure of 3.5 kg/- to obtain a thin strip-shaped material having a width of 2 mm and a thickness of 60 μm.

これら薄帯状材料の組織観察を透過電子顕微鏡により測
定した。また1mm的的質は常温においてインストロン
型引張試験機を用いて測定した。
The structure of these thin strip materials was observed using a transmission electron microscope. In addition, the 1 mm thickness was measured using an Instron type tensile tester at room temperature.

その結果を表−1に示す。The results are shown in Table-1.

実施例1〜32は、約15〜1100nの粒径の第2相
金属粒子が母相中に均一に分散した組織をしており、第
2相金属粒子を含有しない比較例1.6゜8〜14の従
来の鋳造材及び急冷材を比較して高い破断強度を有して
いた。また9本発明の合金は加工性にも優れており、よ
り破断強度は向上した。
Examples 1 to 32 have a structure in which second phase metal particles with a particle size of about 15 to 1100 nm are uniformly dispersed in the matrix, and Comparative Example 1.6°8 which does not contain second phase metal particles It had high breaking strength when compared with 14 conventional cast materials and quenched materials. Furthermore, the alloy of the present invention had excellent workability, and its breaking strength was further improved.

また、比較例2及び4は第2相金属粒子が生成しなかっ
たため、破断強度の向上は認められず。
Further, in Comparative Examples 2 and 4, no second phase metal particles were generated, so no improvement in breaking strength was observed.

また比較例3.5.7は第2相金属粒子が粗大化し、か
つ不均一分散したため、破断強度に低下をきたした。
Furthermore, in Comparative Example 3.5.7, the second phase metal particles became coarse and non-uniformly dispersed, resulting in a decrease in breaking strength.

特許出願人  増  本     健 ユニチカ株式会社 帝国ピストンリング株式会社Patent applicant Ken Ken Unitika Co., Ltd. Teikoku Piston Ring Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)式;NdZe(式中Nは母相金属元素で、Cu、
Fe、Co、Ni、Cr、Mo、Vからなる群より選ば
れた1種又は2種以上の元素であり、Zは急冷凝固後第
2相金属粒子となる金属元素で、Ag、Au、Pb、B
i、Sn、Beからなる群より選ばれた1種又は2種以
上の元素であり、dは100_−_eで与えられる原子
%で、eは1〜15原子%である。)で示される組成よ
りなり、かつ母相中に微細な第2相金属粒子が均一に分
散してなる組織を有する機械的特性に優れた第2相金属
粒子分散型合金。
Formula (1): NdZe (in the formula, N is the parent phase metal element, Cu,
One or more elements selected from the group consisting of Fe, Co, Ni, Cr, Mo, and V, Z is a metal element that becomes second phase metal particles after rapid solidification, and Ag, Au, Pb , B
It is one or more elements selected from the group consisting of i, Sn, and Be, d is atomic % given by 100_-_e, and e is 1 to 15 atomic %. ) A second phase metal particle dispersed alloy having excellent mechanical properties and having a structure in which fine second phase metal particles are uniformly dispersed in a matrix.
JP59164693A 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy Granted JPS6141748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59164693A JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59164693A JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Publications (2)

Publication Number Publication Date
JPS6141748A true JPS6141748A (en) 1986-02-28
JPH0559189B2 JPH0559189B2 (en) 1993-08-30

Family

ID=15798064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59164693A Granted JPS6141748A (en) 1984-08-06 1984-08-06 Second phase metal particle dispersion type alloy

Country Status (1)

Country Link
JP (1) JPS6141748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238230A (en) * 1987-03-25 1988-10-04 Matsushita Electric Works Ltd Conducting composite material and its production
JPH0514779B2 (en) * 1987-03-25 1993-02-25 Matsushita Denko Kk

Also Published As

Publication number Publication date
JPH0559189B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
EP0804627B1 (en) Oxidation resistant molybdenum alloy
US4478791A (en) Method for imparting strength and ductility to intermetallic phases
JPH03158446A (en) Amorphous alloy excellent in workability
JP3142659B2 (en) High strength, heat resistant aluminum base alloy
JPH03257133A (en) High strength heat resistant aluminum-based alloy
JPS61149449A (en) Composite material for lead frame for semiconductor device and its production
JP3816595B2 (en) Manufacturing method of sputtering target
JP2023507928A (en) heat resistant aluminum powder material
KR910006038B1 (en) Composite conductive material
US4642145A (en) Nickel alloy
JPH0565584A (en) Production of high strength aluminum alloy powder
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
WO2017130781A1 (en) Sliding contact point material and method for manufacturing same
JPS6141748A (en) Second phase metal particle dispersion type alloy
KR890003180B1 (en) Magnetic head for video tap recorder
US4842955A (en) Homogeneous, metastable BAg-group brazing alloys
US4014689A (en) Method of fabricating a contact material for high-power vacuum circuit breakers
JPS6141732A (en) Manufacture of alloy containing metallic particle dispersed as second phase
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
KR880000158B1 (en) The method of manufacturing of super cooling alloy
US4014688A (en) Contact material for high-power vacuum circuit breakers
US4928872A (en) Method of brazing employing bag-group homogeneous microcrystalline brazing powders
US3948652A (en) Contact material for high-power vacuum circuit breakers
CN1028770C (en) Polynary copper alloy with low beryllium
US3993481A (en) Contact material for high-power vacuum circuit breakers